
A Gradual Non-Convexation Method for Minimizing VaR

Jiong Xi ∗ Thomas F. Coleman † Yuying Li ‡ Aditya Tayal §

July 23, 2012

Abstract

Given a finite set of m scenarios, computing a portfolio with the minimium Value-at-Risk (VaR)
is computationally difficult: the portfolio VaR function is non-convex, non-smooth, and has
many local minima. Instead of formulating an n-asset optimal VaR portfolio problem as min-
imizing a loss quantile function to determine the asset holding vector Rn, we consider it as a
minimization problem in an augmented space Rn, with a linear objective function under a prob-
ability constraint. We then propose a new gradual non-convexation penalty method, aiming to
reach a global minimum of nonconvex minimization under the probability constraint. A con-
tinuously differentiable piecewise quadratic function is used to approximate step functions, the
sum of which defines the probabilistic constraint. In an attempt to reach the global minimizer,
we solve a sequence of minimization problems indexed by a parameter ρk > 0 where −ρk is the
minimum curvature for the probability constraint approximation. As the indexing parameter
increases, the approximation function for the probabilistic inequality constraint becomes more
non-convex. Furthermore, the solution of the k-th optimization problem is used as the starting
point of the (k+1)-th problem. Our new method has three advantages. Firstly, it is structurally
simple. Secondly, it is efficient since each function evaluation requires O(m) work. Thirdly, a
gradual non-convexation process is designed to track the global minimum. Both historical and
synthetic data are used to illustrate the efficacy of the proposed VaR minimization method.
We compare our method with Gaivoronski and Pflug’s quantile-based smoothed VaR method
in terms of VaR, CPU time, and efficient frontiers. We show that our gradual non-convexation
penalty method yields better minimal VaR portfolio. We show that the proposed gradual non-
convexation penalty method is computationally much more efficient, especially when the number
of scenarios is large.
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1 Introduction

Portfolio allocation is a fundamental problem in finance. Markowitz (1952) provided the first sys-
tematic treatment of the problem, by measuring risk using the standard deviation of asset returns.
In the Markowitz portfolio, allocation consists of finding optimal asset weights that minimize the
variance of the portfolio return for a given expected return and budget constraint. This turns out
to be a straightforward convex quadratic programming problem, which can be solved to obtain
globally optimal weights. However, the choice of using variance as the risk measure is largely due
to convenience, rather than theoretical or practical justification. In particular, one major draw-
back is its symmetrical treatment of both upside and downside deviations from the mean—which
does not accurately reflect the risk preferences of an investor—especially for skewed or non-normal
distributions.

Value-at-Risk (VaR) has emerged as a widely used risk measure to quantitatively aggregate and
measure risk across diverse asset types. In the early 1990s, VaR was adopted by J.P Morgan to
report firmwide risk. The methodology later became part of the RiskMetricsTM system in 1995.
VaR expresses risk in a simple and intuitive way (e.g. see Dowd, 2005). The β-quantile of the loss
distribution is the Value-at-Risk. For example, 95% VaR is the portfolio loss which is exceeded
with 5% probability. In contrast to variance, VaR measures portfolio loss or downside risk, and
is appropriate for skewed or asymmetric probability distributions. It provides a common risk
measure that can be used across different types of portfolios and has been accepted as a standard
for measuring financial risk (e.g. see Duffie and Pan, 1997).

Other risk measures have also been proposed. For instance, Conditional Value-at-Risk (CVaR),
closely related to VaR, measures the expected loss of a portfolio in the worst 100(1 − β) percent
of the cases. CVaR accounts for the full shape of the tail distribution. In addition, the notion
of a coherent risk measure has been developed axiomatically (e.g. see Artzner et al., 1999). A
risk measure is coherent if it satisfies the axioms of translation invariance, subadditivity, positive
homogeneity, and monotonicity. While CVaR is a coherent risk measure, VaR is not, since it lacks
the subadditivity property (i.e. using VaR, the risk of two portfolios together can be greater than
the two risks separately). This is contrary to the diversification principle and consequently has
attracted much criticism in using VaR as a risk measure. Indeed, there has been continual debate
among both academics and practitioners regarding which risk measure is better. In spite of its
shortcomings, VaR continues to be widely used in practice and is required by regulation (i.e. refer
to Amendment to the Capital Accord to Incorporate Market Risks, 1996; Basel II). Estimating the
distribution of losses beyond the VaR point is difficult, and thus VaR can provide a more robust risk
measure than CVaR. Additionally, Cont et al. (2010) illustrate a conflict between the subadditivity
property and robustness of risk measure, and argue in favor of VaR over CVaR in this respect.

Leaving the choice of a risk measure aside, the focus of this paper is on portfolio allocation using
VaR as a risk preference. While VaR has traditionally been used for ex post measurement of risk,
recently there has been interest in using the measure ex ante for optimal portfolio selection. As
Gaivoronski and Pflug (2005) point out, for an investor with risk preference expressed in terms of
VaR, allocation using other risk preferences, such as variance or even CVaR, can be poor substitutes.

However, adopting VaR as a risk preference in portfolio allocation leads to a difficult optimiza-
tion problem compared to mean-variance or CVaR optimization. Specifically, the lack of subaddi-
tivity results in a non-convex minimization problem, which has many local minima. In addition,
under a finite number of scenarios, the objective function is generally non-smooth. Uryasev and
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Rockafellar (2000) propose an efficient algorithm to minimize CVaR of a portfolio using a linear
programming formulation. Since CVaR is an upper bound for VaR, they argue that this algorithm
also yields a low VaR. Subsequently, Larsen et al. (2002) propose two heuristic algorithms for VaR
optimization problem by taking advantage of the efficient CVaR optimization method. The main
idea is to start with the minimal CVaR portfolio, using the linear programming approach of Uryasev
and Rockafellar (2000), and systematically reduce VaR by solving a series of CVaR optimization
problems, which are obtained by constraining and discarding scenarios that correspond to large
losses. Gaivoronski and Pflug (2005) formulate VaR as a quantile of the portfolio loss and use a
quantile-based smoothed VaR function to replace the original VaR function in the VaR minimiza-
tion problem. This smoothed VaR function filters out irregularity of the original VaR function.
A smoothing parameter, ε, is used to control how accurate the approximation is. However, it is
difficult to choose an appropriate value for ε, since it can depend on the dataset. Moreover, the
approach is computationally expensive. The objective function requires enumerating all possible
combinations in the tail distribution; consequently, the number of arithmetic operations necessary
for a straightforward evaluation grows exponentially with the number of scenarios, m. A more effi-
cient approach to evaluate the objective is proposed by the authors, but still requires O(m3) work
in addition to evaluating each loss function of the portfolio. More recently, amd R. H. Hochreiter
and Pflug (2010) propose a method to compute an approximate solution of the VaR optimization
problem. The computational time of this algorithm also becomes prohibitively long for large data
sets. Consequently there is need for a computationally efficient method that can produce high
quality solutions for minimizing VaR.

The main objective of this paper is to propose a new gradual non-convexation penalty (GNCP)
method for the VaR minimization problem. Instead of using the notion of VaR as a quantile, we
introduce an auxiliary variable α and use the definition of VaRβ as the minimum α such that
the probability of loss greater than α cannot exceed 1 − β. The proposed optimization formula-
tion has a linear objective function with a probabilistic constraint which involves a sum of step
functions. We use a piecewise quadratic smooth function to approximate the step function and
formulate the VaR minimization problem as an optimization problem with a nonlinear constraint.
The proposed optimization formulation is conceptually simpler than the quantile-based smoothed
VaR method (Gaivoronski and Pflug, 2005), avoiding combinatorial considerations, and results in
a computational method which is significantly more efficient. The proposed method requires O(m)
work for function evaluation instead of O(m3) work, as in Gaivoronski and Pflug (2005). Further-
more, the proposed method employs a gradual non-convexation process in an attempt to track
the global minimizer. This process is indexed by a parameter ρ, where −ρ represents the most
negative curvature of the probability constraint approximation. As ρ is gradually increased, more
negative curvature is introduced in the probability constraint approximation. The VaR minimiza-
tion solution is computed by solving a sequence of nonlinearly constrained (approximation to the
probability constraint) optimization problems using an exact penalty method. In the process, the
solution avoids the difficulty of choosing a single smoothing parameter.

The presentation is organized as follows. In §2, we present the Mean-VaR optimization problem
and discuss the computational difficulty in solving this problem. The quantile-based smoothed VaR
method of Gaivoronski and Pflug (2005) will also be reviewed. In §3, we develop the gradual non-
convexation penalty method formulation for portfolio VaR minimization. In §4, we compare our
proposed method with the quantile-based smoothed VaR method in terms of the VaR value, CPU
time and efficient frontiers. Both historical and synthetic datasets are used in the computational
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investigations. We conclude the paper in §5.

2 Mean-VaR Optimization Problem

Given a finite set of assets, i = 1, 2, . . . , n, we want to determine the percentage holding for
each asset such that the portfolio meets objectives in return and risk. Assuming that the return
distribution is jointly normal, the classical Markowitz Mean-Variance optimal portfolio problem
can be expressed as

min
x

xTQx

s.t. xTE(r) ≥ R
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n

(2.1)

where x = (x1, x2, . . . , xn)T ∈ Rn is the position of each asset in the portfolio, r = (r1, r2, . . . , rn)T ∈
Rn is a random vector of asset returns, and Q ∈ Rn×n is the covariance matrix. Thus we minimize
the variance of the portfolio, xTQx, while ensuring the expected return of the portfolio, E(xT r) =
xTE(r), meets some target level R. The constraint xi ≥ 0 means that short selling is not allowed.
For many portfolio optimization problems, the return distribution is not normal, possibly due to
a short time horizon or inclusion of nonlinear instruments. In these situations, we are mainly
interested in minimizing downside risk. In this paper we consider using Value-at-Risk (VaR) as an
alternative risk measure.

VaR provides an intuitive way to measure the risk of a portfolio. Given a confidence level β,
β ∈ (0, 1), VaRβ of a portfolio with random loss L is the loss value such that, with β confidence,
the portfolio loss will not exceed this value. Let p(L) be the probability density function p(L) for
a random loss L. Then VaR of the loss L can be expressed as:

VaRβ(L) = min
{
α ∈ R :

∫
L≤α

p(L) dL ≥ β
}
. (2.2)

Here we consider negative portfolio return as portfolio loss, i.e. L = f(x) = −xT r. Thus, replacing
variance with VaR in the Mean-Variance optimization model (2.1), we have the following Mean-VaR
optimization problem:

min
x

VaRβ(−xT r)

s.t. E(xT r) ≥ R
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(2.3)

In contrast to the Mean-Variance optimization problem (2.1), Mean-VaR optimization problem
(2.3) is difficult to solve. When the distribution is given by a finite set of samples, the objective
function is non-convex, non-smooth and has many local minima. Note, additional linear constraints
can be incorporated in (2.3) without increasing the complexity of the optimization problem. Thus,
in order to focus on the main challenge which is introduced by VaR as a risk measure, we remove
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the first constraint in problem (2.3) and consider (for simplicity in presentation):

min
x

VaRβ(−xT r)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(2.4)

We illustrate difficulties in solving VaR minimization problem (2.4) with a simple example.
Using 1,000 daily returns of two stocks, AA and AXP, in the Dow Jones stock index from September
4th, 1991 to August 17th, 1995, we consider the problem of determining a two-asset portfolio
which minimizes VaR0.95. The weight of each asset in the portfolio is written as x = (x1, x2)T =
(w, 1− w)T , w ∈ [0, 1].
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Figure 2.1: VaR0.95 with respect to asset 1 position for a two-asset portfolio

Figure 2.1 graphs the VaR0.95 of the portfolio with respect to w, illustrating the VaR function is
non-convex and non-smooth. Thus it is difficult to find a globally optimal set of weights; specifically,
there is no known algorithm which runs in polynomial time and can guarantee a global minimizer
(i.e. NP hard). In practice, VaR portfolio optimization problem can include thousands of assets
with more than tens of thousands of scenarios. Consequently it is imperative for a computational
method to scale well with both the number of assets and number of scenarios, while able to find a
high quality solution.

Recently, Gaivoronski and Pflug (2005) propose a quantile-based smoothed VaR method to
tackle problem (2.4). They view the VaR function as a superposition of two components: a global
component that represents the macrostructure of the VaR function, and a local component that is
responsible for the irregularity of the VaR function. The key idea of their approach is to extract
the global component of the VaR function and filter out the local component.

Since the new algorithm we propose shares some similarity with the quantile-based smoothed
VaR approach in (Gaivoronski and Pflug, 2005), we briefly discuss it here for motivation and
comparison purposes. Following notations in (Gaivoronski and Pflug, 2005), let fi(x) = −xT r(i)

denote the i-th sample loss of the portfolio.

• M i: the set of all integers from 1 to m excluding i, i.e., M i = {1, 2, . . . ,m}\{i}
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• Λik: an arbitrary subset of M i which contains exactly k elements

• X(Λik): a subset of Rn associated with the set Λik such that

X(Λik) = {x : fi(x) ≤ fj(x) for j ∈ Λik, fi(x) ≥ fj(x) for j ∈M i\Λik}

• Θk
i : the family of all different sets Λik

When a finite set of scenarios are given, VaRβ can be expressed as a β-quantile of the portfolio
loss, which can be written as a linear combination of all the portfolio losses:

VaRβ = G(m− bβmc,x), (2.5)

where b·c is the floor operator and

G(k,x) =
1

C(x)

m∑
i=1

ci(x)fi(x) (2.6)

C(x) =
m∑
i=1

ci(x) (2.7)

ci(x) =
∑

Λik∈Θik

IX(Λik)(x) (2.8)

IX(Λik)(x) =
∏
j∈Λik

I−
(
fi(x)− fj(x)

) ∏
j∈M i\Λik

I−
(
fj(x)− fi(x)

)
(2.9)

I−(z) =

{
1 if z ≤ 0

0 if z > 0
. (2.10)

The indicator function IX(Λik)(x) in equation (2.9) is equal to 1 only if the index set Λik is chosen

such that all the losses corresponding to the indices in the set are no less than fi(x) and all the
losses corresponding to the indices not in the set are no greater than fi(x). This means fi(x) is the
k-th largest loss among all the losses. Hence ci(x) > 0 holds only when the i-th loss fi(x) is VaRβ

of the portfolio.
The step indicator function (2.10) is not continuous at z = 0. Gaivoronski and Pflug (2005)

introduce a twice continuously differentiable function ϕε(z) below to approximate (2.10):

ϕε(z) =



1 if z ≤ 0

1− 16
3ε3
z3 if 0 ≤ z ≤ ε

4
5
6 + 2

ε z −
8
ε2
z2 + 16

3ε3
z3 if ε

4 ≤ z ≤
3ε
4

16
3 −

16
ε z + 16

ε2
z2 − 16

3ε3
z3 if 3ε

4 ≤ z ≤ ε
0 if z ≥ ε ,

(2.11)

where ε controls the amount of smoothing. Then the ε-approximate function Gε(k,x) is:

Gε(k,x) =
1

Cε(x)

m∑
i=1

cεi(x)fi(x), (2.12)
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where

Cε(x) =
m∑
i=1

cεi(x), (2.13)

cεi(x) =
∑

Λik∈Θik

∏
j∈Λik

ϕε
(
fi(x)− fj(x)

) ∏
j∈M i\Λik

ϕε
(
fj(x)− fi(x)

)
, (2.14)

is twice continuously differentiable for all ε > 0, assuming {fi(x)} are twice continuously differen-
tiable. In addition, Gε(k,x)→ G(k,x) as ε→ 0 for any fixed x.

Replacing VaRβ with the quantile-based smoothed VaR function, Gε(m−bβmc,x), in equation
(2.4), it yields the following minimization problem:

min
x

Gε(m− bβmc,x)

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(2.15)

This smooth nonconvex minimization problem can be solved by a nonlinear programming solver.
For example, Gaivoronski and Pflug (2005) solve the approximate optimization problem (2.15)
using the fmincon subroutine from MATLAB Optimization Toolbox.

The quantile-based smoothed VaR minimization problem (2.15) is a reasonable approximation
method for the original VaR minimization problem (2.4). However, this method is computationally
expensive. From equation (2.12)–(2.14), it takes exponential time to evaluate the function Gε(k,x)
since it needs to enumerate all the possible combinations of choosing k numbers from m indices.
Gaivoronski and Pflug (2005) show that, when a suitable parameter ε is chosen for the smooth
approximation function in (2.11), the computational time complexity to evaluate the approximation
function Gε(k,x) can be reduced to O(m3) where m is the number of return samples. In general,
since a nonlinear optimization algorithm is iterative, it is necessary to evaluate Gε(k,x) many times
during the optimization procedure. This is costly, especially when the number of scenarios, m, is
large. Furthermore, an effective nonlinear optimization algorithm typically requires computation
of the first and preferably the second order derivatives of the objective and constraint functions.
Although the smoothed VaR function Gε(k,x) is twice continuously differentiable, the analytic
form of the gradient and Hessian are complicated, and computation would be very costly as the
function evaluation already requires O(m3) work. In addition, it is difficult to select an appropiate
value for the smoothing parameter ε, since it can depend on the particular dataset. This will be
illustrated using computational examples in §4. As the size of the problem increases, choosing an
appropriate parameter becomes even more difficult.

3 A Gradual Non-Convexation Method for VaR Minimization

Portfolio VaR minimization problem (2.4) is an n-dimensional minimization problem with the
objective function defined by a quantile definition of VaR given in (2.5). Using the definition of
VaR given in (2.2), an alternative formulation for VaR minimization in (n + 1)-variables can be
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stated as,
min
x

min∫
−xT r≤α p(r)dr≥β

α

s.t.
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n,

(3.1)

which is equivalent to,
min
x,α

α

s.t.
∫
−xT r≤α p(r)dr ≤ 1− β
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(3.2)

Problem (3.2) uses a probabilistic constraint to express VaR in the extended space. With the
new formulation (3.2), the objective and constraint functions become simpler and combinatorial
complexity in evaluating VaR function is avoided. We note the CVaR optimization method proposed
in Uryasev and Rockafellar (2000) use a similar probabilistic definition of VaR.

Suppose we are given m equally probable return samples for n assets. Assume that r(i) ∈ Rn
denotes the i-th sample return of assets in the portfolio, 1 ≤ i ≤ m. Let I+(z) denote a step
indicator function defined by the following equation:

I+(z) =

{
1 if z > 0

0 otherwise .
(3.3)

Then problem (3.2) becomes:

min
x,α

α

s.t.
m∑
i=1

I+(−xT r(i) − α) ≤ (1− β)m

n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n.

(3.4)

In Problem (3.4), the objective function α ∈ R is an auxiliary variable. If the i-th loss, −xT r(i), is
greater than α, the step function I+(−xT r(i) − α) equals 1, otherwise, it equals 0. Therefore the
left-hand side of the first constraint in (3.4) is the number of sample losses that are greater than
α. This constraint guarantees that the number of sample losses that are greater than α cannot
exceed (1− β)m. Hence, the minimum α value satisfying the probability constraint yields VaRβ of
a portfolio.

In contrast to the smoothed quantile approach, both the objective function and the constraint
in (3.4) can be evaluated in linear time. Formulation (3.4) has a linear objective function with a
discontinuous and nonconvex probabilistic inequality constraint. The challenge in solving (3.4) is
due to this constraint, which we address by using a sequence of approximate functions, as described
below.
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(a) hλ(z) and I+(z) (b) hλ(z) and gλ(z; ρ)

Figure 3.1: Step function and its approximations ( λ = 4× 106)

.

We first use the following function, hλ(z), to obtain a continuous approximation of the step
function I+(z):

hλ(z) =


1 if z > 1√

λ

λz2 if 0 < z ≤ 1√
λ

0 if z ≤ 0

. (3.5)

where λ > 0 is a constant. The functions hλ(z) and I+(z) only differ in the interval [0, 1√
λ

]. In

order to be a good approximation for I+(z), the constant λ is chosen to be sufficiently large. In
our computational results, λ is approximately 106.

Subplot (a) in Figure 3.1 graphs both I+(z) and hλ(z). The thick line is the plot of the step
function I+(z). The thin line is a plot of the approximation function hλ(z) when λ = 4× 106. We
can see that hλ(z) is equal to I+(z) outside the interval [0, 1√

λ
], while inside the interval, we use a

quadratic function, which is equal to 0 at z = 0 and is equal to 1 at z = 1√
λ

, to approximate I+(z).

Hence for any fixed λ ∈ R+, the function hλ(z) is continuous over z ∈ R.
The function hλ(z) is continuous but not differentiable at z = 1√

λ
. We now define a new function

gλ(z; ρ), indexed by a parameter ρ > 0, to approximate hλ(z) as follows:

gλ(z; ρ) =


1 if z ≥ γ
1− ρ

2(z − γ)2 if κ ≤ z ≤ γ
λz2 if 0 ≤ z ≤ κ
0 if z ≤ 0

(3.6)

where

γ =

√
2

ρ
+

1

λ
, κ =

1

λγ
, (3.7)

ρ > 0 is a parameter of the approximation. The function gλ(z; ρ) is a piecewise quadratic function.
Inside each interval, (−∞, 0), (0, κ), (κ, γ), and (γ,∞), gλ(z; ρ) is differentiable. Let g′+(z; ρ) and
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g′−(z; ρ) denote the right and the left limit of the function g(z; ρ) respectively. When z = 0,
g′+(0; ρ) = 2λz|z=0 = 0 = g′−(0; ρ). When z = γ, g′−(γ; ρ) = −ρ(z − γ)|z=γ = 0 = g′+(γ; ρ). When
z = κ, g′−(κ; ρ) = 2λz|z=κ = 2λκ = 2

γ , g′+(κ; ρ) = −ρ(z−γ)|z=κ = −ρ(κ−γ) = − 2
γ2− 1

λ

( 1
λγ −γ) = 2

γ ,

hence g′−(κ; ρ) = g′+(κ; ρ). Consequently, at the endpoints of the interval, z = 0, z = κ, and z = γ,
gλ(z; ρ) is also differentiable and the derivative is continuous. Therefore, for any fixed ρ ∈ R+, the
function gλ(z; ρ) is continuously differentiable at any point z ∈ R.

Problem (3.4) is nonconvex since the step function I+(z) in the probabilistic constraint is non-
convex. The approximation gλ(z; ρ) is also nonconvex, due to the piece in [κ, γ], which is a concave
quadratic with negative curvature −ρ. To solve (3.4), we use a gradual nonconvexation process
(e.g. see Coleman et al., 2006) in attempt to track a global VaR optimal portfolio.

Subplot (b) in Figure 3.1 shows plots of hλ(z) and gλ(z; ρ) for ρ = 0.01, 1, 100, 10000 and
λ = 4 × 106. We see that as ρ → ∞, gλ(z; ρ) approaches to hλ(z). In Figure 3.1(b), gλ(z; 10000)
is very close to hλ(z) and they only differ in a very small interval [κ, γ] to the right of z = 0. It
is also straightforward to verify that κ → 0 and γ → +∞ as ρ → 0, κ → 1√

λ
and γ → 1√

λ
as

ρ → +∞. Indeed, when ρ is very small, the interval [κ, γ] occupies almost the whole range of R+

and the curvature of gλ(z; ρ) is close to zero. Thus gλ(z; ρ) is nearly a linear (convex) function
in this interval. As ρ increases, the length of the interval [κ, γ] shrinks towards zero and gλ(z; ρ)
approaches hλ(z).

Replacing I+(z) with gλ(z; ρ) in problem (3.4), we obtain the following approximate VaR min-
imization problem:

min
x,α

α

s.t. Hλ(x; ρ) ≤ (1− β)
n∑
i=1

xi = 1

xi ≥ 0 i = 1, 2, . . . , n,

(3.8)

where

Hλ(x; ρ) =
1

m

m∑
i=1

gλ(−xT r(i) − α; ρ). (3.9)

When the parameter ρ is small, problem (3.8) is close to a (convex) linear programming problem.
As we gradually increase ρ, problem (3.8) gradually becomes increasingly more non-convex. The
solution to (3.8), when ρ is sufficiently large, yields an accurate approximation to the optimal VaRβ

portfolio.
To illustrate, we use the same 1000 historical samples for the two stock allocation example in §2.

Consider the nonconvex function Hλ(x; ρ) = 1
m

∑m
i=1 gλ(−xT r(i) − α; ρ) defining the probabilistic

constraint in problem (3.8). Figure 3.2 graphs Hλ(x; ρ), for different values of ρ, as a function of x1

when x2 = 1 − x1 corresponding to the two asset allocation example (α is set to 0.02). The thick
dashed line at the bottom is Hλ(x; 101); it is almost a straight line. The thin dashed line curve
above it is Hλ(x; 103); it is smooth and visually convex. The thick dash-dot line in the middle,
Hλ(x; 104), becomes more non-convex and has multiple local minima. The dash-dot and dotted
lines above, corresponding to Hλ(x; 105) and Hλ(x; 107), respectively, exhibit a greater number of
local minima. The original function Ho(x) = 1

m

∑m
i=1 I+(−xT r(i) − α) is the solid line curve at

the top in Figure 3.2. We can see that Hλ(x; 107) is very close to the original function Ho(x).
The dependence relationship of the function Hλ(x; ρ) with respective to α is illustrated in subplot
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Figure 3.2: Plots of Ho(x) and its approximations (λ = 4× 106, α = 0.02), ρ = 101, 103, 104, 105, 107

.

(b) in Figure 3.2. We make similar observations as in subplot (a): Hλ(x; ρ), as a function of α,
approaches the original non-smooth function as ρ increases.

Figure 3.2 illustrates that Ho(x) function can be viewed as a global convex curve superimposed
with many small variations which create multiple local minimizers. The global minimizer is in
a neighborhood of the minimizer of this globally convex curve. When ρ is small, the function
Hλ(x) approximates Ho(x) from a global perspective. In this case, since it is close to a convex
problem, a computed solution is much more likely to be a global minimizer of Problem (3.8). This
yields a candidate solution for optimal VaR portfolio from a crude but global perspective. The
approximation can then be refined and a more accurate approximation to the VaR optimization
problem can be obtained using this candidate as a starting point. As we successively refine the
approximation, the solution attempts to track the global minimizer.

More formally, let ρ0 > 0 be an initial small number, e.g., ρ0 = 10−4. We compute an optimal
solution x∗0 for problem (3.8) corresponding to ρ0. In general, assume we have computed x∗k as an
optimal solution to (3.8) with parameter ρk. Now let ρk+1 = cρk where c > 1. Using x∗k as a starting
point, we solve (3.8) with the parameter ρk+1 and obtain a solution x∗k+1. We repeat this process

until the interval [κ, γ] is sufficiently small and there is no loss −xT r(i) such that z = −xT r(i) − α
falls in this interval. This criteria is reasonable since I = { i| −xTk r

(i)−αk ∈ [κ, γ], i = 1, 2, . . . ,m}
is empty implies that the current optimal solution is also optimal for the optimization problem that
uses hλ(z) instead of gλ(z; ρk) in (3.4), which follows from the fact that gλ(z; ρk) and hλ(z) only
differ in the interval [κk, γk]. Algorithm 1 describes the computational process in detail. We refer
to this algorithm as a gradual non-convexation penalty (GNCP) method for minimizing VaR. The
computational complexity of function and constraint evaluation for this method is O(m), where m
is the number of scenarios.

Problem (3.8) can be solved using an optimization algorithm for nonconvex programming. In our
implementation, we use an exact penalty method to handle the nonconvex constraint. Specifically
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Algorithm 1: Gradual Non-Convexation Penalty Method for Minimizing VaR

Input: m sample returns for n assets, r(i) ∈ Rn, i = 1, 2, . . . ,m; starting point (α0,x0), a
resolution parameter λ > 0, and penalty parameter µ > 0

Output: A computed solution x for VaR minimization problem (3.4)
begin

k ←− 0 ;
ρk ←− 1× 10−5 ;

I ←− { i| − xTk r
(i) − αk ∈ [κ, γ], i = 1, 2, . . . ,m} ;

while I is not empty or |γk − κk| > 1× 10−4 do
k ←− k + 1 ;
ρk ←− 10ρk−1 ;
solve problem (3.8) using the exact penalty method (3.10) with ρ = ρk and starting
point (αk−1,xk−1) to obtain the computed solution (αk,xk) ;

end
return xk ;

end

the nonlinearly constrained problem (3.8) is solved using an exact penalty:

min
x∈Ω,α

α+ µ ·max (Hλ (x; ρ)− (1− β), 0) (3.10)

where Ω = {x ∈ Rn|
n∑
i=1

xi = 1, xi ≥ 0 for i = 1, 2, . . . , n}. (3.11)

Here µ is a sufficiently large exact penalty parameter. When the probabilistic constraint in problem
(3.8) is satisfied, the penalty term does not have any impact on the objective function in (3.10). On
the other hand, if the constraint is not satisfied, the penalty term µ ·max (Hλ (x; ρ)− (1− β) , 0)
becomes dominant and its minimization enforces satisfaction of the constraint.

Note, the parameter ρ in gλ(z; ρ) has a similar effect as the parameter ε in the smoothed quantile
method of Gaivoronski and Pflug (2005). However, in Algorithm 1, ρ is automatically adjusted at
each iteration to track a minimizer, thereby avoiding the difficultly in selecting a fixed value for
the parameter.

Since the gradual non-convexation method solves a sequence of optimization problems, a natural
concern is the computational cost. We note that consecutive problems are similar due to the fact
that ρ is updated gradually. Thus we exploit this property and use a warm start when solving a
subsequent problem. Typically, each problem requires only a few iterations for the optimization
subroutine.

4 Computational Comparisons

In this section, we present computational results to compare the proposed gradual non-convexation
penalty (GNCP) method for minimizing VaR with the quantile-based smoothed VaR (QBSVaR)
method of Gaivoronski and Pflug (2005). We compare the results in terms of the computed VaR
of the optimal portfolio, the CPU time, and the efficient frontiers. Both historical and synthetic
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data are used for computational comparisons. All the tests are done in Matlab on a 2.9GHz PC
that has an AMD Athlon 64 X2 Dual CPU and 4 GB RAM.

The historical data set, denoted as DS1, consists of 10 year historical daily returns (2513
smaples) of 30 stocks in Dow Jones stock index from September 4th, 1991 to September 4th 2001.
The names of 30 stocks are listed in Table 4.1.

1 AA 11 HD 21 MMM
2 AXP 12 HON 22 MO
3 BA 13 HWP 23 MRK
4 C 14 IBM 24 MSFT
5 CAT 15 INTC 25 PG
6 DD 16 IP 26 SBC
7 DIS 17 JNJ 27 T
8 EK 18 JPM 28 UTX
9 GE 19 KO 29 WMT
10 GM 20 MCD 30 XOM

Table 4.1: Stocks in data set 1

The synthetic data set, denoted as DS2, is generated from correlated multivariate jump models
with random model parameters. This data set consists of 100000 returns of 1000 assets. The
return of each asset follows a Merton’s jump model (Merton, 1976). We use this large data set
to compare computational efficiency of GNCP method and QBSVaR method. Figure 4.1 shows a
return distribution of an asset in DS2, we can see that there is a bump on the left of the return
distribution, representing a significant probability of unusually large losses.
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Figure 4.1: Return distribution of an asset in DS2

.

Firstly, we illustrate the effect of starting points of our GNCP method. For all the results
reported in this paper, we set the accuracy parameter λ = 4 × 106. Using the historical data
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set DS1, we compare computed optimal VaR from GNCP using the equal weight starting point
x0 = 1

n×ones(n, 1) with VaR obtained using the starting point (x∗CVaR), which is the optimal CVaR
portfolio from the CVaR minimization method (Uryasev and Rockafellar, 2000). We set α0 = 0 in
each computation.

Table 4.2 shows VaR0.95 and VaR0.9 for different number of assets, n, and different number of
returns, m. We can see that the VaR of the portfolio corresponding to two starting points are not
significantly different. This illustrates that GNCP method is relatively insensitive to the starting
point.

m n
VaR0.95 VaR0.9

1
n x∗CVaR

1
n x∗CVaR

300 10 0.01061 0.010958 0.0079865 0.0082694

300 20 0.0087491 0.0087733 0.0072237 0.0073217

300 30 0.0074684 0.0074303 0.0051924 0.0053269

500 10 0.010772 0.010086 0.0078666 0.0078336

500 20 0.0087856 0.0090869 0.0072434 0.0080066

500 30 0.0075459 0.0080684 0.0056612 0.0058597

1000 10 0.010478 0.010247 0.0076282 0.0075285

1000 20 0.0089188 0.0087112 0.0071986 0.0068093

1000 30 0.0075692 0.0076763 0.0056484 0.0056494

2000 10 0.013762 0.013913 0.010026 0.0099563

2000 20 0.012347 0.011696 0.0086397 0.0086409

2000 30 0.01039 0.01044 0.0075813 0.0076355

Table 4.2: Effect of starting points for GNCP method

Next we compare GNCP with QBSVaR in terms of the VaR of the computed optimal portfolio
using both historical and synthetic data sets. For all subsequent results, we use the starting point
α0 = 0 and x0 = 1

n(1, 1, . . . , 1)T . We note that ρ is usually around 108 ∼ 109 when GNCP
terminates.

We report VaR of the computed minimal VaR portfolio for different number of assets, n, and
different number of returns, m. In order to access improvement obtained using GNCP, we report
the relative difference defined as follows:

RDQ
V aR =

VaRQBSVaR −VaRGNCP

|VaRGNCP|
100%. (4.1)

Positive relative difference indicates degradation of QBSVaR method compared to GNCP method.
Table 4.3 shows VaR0.95 and the relative difference on historical data for different number of

assets, n, and different number of sample returns, m. For QBSVaR method, we report results for
four different values, 0.01, 0.001, 0.0001, and 0.00001, for the smooth parameter ε. Results in Table
4.3 demonstrates that performance of of QBSVaR is sensitive to the smoothing parameter ε. In
addition, on this historical data set at least, GNCP outperform QBSVaR in achieving smaller VaRs
in all cases with a single exception when m = 500, n = 10 and ε = 0.0001 for QBSVaR. We also
report VaR0.90 and the relative difference on data set DS1 in Table 4.4.
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m n VaRGNCP
RDQ

V aR

ε = 0.01 ε = 0.001 ε = 0.0001 ε = 0.00001

300 10 0.01061 24.27% 6.66% 8.03% 7.82%

300 20 0.0087491 24.45% 6.17% 4.17% 8.43%

300 30 0.0074684 35.96% 15.11% 12.83% 17.78%

500 10 0.010772 4.91% 0.05% -5.70% 1.58%

500 20 0.0087856 13.06% 6.27% 2.77% 2.63%

500 30 0.0075459 20.71% 13.47% 10.24% 12.28%

1000 10 0.010478 9.76% 13.56% 3.22% 3.99%

1000 20 0.0089188 9.24% 14.65% 4.61% 7.45%

1000 30 0.0075692 18.93% 21.03% 14.17% 19.47%

2000 10 0.013762 7.06% 5.27% 4.56% 4.40%

2000 20 0.012347 4.73% 4.41% 10.26% 8.16%

2000 30 0.01039 10.31% 11.31% 12.27% 9.96%

Table 4.3: VaR of minimizing VaR portfolio using GNCP method and the relative difference compared
to the QBSVaR method on historical data, β = 95%

m n VaRGNCP
RDQ

V aR

ε = 0.01 ε = 0.001 ε = 0.0001 ε = 0.00001

300 10 0.0079865 17.45% 19.39% 4.17% 8.56%

300 20 0.0072237 18.54% 9.79% 3.92% 11.94%

300 30 0.0051924 54.74% 28.17% 14.92% 29.28%

500 10 0.0078666 11.05% 3.41% 2.08% 2.49%

500 20 0.0072434 13.15% -1.98% 5.16% 6.59%

500 30 0.0056612 25.58% 9.30% 7.53% 4.64%

1000 10 0.0076282 10.54% 5.53% 3.52% 8.84%

1000 20 0.0071986 2.45% 1.29% 1.76% 0.45%

1000 30 0.0056484 16.77% 10.68% 10.55% 10.20%

2000 10 0.010026 6.81% 3.20% 4.81% 3.32%

2000 20 0.0086397 6.22% 2.11% 6.28% 7.44%

2000 30 0.0075813 9.50% 9.91% 9.72% 8.96%

Table 4.4: VaR of minimizing VaR portfolio using GNCP method and the relative difference compared
to the QBSVaR method on historical data, β = 90%

Table 4.5 and 4.6 report VaR obtained using the GNCP method and the relative difference
performance measure with β = 95% on the synthetic data set DS2. For simplicity, we report results
for ε = 0.001 in QBSVaR, as this seems to generate best results for QBSVaR. Table 4.5 compares
performance as the number of scenarios increases; the entries for QBSVaR when m = 30000 or
m = 100000 are blank, since the computation did not complete in 3 days. Table 4.6 compares
performance as the number of assets increases. We observe that GNCP continue to outperform
QBSVaR and the improvement of GNCP over QBSVaR becomes more significant as the number
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m
n = 30 n = 50 n = 100

VaRGNCP RDQ
V aR VaRGNCP RDQ

V aR VaRGNCP RDQ
V aR

300 0.066506 10.48% 0.059168 -29.25% 0.020184 33.05%

1000 0.086351 4.16% 0.070866 0.68% 0.045326 16.14%

3000 0.094539 -0.36% 0.076082 6.29% 0.056926 16.04%

10000 0.094991 2.77% 0.081098 3.93% 0.069305 4.01%

30000 0.098859 - 0.085857 - 0.069741 -

100000 0.099429 - 0.084841 - 0.073519 -

Table 4.5: VaR of minimizing VaR portfolio using GNCP method and the relative difference compared
to the QBSVaR method on synthetic data, β = 95%, ε = 0.001

m n VaRGNCP
RDQ

V aR

ε = 0.01 ε = 0.001 ε = 0.0001

1000 500 0.014584 91.15% 198.20 % 220.87%

2000 500 0.026121 51.27% 82.58% 107.37%

2000 1000 0.034729 55.02% 16.37% 55.43%

5000 500 0.033475 90.65% 56.36% 85.08%

5000 1000 0.040264 - 24.30% 18.71%

Table 4.6: VaR of minimizing VaR portfolio using GNCP method and the relative difference compared
to the QBSVaR method on synthetic data when n is large, β = 95%

of assets increase (with a 220% maximum improvement ratio).
Finally, we compare CPU time required by GNCP and QBSVaR. Figure 4.2 shows the CPU time

(in seconds) for evaluating the smoothed probabilistic constraint Hλ(x; ρ) in the GNCP method
and the QBSVaR function Gε(k,x) in the QBSVaR method for different number of returns, m,
when n = 100 and β = 95%. We can see that the CPU time for evaluating Hλ(x; ρ) grows very
slowly with respect to the number of samples, m. It is linear (with very small slope) with respect to
m. However, the CPU time to evaluate Gε(k,x) grows much faster than that to evaluate Hλ(x; ρ).
Data set DS2 is used for this test since we need to see the running time of both methods as the
problem size becomes large. We fix x = 1

n × ones(n, 1) for both functions. For the smoothed
probabilistic constraint, we choose α = 0.01, λ = 4× 106, and ρ = 100. For the QBSVaR function,
we choose ε = 0.001.

We now compare CPU time for computing optimal VaR portfolio for different number of assets,
n, and different number of returns, m. Table 4.7 reports the CPU time (in minutes) for both
methods on the synthetic data set DS2 with β = 95%. For the QBSVaR method, we choose
ε = 0.01 for the smooth parameter. We do not report the CPU time for QBSVaR method when
m = 30000 or m = 100000 since it takes more than 3 days to obtain the VaR optimal portfolio using
QBSVaR method. We also report the CPU time when n is large in Table 4.8. We compute the
relative time (RT ), which is defined in equation (4.2), to provide a more clear comparison between
the two methods.

RT =
TimeQBSV aR
TimeGNCP

(4.2)

16



0 2 4 6 8 10

x 10
4

0

200

400

600

800

1000

1200

1400

Number of samples

C
P

U
 ti

m
e

 

 

Hλ
Gε

Figure 4.2: CPU time for function evaluation, n = 100, β = 95%, ε = 0.001

.

CPU Time (Minutes)

m
n = 30 n = 50 n = 100

GNCP QBSVaR RT GNCP QBSVaR RT GNCP QBSVaR RT

300 0.19 1.83 9.64 0.18 3.05 16.76 0.30 6.22 20.72

1000 0.22 9.41 42.99 0.32 15.83 49.07 0.66 32.34 49.19

3000 0.53 56.04 104.92 0.76 95.70 126.67 1.40 190.10 135.37

10000 1.14 506.38 442.84 1.93 865.88 448.95 3.35 1789.40 534.26

30000 3.05 - - 4.94 - - 11.20 - -

100000 9.82 - - 16.54 - - 34.41 - -

Table 4.7: CPU time of running GNCP method and QBSVaR method on synthetic data and relative
time, β = 95%, ε = 0.001

m n
CPU Time (Minutes)

RT, ε = 0.001
GNCP

QBSVaR
ε = 0.01 ε = 0.001 ε = 0.0001

1000 500 8.41 293.23 163.53 140.34 19.46

2000 500 10.25 1225.59 483.75 418.31 47.18

2000 1000 51.70 2369.37 986.47 847.74 19.08

5000 500 17.04 11218.49 2396.22 2086.44 140.61

5000 1000 73.61 - 4217.67 4854.85 57.30

Table 4.8: CPU time of running GNCP method and QBSVaR method on synthetic data and relative
time when n is large, β = 95%
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Figure 4.3: Comparisons in efficient frontiers: m = 500, n = 10, β = 95%

.

We make following observations based on Table 4.7 and Table 4.8.

• QBSVaR takes less time to solve the VaR minimization problem (2.4) when the smooth
parameter ε becomes smaller. According to Gaivoronski and Pflug (2005), when ε is small,
the number of losses that satisfies the constraint |G(k,x)−fi(x)| ≤ ε is small and this reduces
the time to evaluate the QBSVaR function Gε(k,x).

• For a fixed number of assets, n, the CPU time of GNCP grows much slower than QBSVaR as
the number of scenarios, m, increases. With 10000 scenarios, GNCP is more than 400× faster
than QBSVaR. Moreover, as the number of scenarios is further increased QBSVaR takes more
than 3 days to complete, while GNCP can compute the optimal VaR portfolio in a reasonable
amount of time.

Finally, we compare VaR frontiers obtained using both GNCP and QBSVaR methods. For
different levels of expected return target R, we solve problem (2.3) and obtain the corresponding
VaR of the optimal portfolio.

Subplots (a) and (b) in Figure 4.3 compare the VaR-Return frontiers of the samples for the
historical data set DS1 and the synthetic data set DS2 respectively (m = 500, n = 10 and β = 95%).
The solid line is the VaR-Return frontier obtained using GNCP. The dotted line is the VaR-Return
frontier we obtain using QBSVaR. From Figure 4.3, it can be observed that the efficient frontier
from GNCP dominates that from QBSVaR. For a fixed return R, the VaR using GNCP is smaller
than that obtained using QBSVaR. We note that these two methods converge at the right end
of the frontier. This is reasonable since at the right end of the frontier, the return minimization
dominates and VaR minimization becomes less relevant.

5 Concluding Remarks

Given a finite set of samples, VaR minimization problem is computationally difficult to solve:
VaR function is non-convex, non-smooth, and has many local minima. Gaivoronski and Pflug
(2005) propose a method that minimizes a quantile-based smoothed VaR (QBSVaR) approximation
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function. They express the quantile as a linear combination of loss functions using a product of
indicator functions as coefficients. A smooth differentiable function is obtained by approximating
the step function using a cubic spline. The smoothed VaR approximation is complicated and
expensive to evaluate since it involves enumerating all possible combinations of choosing k tail
events from m scenarios. Implemented efficiently, this method still requires O(m3) time to evaluate.
Optimization routines typically require many function, derivative and Hessian evaluations. Thus
this method becomes impractical for large sample sizes. In addition, a smoothing parameter, ε,
is used to control how accurate the approximation is. Usually a smaller value of ε makes the
approximation more accurate but the the optimization problem becomes susceptible to suboptimal
local minima. On the other hand, a larger value of ε makes the approximation less accurate.
Ultimately, quality of the computed solution depends on the right choice of ε, which can be problem
dependent and difficult to fix.

In this paper, we proposed a gradual non-convexation penalty (GNCP) method for VaR min-
imization. We formulate the problem in an augmented space consisting of portfolio weights and
an auxiliary variable α; VaRβ is the minimum α value which satisfies the requirement that the
probability of loss greater than α cannot exceed 1 − β. The resulting optimization problem has a
linear objective with a probabilistic constraint expressed using a sum of step indicator functions.
Consequently evaluating the objective and the constraint function requires only O(m) work.

We approximate the step indicator function using a continuously differentiable function, indexed
by a parameter ρ ≥ 0 and containing negative curvature −ρ. When ρ → 0, the approximation
to the (nonconvex) probability constraint function approaches a linear function, resulting in a
nearly convex minimization problem. When ρ is small, the approximation captures the global
characteristics of the VaR minimization problem, and a globally optimal solution is likely to be
obtained. As ρ increases, more negative curvature is gradually introduced in the approximation and
the problem becomes gradually nonconvex. As the parameter goes to infinity, the approximation
approaches the original VaR minimization problem. We solve a sequence of problems indexed by a
monotonically increasing sequence {ρk}, in which we use the solution indexed by ρk as a starting
point for the subsequent problem indexed by ρk+1 (i.e. warm start), thus reducing individual
optimization times.

Both historical and synthetic data are used to evaluate performance of the proposed GNCP
method and the QBSVaR method. Our computational results demonstrate that the GNCP method
generally provides a better minimizer than the QBSVaR method, and the VaR-return frontier of
the GNCP method dominates that of the QBSVaR method. In addition, GNCP requires less time,
with a significantly more appealing asymptotic run time as both number of scenarios or assets are
increased.
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