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The Jacobian-free Newton–Krylov method is widely used in solving nonlinear equations arising in many
applications. However, an effective preconditioner is required for each iteration and determining such
may be hard or expensive. In this article, we propose an efficient two-sided bicolouring method to deter-
mine the lower triangular half of the sparse Jacobian matrix via automatic differentiation. Then, with
this lower triangular matrix, an effective preconditioner is constructed to accelerate the convergence of
the Newton–Krylov method. The numerical experiments illustrate that the proposed bicolouring approach
can be significantly more effective than the one-sided colouring method proposed in Cullum and Tu̇ma
[Matrix-free preconditioning using partial matrix estimation, BIT 46 (2006), pp. 711–729] and yields an
effective preconditioning strategy.

Keywords: automatic differentiation; preconditioner iterative methods; nonlinear equation solvers;
Newton method; intersection graphs; graph colouring

1. Introduction

The multiple dimensional zero-finding problem is

Solve F(x) = 0, (1)

where F(x) = (f1(x), f2(x), . . . , fn(x))T and each fi(x) maps a real n-vector x into a scalar in
a continuous and differentiable way. The Newton method is a typical method for solving this
problem. The core of the Newton method is to successively solve linear systems, that is

Find dx ∈ R
n such that J(x)dx = −F(x), (2)

where J(x) is an n-by-n Jacobian matrix of F(x), that is, J(x) = (∂f /∂xi)n×n. However, when
the problem size n is large, evaluating the Jacobian matrix in each iteration of the Newton
method is expensive. Thus, approximations of the Jacobian matrix are often used to replace
the exact Jacobian matrix in Newton iteration [3,28]. Although the computational cost of each
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2 W. Xu and T.F. Coleman

iteration is thereby reduced, more iterations are usually required to converge to the root of (1).
In fact, the Jacobian matrix itself is structured in many applications, so it may not be neces-
sary to form the Jacobian matrix J(x) itself explicitly in each iteration. In 2004, Knoll and
Keyes [19] reviewed the Jacobian-free Newton–Krylov (JFNK) method for solving the non-
linear equations (1); this approach combines a matrix-free approach with nonsymmetric Krylov
subspace methods. The Krylov subspace method was first proposed in 1950 [18]. This method
is a projection, or generalized projection, method for solving a linear system Ax = b using the
Krylov subspace Kj,

Kj = span(r0, Ar0, A2r0, . . . , Aj−1r0),

where r0 = b − Ax0. There are a variety methods falling into the Krylov taxonomy [2,13,17,25,
26]. One of the widely used method is the Generalized Minimal RESidual method (GMRES),
which is an Arnoldi-based method. In the GMRES method, the Arnoldi basis vectors form a trial
subspace. In each iteration of the GMRES method, a matrix–vector product is required to create
a new trial vector. The method is terminated based on an estimation of the residual. Thus, in the
GMRES method, it is not necessary to form the parameter matrix A explicitly, which only requires
the matrix–vector product, that is, Ax.

In order to construct a matrix–vector product J(x) · v for (2), we can employ the finite difference
method. For a nonlinear function F(x) : R

n → R
n, its corresponding Jacobian-vector product can

be approximated as

J(x) · v = F(x + εv) − F(x)

ε
, (3)

where ε is a small positive number. Thus, combining the GMRES method with finite differences,
the JFNK method is obtained for solving nonlinear equations. In practice, this method works well
in solving problems in fluid dynamics, power systems, plasma physics and so on [5,20,21].

However, there are two problems with the JFNK method.

(1) How should the preconditioner used in the GMRES procedure be chosen? It is well known
that the preconditioner reduces the number of GMRES iterations by clustering eigenvalues of
the iterative matrix. In each Newton iteration of the JFNK method, the Jacobian matrix J(x)
is updated; how can we update the corresponding preconditioner effectively and efficiently?
In [19], a few preconditioner techniques were proposed, but each is application dependent. Can
we find an efficient way to update the preconditioner corresponding to the updated Jacobian
matrix?

(2) The Jacobian-vector product approximation (3) introduces some error into the Newton sys-
tem (1). It is known that (3) is a first-order approximation of the Jacobian-vector product. We
can increase its accuracy to second order by

J(x) ≈ F(x + εv) − F(x − εv)

ε
,

but this technique doubles the cost of forming J(x)v. Can we find an economic way to evaluate
J(x) · v accurately?

Regarding the first question, Tu̇ma and co-workers [8,11,12] proposed a matrix-free environ-
ment to construct updated preconditioners for a sequence of matrices based on partial matrix
estimation. In those papers, only the triangular parts of the sequence of matrices are used to
update the preconditioners. For solving the nonlinear equations (1), the Jacobian-vector prod-
uct approximation (3) is employed to update the lower triangular part of the Jacobian matrix
with a pre-determined sparsity pattern. Their experiments illustrate the effectiveness of their new
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Optimization Methods & Software 3

preconditioners. In [1], Bellavia et al. proposed an another preconditioner construction technique
for the Newton–Krylov method. Similar to [8], some part of the difference between the cur-
rent Jacobian matrix and the initial matrix is also required for the preconditioner construction at
each Newton iteration. However, they did not propose an efficient way to recover these nonzero
entries.

In this article, we will not only answer the second question, evaluating the Jacobian-vector
product J(x)v exactly with less computational cost than the finite difference method, but also
will evaluate the exact product wTJ(x) based on the automatic differentiation (AD) [16]. We
then generalize Tu̇ma’s preconditioner construction method from one-sided colour updating to
two-sided colour updating. It will turn out that two-sided colouring updating will be much more
efficient than the one-sided colouring updating, especially when there are some dense rows in
the lower triangular part of the Jacobian matrix. Moreover, the bicolouring technique can be
generalized to recover any restricted partial Jacobian matrix in [15].

The rest of the article is organized as follows. Section 2 introduces some basic ideas and imple-
mentations of Tu̇ma’s preconditioner with a pre-determined sparsity pattern. In Section 3, we
propose our method to update the lower triangular part of the Jacobian matrices by the bicolour-
ing graph technique with the AD. Then, some numerical results will show the efficiency of the
bicolouring updating technique and the performance of solving nonlinear equations in Section 4.
Finally, we present concluding remarks in Section 5.

2. Preconditioner construction

In [11,12], the triangular preconditioner updates for nonsymmetric linear systems are defined
based on the difference between the matrix from the first linear system and the current system
matrix of the sequence. Suppose J is the Jacobian matrix of the first Newton system and J̄ is the
current system Jacobian matrix. If J = LDU is the incomplete triangular decomposition [14] of
J and B = J − J̄ is the difference matrix, then the basic triangular updated preconditioner, P, of
the current Jacobian system can be constructed as

P ≡ (LD − tril(B))U or P ≡ L(DU − triu(B)), (4)

where tril(·) and triu(·) are the lower triangular and upper triangular part of a matrix, respectively.
Thus, we solve a preconditioned linear system P−1J̄(x)dx = −P−1F(x), instead of (2). If we want
to construct the preconditioner as in (4), the lower triangular or upper triangular part of the current
Jacobian matrix J̄ has to be evaluated. For simplicity, we focus on (LD − tril(B))U in this article.
The following theorem shows the quality of the preconditioner if (LD − B), the approximation to
(LD − B), is favourably chosen.

Theorem 2.1 Assume that LDU + E = J for some error matrix E and let ‖BD−1L−1‖2 ≤
1/c < 1, where ‖ · ‖2 denotes the Euclidean norm and BD−1L−1 = I − (LD − B)D−1L−1.
Further assume that the singular values σi of

B(I − U) + (LD − B − (LD + EU−1 − B))U

satisfy

σ1 ≥ σ2 ≥ · · · ≥ σt ≥ δ ≥ σt+1 ≥ · · · ≥ σn,

for some integer t, t 	 n and some small δ > 0, where (LD − B) is an easily invertible approxima-
tion matrix of (LD − B). Let (LD − B) have nonzeros main diagonal, and D = diag(d1, . . . , dn).

D
ow

nl
oa

de
d 

by
 [

T
on

gj
i U

ni
ve

rs
ity

] 
at

 1
6:

28
 0

9 
Ja

nu
ar

y 
20

13
 



4 W. Xu and T.F. Coleman

Then, there exist matrices F and � such that

U−1(LD − B)−1J̄ = I + � + F,

with rank(�) < t and

‖F‖2 ≤ c

c − 1
max

i

δ

|di| ‖L−1‖2‖U−1‖2.

The proof of Theorem 2.1 is similar to that of Theorem 2.2 in [8]. In that paper, a one-sided
colouring method, that is, a solver for the diagonal partial colouring problem, is proposed to
approximate the lower triangular part of B based on the Jacobian-vector product approximation
Jv via the finite difference method. In numerical experiments, a drop tolerance for each row of the
testing sparse matrix is used where entries less than a tolerance are set to zero, so that the number
of matrix–vector multiplications can be reduced significantly for some cases. The algorithm to
form preconditioner updates for the Newton system can be written as follows.

Algorithm 1 Consider problem (2), the preconditioner update for the Newton system at each
iteration can be constructed in following steps. The start point is x0.

(1) Estimation. Estimate J(x0) with the finite difference method.
(2) Initial factorization. Factorize J(x0) by the incomplete LU decomposition

J(x0) ≈ LDU.

(3) Sparsification. Filtrate J(x0) to get its sparsification pattern S(J(x0)).
(4) Colouring. Get a colouring pattern of S(J(x0)) via solving a partial colouring problem based

on one-sided colouring.
(5) For i = 0 : n

Estimate the lower triangular part of J(xi) via the colouring pattern with the

matrix–vector product approximation.

Compute the difference matrix tril(B) and construct the preconditioner from (4).

end

The key component of Algorithm 1 is the one-sided colouring pattern of S(J(x0)), that is, recov-
ering J(x) through the matrix–vector multiplication J · v, and estimation of the lower triangular
part of J(xi) via the colouring pattern with the matrix–vector product approximation. When the
matrix J(xi) has dense columns in its lower triangular part, the one-sided colouring pattern with
the matrix–vector product, Jv, is an efficient way to estimate tril(J(xi)). However, when there are
some dense rows, the matrix–vector product Jv is not suitable.

Example 1 shows two extreme cases for these two situations. The left matrix, J(1), is an upper
arrow matrix with a dense column in its lower triangular part. The right matrix, J(2), is a lower
arrow matrix with a dense row in its lower triangular part. As we see, in order to estimate the lower
triangular parts of J(1) and J(2), the corresponding V (i) for J(i) (i = 1, 2) are totally different. To
estimate tril(J(2)), V (2) has five columns, while J(1) only requires two columns in V (1). Thus, we
have to find a way to handle the dense row in J(2). In [8], Tu̇ma uses filtration, which removes
small nonzeros in each row. However, how to choose a drop tolerance, which guarantees a good
preconditioner for the Newton system, is not discussed in [8]. In the next section, we propose a
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Optimization Methods & Software 5

partial bicolouring graph method with the matrix–vector products Jv and wTJ so as this technique
can be effective when there are both dense columns and rows in the tril(J).

Example 1 Examples for matrix estimation through matrix–vector products.

J(1) =

⎡
⎢⎢⎢⎢⎣

X X X X X
X X
X X
X X
X X

⎤
⎥⎥⎥⎥⎦

J(2) =

⎡
⎢⎢⎢⎢⎣

X X
X X

X X
X X

X X X X X

⎤
⎥⎥⎥⎥⎦

V (1) =

⎡
⎢⎢⎢⎢⎣

1 0
0 1
0 1
0 1
0 1

⎤
⎥⎥⎥⎥⎦

V (2) =

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

3. Partial bicolouring matrix update

The bicolouring technique was proposed by Coleman and Verma in [7] to efficiently determine
the Jacobian matrix J using AD techniques. In this article, we generalize their bicolouring ideas to
update the lower triangular part of Jacobian matrix J . For a nonlinear function F(x) : R

n → R
n,

the first derivative is the Jacobian matrix J ∈ R
n×n. In large-scale problems, the matrix J is often

sparse and it is important to exploit its sparsity and determine its lower triangular part at a given
point x. In this section, we are concerned with the efficient computation of the lower triangular
part of J via automatic differentiation techniques.

Given an arbitrary n-by-tV matrix V , the exact product JV can be computed using the AD
technique called the ‘forward mode’; given an arbitrary m-by-tW matrix W , the product WTJ can
be computed by the AD technique using the ‘reverse mode’ [16]. The computational cost of JV is
tV · ω(F), while the cost for WTJ is tW · ω(F), where ω(F) is the cost to evaluate F. Compared
with the finite difference technique, the AD technique can directly compute JV and WTJ exactly
without forming J explicitly. The cost of computing JV is equal to the finite difference technique.

When the Jacobian matrix J is sparse, the matrix J can be evaluated from the matrix–vector
product, JV . First, the columns of J are partitioned into a set of groups GC , where the number of
groups in GC is denoted by |GC |. The columns in each group G ∈ GC are structurally orthogonal
if vi · wi = 0, i = 1 : n for two n-vectors v and w. Each group G ∈ GC determines a column of V ;
vi = 1 if and only if the column i is in group GC ; otherwise, vi = 0. In particular, a colouring of the
column-intersection graph of J yields a matrix V such that the nonzeros of J can be determined,
directly, from the product JV .

Thus, the nonzeros of J can be immediately determined from the product JV . If we can partition
the columns of J into a set of groups GC as described above, with a small tV = |GC |, then this
leads to a thin matrix V ∈ R

n×tV , to obtain all the nonzeros of J . However, if there is a dense
row in J , then |GC | cannot be small. Instead, we can choose the reverse mode to estimate the
Jacobian matrix J . First, we partition the rows of J into groups GR and determine all nonzeros
of J by WTJ . However, if there is a dense column in J , then |GR| is not small, either. Obviously,
there are some column or row preferable problems. Unfortunately, there are a lot of problems
neither approach is preferable, for instance, two matrices in Example 1. Therefore, the two-sided
colouring technique can be a good solution for these neither approach preferable problems. In this
article, our task is to efficiently determine thin matrices V and W , so that the nonzeros of tril(J)
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6 W. Xu and T.F. Coleman

can be readily extracted from the information of JV and WTJ . The product WTJ is computed by
the reverse mode; the forward mode determines JV . As shown in [7], the determination of V and
W is equivalent to construct p-colour and q-colour graphs. The number p represents the number
of columns in V and q is the number of columns in W . Readers can refer to [15] for more details
about the relationship between graph colouring and derivatives computation. Usually, there are
two approaches for the bicolouring method for full or partial matrix determination, direct and
substitution [7,15,27]. However, this article is focused on applying the bicolouring approach to
accelerate the Newton–Krylov method, not partial matrix determination methods. Thus, we just
adopt the direct approach in [27], which is also same as the technique for the partial Jacobian
determination in [15]. Other partial matrix determination technique in [15,27] can replace the
direct approach here for further acceleration.

Definition 3.1 A bipartition of a matrix J is a pair (GR, GC), where GR is a row partition of a
subset of the rows of J and GC is a column partition of a subset of the columns of J. Every nonzero
of J is covered by at least one of GR or GC.

The basic idea is to partition rows into GR and columns into GC , with |GC | + |GR| as small as
possible, so that the every nonzero element of tril(J) can be directly determined from either GC

or GR. The following example shows the difference of full and partial bipartitions.

Example 2 Examples for the full bipartition in [7] and the partial bipartition on the same matrix.

J(1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �15

�21 �25

�31 �35

�41 �45 
46


52 
53 
54 
55 
57

�64

�74 �77 
78 
79

�87

�97

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

J(2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 X
�21 X
�31 X
�41 X X


52 
53 
54 
55 
57

�64

�74 �77 X X
�87

�97

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In Example 2, elements labelled � are computed from the column grouping, that is, computed by
JV ; elements labelled 
 are computed from the row grouping, that is, computed by WTJ; elements
labelled X are ignored in the computation since we only need to determine the nonzero elements
in the partial bipartition. The matrix J(1) in Example 2 indicates that |GC | = 3 and |GR| = 2
by the full bicolouring estimation in [7] and we can determine all the elements directly with
V = (e1 + e4, e5, e7) and W = (e4 + e7, e5), where ei is the ith column of the identity matrix. The
matrix J(2) indicates that |GC | = 2 and |GR| = 1 by our proposed partial bicolouring estimation;
we can determine all nonzero elements of the lower triangular part of J(2) directly with V =
(e1 + e4, e7) and W = (e5). Our main goal is to obtain a bipartition (GR, GC) of J , from which we
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Optimization Methods & Software 7

can determine its lower triangular part directly such that the total number of groups, |GR| + |GC |
is small.

There are two steps in our procedure. The first step is to partition the matrix J into two groups
J̃ = P · J · Q = [JC |JR]. This construction is crucial. The second step is to determine the matrices
V and W . In this step, we define an approximation graph GI

C , GI
R based on the partition [JC |JR],

then GI
C yields a partition of a subset of GC , which determines V . And matrix W is defined by the

subset of GR given the colouring of GI
R. With matrices V and W , the lower triangular part of J can

be determined by (JV , WTJ) directly. Thus, we first consider the problem of obtaining a useful
partition [JC |JR] and corresponding permutation matrices P and Q. Here, we adapt the minimum
nonzero count ordering (MNCO) algorithm in [7] for the partition.

The MNCO algorithm [7] builds the partition JC from the bottom up and the partition JR from
right to left. At the kth iteration, either a new row is added to the partition JC or a new column is
added to JR. This choice depends on a lower bound:

ρ(JT
R ) + max(ρ(JC), nnz(r)) < (ρ(JC) + max(ρ(JT

R ), nnz(c))),

where ρ(A) is the maximum number of nonzeros in any row of matrix A, r is a row under
consideration to be added to JC and c is a column under consideration to be added to JR. Therefore,
the number of colours needed to colour GI

C is bounded below by ρ(JC); the number of colours
needed to colour GI

R is bounded below by ρ(JT
R ).

Upon completion of the MNCO algorithm, partitions JC and JR are defined. Then, we can define
intersection graphs GI

C and GI
R based on the partition [JC |JR]. Following are the definitions of GI

C
and GI

R.

Definition 3.2 The intersection partial graph GI
C = (V I

C , E I
C) can be defined as follows.

(1) Vertex j ∈ V I
C if nnz(column j ∩ JC) �= 0;

(2) (r, s) ∈ E I
C if r ∈ V I

C , s ∈ V I
C , and there exists k (k ≥ r or k ≥ s) such that Jkr �= 0, Jks �= 0

and either (k, r) ∈ JC or (k, s) ∈ JC.

Definition 3.3 The intersection partial graph GI
R = (V I

R, E I
R) can be defined as follows.

(1) Vertex j ∈ V I
R if nnz(row j ∩ JR) �= 0;

(2) (r, s) ∈ E I
R if r ∈ V I

R, s ∈ V I
R, there exists k (k ≤ r or k ≤ s) such that Jrk �= 0, Jsk �= 0 and

either (r, k) ∈ JR or (s, k) ∈ JR.

The key point in the construction of partial graph GI
C is that columns r and s are intersect

if and only if their nonzero entries partially overlap in JC , that is, columns r and s intersect if
Jkr · Jks �= 0 and either (k, r) ∈ JC or (k, s) ∈ JC for some k larger than r or s. Similarly, for GI

R,
if Jrk · Jsk �= 0 and either (r, k) ∈ JR or (s, k) ∈ JR for some k less than r or s, then rows r and
s are intersect. To determine the lower triangular part of a matrix A, assume a nonzero entry
(i, j) ∈ JC , i ≥ j, then column j assigned a colour is in a group of GC induced by colouring of
GI

C . Thus, according to Definition 3.2, there is no other column in GC with a nonzero in row i. It
implies that entry (i, j) can be directly determined. For a nonzero entry (r, s) ∈ JR, r ≥ s, it can
be directly determined according to Definition 3.3 as well. Therefore, the whole lower triangular
part of A can be recovered. In [15], the direct determination of a subset S of A through a partial
star bicolouring technique was proved. As a specific case for subset S, the direct determination of
the lower triangular part of A and a partial p-colouring graph problem are equivalent.
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8 W. Xu and T.F. Coleman

4. Numerical experiments

In this section, we present some numerical experiments on the partial bicolouring method for
evaluating the lower triangular part of Jacobian matrices, and the performance of the JFNK
subspace method for nonlinear equations based on our partial bicolouring method and AD. All
experiments are carried on a machine with Intel Core i5-2500 3.30 GHz, 12 GB RAM, 1 TB hard
driver running under Windows 7 Professional and Matlab R2009a. As we mentioned in previous
section, the AD technique was employed to compute the matrix–vector products JV and WTJ .
Here, we use the Matlab AD package ADMAT-2.0 [4] for the implementation of the forward mode
and reverse mode AD. The stop criterion for the Newton method and Krylov subspace method
is 10−6.

Table 1. Testing matrices collection.

Matrix Type Size Nonzeros

circuit−1 Circuit simulation problem 2624 35,823
rajat01 Circuit simulation problem 6833 43,250
rajat12 Circuit simulation problem 1879 12,818
coupled Circuit simulation problem 11,341 97,193
jan99jac020 Economic problem 6435 51,480
orani678 Economic problem 2529 90,158
Raefsky6 Structured problem 3402 130,371
can256 Structured problem 256 2916
G22 Undirected random graph 2000 39,980
nopoly Undirected weighted graph 10,774 70,842
garon1 Computed fluid dynamic problem 3175 84,723
graham1 Computed fluid dynamic problem 9035 335,472
cavity16 Computed fluid dynamic problem 4562 137,887
bp−600 Subsequent option problem 822 4172
C-20 Optimization problem 2921 20,445
viscoplastic2 Material problem 32,769 381,326

Table 2. The number of matrix–vector products and running times in seconds for three estimations, full bicolouring
estimation, partial bicolouring estimation and partial one-side colouring estimation to determine the seed matrices V
and W .

Full bicolouring Partial bicolouring Partial one-sided bicolouring

Matrix MVs Time(s) MVs Time(s) MVs Time(s)

circuit−1 139 7.39 125 7.29 2570 123.49
rajat01 32 3.33 22 3.05 26 3.04
rajat12 39 0.56 27 0.48 1195 31.32
coupled 86 9.84 73 8.71 2152 303.32
jan99jac020 68 4.86 44 4.41 60 4.28
orani678 245 9.34 200 7.31 236 8.88
Raefsky6 125 5.71 111 4.77 126 5.01
can256 30 0.33 20 0.21 59 0.57
G22 82 3.27 60 3.11 62 2.21
nopoly 11 3.29 11 4.11 12 3.44
garon1 51 2.38 45 3.77 47 3.07
graham1 147 6.13 145 8.11 290 28.63
cavity16 69 2.07 48 1.97 48 1.88
bp−600 27 0.05 18 0.11 25 0.13
C-20 72 0.4 55 0.9 158 1.24
viscoplastic2 97 170.00 23 56.11 24 43.32
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Optimization Methods & Software 9

First, we compare the effectiveness of the partial bicolouring technique with the full bicolouring
technique in [7] and the one-sided colouring technique in [11]. In contrast to [11], we do not set
up a drop tolerance to remove nonzero elements in a row. In other words, we do not change the
lower triangular sparsity of a Jacobian matrix in the whole computation procedure. As for the
full bicolouring method in [7], we use it to recover the whole sparse Jacobian matrix, not just the
lower triangular part. Test matrices reside from the Tim Davis collection [9] and its subcollections.
All selected matrices for testing are listed in Table 1. The first column of Table 1 is the names of
selected matrices. The second column is the application background from which selected matrices
were generated. The third and fourth columns are the matrix sizes and numbers of nonzeros of
selected matrices, respectively. Then, we apply these three techniques, full bicolouring estimation,
partial bicolouring estimation and partial one-sided colouring, to all these matrices. The number
of matrix–vector products, MV, and the running times are listed in Table 2.

From Table 2, it can be observed that the partial bicolouring technique requires much fewer
matrix–vector products than the full bicolouring method in most testing cases. Compared with
the one-sided partial colouring technique in [8], the bicolouring technique can reduce the number
of matrix–vector multiplications significantly. Figure 1 shows the sparsity patterns of matrices,
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10000
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Figure 1. Sparsity patterns for matrices, circuit_1, coupled, nopoly and bp_600.
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10 W. Xu and T.F. Coleman

named circuit_1, coupled, nopoly and bp_600. It illustrates that when there is a dense row
in the lower triangular part of the matrix, circuit_1 and coupled for example, our bicolouring
partial estimation requires much fewer matrix–vector multiplications than the one-sides colouring
method does. While there are no dense rows, say nopoly and bp_600, the bicolouring and one-
sided colouring methods require the similar number of matrix–vector multiplications. On the other
hand, the running times to determine the seed matrices V and W of a full matrix or partial matrix
via bicolouring techniques are similar since both are required to use the MNCO to partition
matrix into JC and JR. The partial estimation needs a little bit more computations based on
Definitions 3.2 and 3.3. As for the partial one-sided colouring approach, it usually takes more
time than the bicolouring approach when it requires much more matrix–vector multiplications to
recover the lower triangular part. When the numbers of matrix–vector multiplication are similar
between the one-sided and bicolouring methods, the bicolouring method usually requires more
running times due to the matrix partition MNCO algorithm. However, the MNCO algorithm only
runs once for the lower triangular part recovery in the JFNK method. Once the seed matrices V
and W are determined, only V and W are required to recover the partial matrix for rest of the
iterations.

Next, we test the Newton–Krylov method for solving some typical nonlinear equations [22]
based on the AD. In the computational process, we first use ADMAT-2.0 [4] to evaluate an
initial Jacobian matrix, J0. Then, we get the sparsity of the Jacobian matrix and the incomplete
LDU decomposition of J0. Next, we solve the first Jacobian systems based on the incomplete
LDU decomposition. After that iteration, we construct the preconditioner as in (4) and solve
the corresponding Jacobian system by the Krylov method for each iteration until we get the
solution for the nonlinear equations. For the comparison, we choose the standard Newton trust
region method [23,24]. The only difference between these two methods is the Newton trust
region method forms the Jacobian matrix explicitly via AD and solves (2) by ‘\’ in Matlab while
the Newton–Krylov method forms the preconditioner through the partial bicolouring Jacobian
estimation and solves (2) by the GMRES method. In other words, the dogleg and trust region
ideas are also implemented in the Newton–Krylov method. In this experiment, we choose a few
classic nonlinear equations in Moré, Garbow and Hillstorm’s collection [22].

(1) Extended Rosenbrock function:

f2l−1(x) = 10(x2l − x2
2l−1), f2l(x) = 1 − x2l−1, where the problem size n = 2l.

(2) Extended Powell singular function:

f4l−3(x) = x4l−3 + 10x4l−2, f4l−2(x) = 51/2(x4l−1 − x4l)

f4l−1(x) = (x4l−2 − 2x4l−1)
2, f4l(x) = 101/2(x4l−3 − x4l)

2,

where the problem size n is a multiple of 4.
(3) Discrete boundary value (DBV) function:

fi(x) = 2xi − xi−1 − xi+1 + h2(xi + ti + 1)3/2,

where the problem size is n, h = 1/(n + 1), ti = ih and x0 = xn+1 = 0.
(4) Broyden tridiagonal function:

fi(x) = (3 − 2xi)xi − xi−1 − 2xi+1 + 1.

Table 3 lists the comparison results of the Newton–Krylov method with the standard Newton
method. Due to the sparsity of Jacobian matrices, only a few matrix–vector products are required to
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Optimization Methods & Software 11

Table 3. The performance comparison of the Newton–Krylov method with bicolour-
ing and one-sided colouring partial Jacobian estimation and standard Powell’s dogleg
method for four typical nonlinear equations.

Newton–Krylov Newton

Problem Time It MVs Krylov Time It

n = 2000
Powell 0.57 9 3 6 2.79 9
Rosenbrock 0.32 5 2 2 0.58 4
DBV 0.87 5 3 3 2.36 5
Broyden 0.54 5 3 3 1.29 5

n = 5000
Powell 1.76 9 3 6 31.06 9
Rosenbrock 1.28 4 2 2 3.61 4
DBV 3.52 4 3 3 18.30 4
Boyden 2.07 5 3 3 7.88 5

n = 10, 000
Powell 5.44 9 3 6 191.91 9
Rosenbrock 3.98 4 2 2 14.29 4
DBV 12.46 4 3 3 84.70 4
Boyden 6.96 5 3 3 31.29 5

n = 12, 000
Powell 7.72 9 3 6 287.76 9
Rosenbrock 5.59 4 2 2 21.10 4
DBV 18.35 4 3 3 137.16 4
Boyden 10.19 5 3 3 49.76 5

Notes: Column ‘It’ for the number of iterations; column ‘MVs’ for the number of matrix–vector
products for each lower triangular matrix estimation; column ‘Krylov’ for the average number of
Krylov iterations at each Newton iteration.

estimate the lower triangular part for the preconditioner construction (4) at each Newton iteration.
The results indicate that the preconditioner leads to a fast convergence of the Krylov subspace
method for solving (2). Thus, the Newton–Krylov method is superior to the standard Newton
method when the problem size is large.

Finally, we analyse a flow problem of a fluid during injection into a long vertical channel [10].
Assume that the flow is modelled by the boundary value problem

u(4) = R(u′u′′ − uu(3)), 0 ≤ t ≤ 1,

u(0) = 0, u(1) = 1, u′(0) = u′(1) = 0,
(5)

where u is the potential function, u′ is the tangential velocity of the fluid and R is the Reynolds
number. We solve this problem by the k-stage collection method. First, partition the interval [0, 1]
into n subintervals uniformly with the length h, that is

0 = t1 < t2 < · · · < tn < tn+1 = 1.

Then, the k-stage collection method is defined in terms of k points,

0 < ρ1 < ρ2 < · · · < ρk < 1,

where k ≥ m (m = 4 in this case) and ρi are the roots of the Legendre polynomial of order 2k. This
choice guarantees superconvergence at the mesh points ti. The k-stage method approximates the
solution of the boundary value problem by a piecewise polynomial pi, where pi is a polynomial
of order k + 4 in each subinterval [ti, ti+1]. In our experiment, we let k equal to 4. Thus, in the
interval [0, 1], pi is defined in terms of 8n parameters. We have to specify these 8n parameters to
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12 W. Xu and T.F. Coleman

satisfy pi ∈ C3[0, 1], four boundary conditions in (5), and that the differential equation (5) holds
on pi at the collection points,

ξij = ti + hρj, for 1 ≤ i ≤ n, 1 ≤ j ≤ 4.

The polynomial of order 8 on each subinterval [ti, ti+1] is of the form [11]

pi =
4∑

i=1

(t − ti)j−1

(j − 1)! vij +
4∑

j=1

(t − ti)j+3

(j + 3)!hj−1
wij, t ∈ [ti, ti+1], for 1 ≤ i ≤ n. (6)

Then, based on the continuity condition p ∈ C3[0, 1] at the interior grid points, we have

pl−1
i (t+i ) = p(l−1)

i−1 (t−i ), 1 ≤ l ≤ 4, 1 ≤ i ≤ n.

Furthermore, at the collection points, the differential equation (5) holds, that is

p(4)
i (ξij) = R[p′

i(ξij)p
′′
i (ξij) − pi(ξij)p

(3)
i (ξij)], 1 ≤ j ≤ 4, 1 ≤ i ≤ n.

Thus, we have 8n equations in total to determine 8n parameters vij and wij in (6). In our experiment,
we test four case with n = 100, n = 500, n = 800 and n = 1000 with R = 0, R = 1, R = 10 and
R = 50, respectively. Table 4 provides the performance results of the Newton–Krylov method
and standard Newton method on solving the flow problem. As we know, when R = 0, the flow
problem (5) is reduced to a linear problem by the k-stage collection method. As R goes up, the
problem becomes harder to solve. From Table 4, we can find out that the speedup of the Newton–
Krylov method increases significantly as the problem size and R increase. On the other hand, the
bicolouring method requires fewer matrix–vector multiplications than the one-sided method does.
It leads to 10–20% time savings as the problem size and R increase. Although the speedup of the

Table 4. The performance comparison of the Newton–Krylov method and standard Powell’s dogleg method for a flow
channel problem.

Newton–Krylov bicolouring Newton–Krylov one-sided colouring Newton

Size (n) Time It Krylov Time It Time It

R = 0
100 3.23 – 3 3.67 – 27.86 –
500 13.41 – 3 15.38 – 134.24 –
800 31.37 – 3 36.81 – 345.34 –

1000 35.46 – 3 41.77 – 749.23 –

R = 1
100 3.31 3 7 3.81 3 27.08 3
500 26.77 3 7 31.89 3 178.87 3
800 94.47 3 7 103.81 3 409.83 3

1000 115.49 3 7 133.62 3 805.34 3

R = 10
100 7.73 7 8 8.43 7 32.34 7
500 33.11 7 8 42.94 7 187.22 7
800 109.94 7 8 124.45 7 318.34 7

1000 165.72 7 8 199.23 7 918.82 7

R = 50
100 11.33 6 17 14.97 6 45.24 6
500 60.37 6 36 74.37 6 198.35 6
800 113.24 6 60 149.97 6 412.22 6

1000 357.78 7 43 443.28 7 1038.77 7

Notes: Column ‘it’ for the number of iterations; column ‘Krylov’ for the average number of Krylov iterations at each Newton iteration.
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Optimization Methods & Software 13

bicolouring approach is not so significant compared with one-sided colouring, the performance of
bicolouring approach is still superior to the one-side colouring method. Therefore, from the above
five nonlinear problems, it turns out that the bicolouring Newton–Krylov method is much better
than the standard Newton method and one-side colouring Newton–Krylov method, especially
when the Jacobian matrix is sparse and the problem size is large.

5. Conclusions

The JFNK method is widely used in solving nonlinear equations arising in many applications.
However, constructing an economic and effective preconditioner is a challenge. In 2006, Tu̇ma
et al. proposed a method to construct the preconditioner based on the lower triangular part of
the Jacobian matrix. The heart of this method is a one-sided colouring procedure to estimate the
lower triangular half of the sparse Jacobian matrix via finite differences. However, when there are
dense rows in the lower triangular part, this one-sided colouring procedure can be unacceptably
expensive since it can then require many function evaluations (or the introduction of additional
tolerances to force ‘artificial’ sparsity).

We have proposed a related preconditioning idea that remains effective when there are dense
rows based on AD technology developed in the context of sparse Jacobians [6]. In particular,
we have proposed to adapt the two-sided bicolouring method developed in [15,27] to the case of
determining the lower triangular half of the sparse Jacobian matrix. This new procedure not only
handles both dense rows and dense columns, but also provides a more stable and accurate result
than the previous finite differences approach. The numerical experiments in Section 4 illustrate
the effectiveness of our new method and we conclude that this can be an effective approach.

Future directions of research and possible improvements, in this vein, include introducing an
initial permutation matrix to appropriately ‘flavour’ the lower triangular half of the Jacobian
(that defines the preconditioner), adapting the colouring procedure to account for both constant
(nonzero) values and Jacobian entries that are ‘copies’, and taking advantage of other structural
properties.
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