1322 Optintization Methods

[21] Shevchenko, P.V. & Wiithrich, M.V. (2006). The struc-
tural modeling of operational risk via Bayesian infer-
ence, Journal of Operational Risk 1(3), 3-26.

VALERIE CHAVEZ-DEMOULIN & PAUL
EMBRECHTS

Optimization Methods

No area of computational mathematics plays a greater
role in the support of financial decision making and
strategy development than numerical optimization.
The full gamut of optimization methodologies are
applied to this end—linear and quadratic, nonlinear
and giobal, stochastic and deterministic, discrete and
continuous—and applications propagate throughout
the front office, back office, analysis, and trading
operations. The use of optimization is deep, perva-
sive, and growing.

We organize our presentation in three “levels”,
The top level in our presentation is the management
of portfolios based on quadratic programming, the
second level is stochastic programming for portfolio
optimization, and the lowest (but perhaps the most
important) level is model calibration (see Model
Calibration).

While some of the methodological issues that
arise are specific to the different levels, there are
three dominant themes that cut across all lev-
els: speed, robustness, and quality of solution.
Speed often dominates thinking in financial cir-
cles since rapid informed decision making (some-
times, “automatic”) can translate into capital gains
(conversely, lack of sufficient speed can lead to
losses). Nevertheless, a “wrong” answer computed
at record speed is not of much value {(and could
be quite disastrous). A solution can be wrong in
several ways. For example, if the computed solu-
tion is not robust, then the resultant strategy may
be a very poor strategy under slight tweaking of
the parameters defining the problem. This is a
serious practical problem because problem param-
eters are almost always determined in an approx-
imate manner (i.e., they are not known exactly),
Other solution quality issues can arise. For example,
some optimization problems are too hard to solve

in reasonable time and so approximation schemeg
must be used. But how good is the approximate
solution?

As we discuss some of the optimization chgl.
lenges that arise under the organizing levels mey.
tioned above, we make particular note of these three
unifying numerical concerns.

Portfolio Management: Quadratic
Programming

The most famous optimization application in finance
is the mean-variance portfolio optimization prob-
lem, first introduced by Markowitz [19]: see also
Risk-Return Analysis. The question that is add-
ressed by “mean—vartance portfolio optimization™ is
both easy to understand and practical: how should ane
distribute, across a given set of financial instruments,
a finite investment in order to balance (according to
the investors preference) risk and expected return? In
its pure form, this question can be formulated as a
positive definite quadratic programming problem.

Let g € " be a vector of expected returns for
n assets, and an n-by-n matrix Q be the covari-
ance matrix of asset returns. Assume that the vector
x € N" denotes the percentage of asset holdings.
Then the mean-variance portfolio optimization prob-
lem can be formulated as

min —u"x +ix"Ox
X

ix,-: 1 (1)

subject to

where A > 0 is a risk aversion parameter, Additional
(linear) constraints can be imposed, for example, no
short selling constraints correspond to x = 0. There
are many good algorithms, and codes {e.g., MOSEK
and LOQO [24]) to solve positive definite quadratic
programming problems, but the situation becomes
more complex (and more interesting) as financial (and
numerical) concerns are introduced.

One complication arises in the equity setting:
portfolios held in many firms can be quite large—in
several thousands—and typically have a dense matrix
Q; nevertheless, there is serious need to determine
a solution rapidly. Moreover, because many of the
subsets of instruments in the portfolio behave in
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a highly correlated way the matrix & can be jll-
conditioned. This means numerical algorithms can
have a hard time computing accurate answers, and
small changes in the input data can lead to very
different proposed strategies and portfolios. Cne
approach to address these difficulties is to use a factor
model. However, algorithm implementation needs to
exploit this special structure of the covariance matrix
for optimal computational efficiency.

Another complication is the need to use additional
terms, for example, to capture transaction costs
(see Transaction Costs). These additional terms
yield 2 more realistic model; however, they may
also change the objective function into a more
nonlinear function. This apparent small change has
a big impact—general nonlinear codes {even with
linear constraints) are more complex and have fewer
“guarantees” relative to quadratic objective functions.

Recently, there has been considerable attention
paid to the fact that the objective function in equa-
tion (1} is just an approximation to reality. Estima-
tion of expected returns is notoriously difficult; the
expected return parameter may be closer to wish-
ful thinking than reality. Specifically, return 4 and
covariance matrix @ are supposed to represent the
return and risk going forward in time but are typi-
cally, in fact, the return and risk going backward. The
question is, how well does our chosen portfolio (i.e.,
the optimization solution based on these estimated
parameters} perform as reality rolls forward under
real conditions? Unfortunately, the answer is that it
may not do very well at all: see for example, [5, 6].

There is now considerable attention being paid
to this very practical concern, generally under the
label “robust optimization”; see for example, [14, 15,
23], and Robust Portfolio Optimization. The goal
of tobust optimization is to guarantee the best per-
formance in the worse case. Since the support for an
uncertain parameter may be infinite, a robust port-
folio is typically determined by considering optimal
performance in the worst case within some uncer-
tainty sets for model parameters, For example, the
min—max robust formulation for equation (1) can be
expressed as

: T T
min max —p'x4+Ax Ox
x nes,. QeSg # 2
n
subject to in =] (2)
i=t

where S, and S are uncertainty sets for the expected
return 4 and covariance matrix o, respectively. The
uncertainty sets are often either intervals or ellipsoids
(typically corresponding to some confidence inter-
vals). Efficient computational methods for conic opti-
mization and semidefinite programming can be used
to solve some of these robust optimization problems;
see, for examplie, [11].

There is need for still more research here though
since much of the work to date takes ap unduly
conservative—and expensive— point of view: given
a range to capture the possibility values of the
parameters, solve the problem in the worst case.
This solution provides protection but is certainly on
the extreme risk-averse side. Recently, a conditional
Value-at-Risk (CVaR) robust formulation is consid-
ered in [25] to address uncertainty in the parameters
for mhean—variance portfolio optimization.

CVaR Minimization and Optimal
Executions: Stochastic Programming

Optimal financial decisions often need to be made
using uncertain parameters which describe the opti-
mization problems. This view leads to stochastic
programming problems.

Even in a single-period portfolio  optimization
framework, if instrument values {c.g., options)
depend nonlinearly on the risk factors, a different risk
measure, instead of standard deviation, for example,
Value-at-Risk (VaR) (see Value-at-Risk) or CVaR
(see Expected Shortfall), needs to be used. Both
these measures quantify near-worst case losses and
both present interesting optimization chailenges.

VaR is essentially a quantile of a loss distribution.
For a confidence ievel B, for example, 95%, the
VaR of a portfolio is the loss in the portfolio’s
market value over a specified time horizon that
is exceeded with probability 1 — 8. When VaR is
used as a risk measure, the portfolio optimization
problem is, in general, a nonconvex programning
problem. Computing a global minimizer remains a
computationally challenging task.

An alternative risk measure to VaR is CVaR. When
the distribution of the portfolio loss is continuous, for
a given time horizon and a confidence level B, CvaR
is the conditional expectation of the loss exceeding
VaR. In contrast to VaR, CVaR provides additional
information on the magnitude of the excess loss. It
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has been shown that CVaR is a coherent risk mea-
sure; see for example, [3, 21]. In addition, minimizing
CVaR typically leads to a portfolio with a small VaR.

Assume that L{x) is the random variable denoting
loss of a portfolio x € " within a given time
horizon. If x is a vector of instrument holdings and
§V is (random) change in the instrument values,
then L(x) = —xT (§V). For a given confidence level,
CVaR is given by

CVaRg(L(x))
=min (¢+(1-8)"ELE -a)h) )

where (L(x) — )" = max(L{x) —«,0) and E()
denotes the expectation of a random variable. When
the loss distribution is continuous, the above rela-
tion follows directly from the optimality condition
[22]. Unlike VaR, the CVaR portfolio optimization
problem, '

min (@+(1 - E(LE) —a)) @

is a convex optimization problem [22].

Assume that {(3V);}}, are independent samples
of the change in the instrument values over the
given horizon. Then the following is a scenario CVaR
optimization problem, which approximates the above
continuous CVaR optimization problem:

: ot
po (a m(l—ﬁ) Z[ (6V); x — o] ) )

This piecewise linear optimization problem has
an equivalent linear programming formulation, which
can be solved using standard linear programming
methods. The resulting linear program has O(m + n)
variables and O(mn - n) constraints, where m is the
number of Monte Carlo samples and » is the number
of instruments. Note that any additional linear con-
straints can easily be included. Although this linear
programming problem can be soived using standard
linear programming software, a smoothing technique
is proposed in [1]; this smoothing method is shown to
be significantly more computationally efficient when
the number of instruments and scenarios become
large.

Frequently, portfolio optimal decision problem is
also a multistage dynamic programming problem.
Recently, there has been much interest in the optimal

execution of a portfolio of large trades under the
market impact consideration; see, for example, [2,
4, 13].

The optimal execution problem can be formulated
as a continuous time stochastic control problem. We
illustrate the problem here in the discrete setting,
Suppose that a financial institution waats to sell g
large number of shares § € " in m assets by trad-
imgathr=0<ty < - <ty=T,where ;1) —t; =
T = -}Ef and T > 0 is the time horizon. Let the trades
between #;_; and f; be denoted by vectors ng, k
1,2, N

Let us assume that, at time #, k=0,1,---, N,
the vector P are the prices per share of assets that -
are publicly available in the market and By are the :
execution prices of one unit of the assets. The exe- ;
cution Cost (see Execution Costs) of the trades is
often defined as P7 S — 34, nf Pr. Owing to uncer-
tainties in price movements and in realized prices,
this implementation cost is a random variable. Hence,
the mean—variance formulation of the execution cost
problem with a risk-aversion parameter A > 0 is

N
: TE T 5
nl.ll;nz.l..l:l,rm E (PD s an P") +

k=l
N
A - Var (PUTS‘ - Zn{ﬁk)
k=1
N
Zﬂg = S
k=1

=0, k=1,2,...,N (6)

where E(.) and Var(:) denote the expectation and the
variance of a random variable, respectively.

The complexity level of equation (6) depends on
assumptions on the price dynamics and the impact
functions. In {2], the price vector # is assumed to
follow the dynamics:

Po= P+ P85 —2g(2) )

where &7 € %' represents an [-vector of independent
standard normals, and T is an m x { volatility matrix
of the asset prices. The m-vector function g(.)
measures the permanent price impact (see Price
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trades under ¢ ‘ Impact), which is, in general, relatively small. The
execution prices are given by

- nk

Po=PFe—h (?) (8)
atrol problem. We
» discrete settin
n wants to sell
m assets by tra
where t41 —
zon. Let the trad
y vectors ng, k

where the ni-vector nonlinear function k() describes
the temporary price impact.

Even in this simple price dynamic and market
impact models, there are many interesting and impor-
tant issues for the optimal execution problem. Price
impact functions represent the expected price depres-
sion caused by trading assets at a unit rate. Esti-
mating both temporary and permanent impact func-
tions can incur large estimation errors. The sensitivity
of the optimal execution strategy to the estimation
error in the impact matrices has recently been stud-
ied in 120]. In addition, if the price dynamics and
impact functions depend on additional state variables
as considered in [4], selving a portfolio execution
problem with many assets is computationally chal-
lenging, especially when no short selling constraints
are imposed.

k=01,
1are of assets that
et and Py are the
= assets. The ex
) of the trades
;- Owing to unce
n realized prices,
7 variable. Hence
the execution cost
neter A > 0 is

Nonlinear Programming

One of the most active roles optimization plays in
finance is the calibration of models (see Model Cali-
hration) yield curve construction (see Yield Curve
Construction) and statistical estimation problems
(see Generalized Method of Moments (GMM);
Entropy-based Estimation, Simulation-based Esti-
mation). Mathematical models are used to represent
the behavior of financial instruments, and portfolios
of such instruments, and such models almost always
require parameters to be estimated. These parame-
ters can be scalars, vectors, matrices, tensors, lines,
curves, and surfaces. The estimation processes can
lead to lincar, nonlinear, convex, and nonconvex
optimization problems (see examples in Model Cali-
bration).

The usual situation leads to a data-fitting problem:
given a model with unknown parameters, and given
some real data (say, market prices), determine the
“best” value for the parameters. An important class
of such problems is the option modei calibration
problem in which one determines a model so that
mode] values best fit market prices. Such problems
are known as inverse problems and there is a
significant literature on the creation and solution of
inverse problems in engineering.

xpectation and t
sectively.
y {6) depends on
>s and the impact
P, is assumed tQ

tor of independent
{ volatility matri
tor function g{
npact (see Pri

To illustrate, assume that a family of models are
described by the model parameters x in a feasible
set €. The feasible set constraints (such as non-
negativity, upper-bound constraints) can be used to
impose certain conditions on the model parameters.
Calibration problems determine the best fit to the
market option prices; the best fitting parameters can
be determined by solving the following nonlinear
least-squares problem:

m

.1 z
1323 E Zl (Vo(Kj, Tpx) - ngkt(Kj. Tj)) )]
J:

where VP8(K;, T;) denote today’s market prices
for standard options with strike K; and expiry Tj,
j=1,---,m, and {Vo(K; T;ix), j= 1,---,m}
denote today’s model values corresponding to model
parametiers x.

Let F(x): 3" — 0" denote the residual vector

o [ VoK Tism) = ViR (KL Th)
F(x) = : (10)

VO(Km: T;n;x) - V{)mkt(Km, Tm)

The calibration problem is a nonlinear least-
squares problem

o1 PO
min §!I (X3

There are a host of numerical challenges and
issues that arise in the calibration setting but we
only mention a few of them here. The foremost,
without a doubt, is the reliability of the data (and
the volume of data to be used). Data reliability
can lead to preprocessing steps such as filtering,
and, in some cases, choosing an optimization for-
mulation that is relatively insensitive to data errors
(e.g., least-squares minimization is much more sen-
sitive to (erroneous) outliers than absolute-value
minimization).

Avoiding overfitting is also a major issue. in
order for a model to calibrate some market infor-
mation, for example, market option prices, one needs
to consider a family of sufficiently complex mod-
els. For example, it is weil known that the classi-
cal Black—Scholes model is inadequate to calibrate
equity option prices and more complex models such
as local volatility function models (see Local Volatil-
ity Model), jump models (see Exponential Lévy
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Models), and stochastic volatility models (see
Heston Model) have been proposed. When a family
of complex models such as focal volatility function
models are considered, it is crucial to avoid overfit-
ting data; see for example, [8]. Even when a family
of models are described by a few model parame-
ters, the question of whether there exists sufficient
information to robustly determine model parameters
still remains; see, for example, jump model calibra-
tion problems [10, 18]. See also Tikhonov Regu-
larization for additional discussion on regularization
techniques.

In addition, option model calibration problems
face computational challenges. The problem is often
nonconvex and it is possible for this calibration opti-
mization problem to have multiple local minimizers;
see for example, [17]. Alse note that each initial
model value Vo(K;, Tj5x) is a complex nonlinear
function of the model parameters x. The Leven-
berg—Marquardt method or Causs—Newton method
can be used to solve the nonlinear least-squares
problem; see, for example, [12]. If the calibration
problem has additional bound constraints, an inie-
rior point trust region method [7] can be applied.
Genetic algorithms have also been used for the cal-
ibration problem; see, for example, [17]. Optimiza-
tion software for this nonlinear least-squares problem
requires repeated evaluation of each initial model
value Vo(K;, Tj:x), which is typically done through
numerical computation methods for partial differen-
tial equations or using Monte Carlo simulations. A
good initial guess for the model parameters can also
be crucial in ensuring success in obtaining a solu-
tior. We note that automatic differentiation may also
be a useful computational tool in accurately com-
puting the Jacobian matrices G F, which are often
required by an optimization software. For more infor-
mation on automatic differentiation, see, for example,
{9, 161.
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Option Pricing: General
Principles

Option contracis are financial assets that involve
an element of choice for the owner. Depending
on an cvent, the holder of an option contract can
exercise his/her options stated in the contract, that
is, to undertake certain specified actions. The typical
example of an option contract gives the holder the
right to buy a specific stock at a contracted price
and time in the future. The contracted price is called
‘the strike price, whereas the exercise time is when
‘the option may be executed. Such contracts are
known as call options, and the event that triggers
the execution of the option is that the underlying
stock price is above the strike. There is a plethora of
ifferent options traded in today’s modern financial
markets, where the financial events may include
credit, weather related situations, and so on. One
usually refers to derivatives or claims as being

Y.
Sensitivity

Technica

uter Scienc financial assets whose values are de endent on other
P P
rio, Canad financial assets.

There are two fupdamental questions that the
option pricing theory tries to answer. First, what is

Publishers the fair price of a claim, and second, how can one

replicate the claim. The second question immediately
implies the answer 10 the first, since if we can find an
investment strategy in the market that replicates the
claim, the cost of this replication should be the fair
price. This replication strategy 1s frequently called
the hedging strategy of the claim. The key finan-
cial concepts in pricing and replication are arbitrage
(or rather the absence of such) and completeness. A
mathematical concept related to these is the equiv-
alent martingale measure, also known as the risk-
neutral probability.

Explaining the Basic Concepts

To understand the concepts used, it is informative to
consider a very simple (and highly unrealistic) one-
period binomiial model. Suppose that we have a stock
with value $100 today and two possible outcomes
in one year. Either the stock price can increase to
$110 or it can remain unchanged. The interest rate
earned on bank deposits is set to 5% yearly and
considered the risk-free investment in the market.
Suppose that we wish to find a fair price of a call
option with strike $105 in one year. This option
will effectively pay out §5 if the stock increases,
whereas the holder will not exercise it if the stock
value is $100. Consider now an investment today
in @ = 0.5 number of stocks and b = —$50/1.05 =
—$47.62 deposited in the bank. A simple calculation
reveals that this investment yields exactly the same as
holding the option. In fact, this is the only investment
in the stock and bank that perfectly replicates the
option payoff and we, therefore, call it the replicating
strategy of the option. The cost of replication is
P = $50/21 =~ $2.38.

We argue that the fair price of the option should
be the same as the costs P of buying the replicating
strategy. If the price would be higher, say P > P,
then one could do the following. Sell # options for
that price and buy n of the replicating strategy. At
exercise, any claims from the options sold will be
covered exactly by the replicating strategies bought.
However, we have received the cash amount of 1 % P
for selling the options and paid out the amaount n X P
for replication, thus leaving us with a profit. There
is no risk attached with this investment proposition,
and we can make the profit arbitrarily high by simply
increasing n. This is what is known as an arbitrage
opportunity, and in efficient markets, this should
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