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Abstract

Local risk minimization and total risk minimization discrete hedging
have been extensively studied for European options, e.g., [11, 12]. In
practice, hedging of options with American features is more relevant.
For example equity linked variable annuities provide surrender benefits
which are essentially embedded American options. In this paper we
generalize both quadratic and piecewise linear local risk minimization
hedging frameworks to American options. We illustrate that local risk
minimization methods outperform delta hedging when the market is
highly incomplete. In addition, compared to European options, distri-
butions of the hedging costs are typically more skewed and heavy-tailed.
Moreover, in contrast to quadratic local risk minimization, piecewise lin-
ear risk minimization hedging strategies can be significantly different,
resulting in larger probabilities of small costs but also larger extreme
cost.

1 Introduction

Option pricing and hedging are two of the most important problems in finance.
When a market is complete, e.g., in the Black-Scholes framework [2], the option
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payoff can be perfectly replicated by continuously trading the underlying asset
and a bond. Thus pricing and hedging problems are equivalent. However,
markets are incomplete in practice and the risk associated with options cannot
be eliminated completely. In this case option pricing becomes ambiguous since
a fair value of the risk component may depend on preferences of the investors
[5]. On the other hand, reducing risk as much as possible remains the main
goal of hedging.

In an incomplete market, risk minimization is not completely defined until
one specifies how to measure risk ([9, 12, 7, 8]). For European options, a
pricing measure can be determined through quadratic risk minimization, see,
e.g., [11, 12]. In this framework risk is measured by the expected quadratic
difference between the payoff of an option and the value of a self-financing
hedging portfolio at the moment of exercise. This is the key idea behind total
risk minimization. However, this strategy may not always exist and may be
difficult to compute, particularly under more complex asset price models.

An alternative to total risk minimization is local risk minimization. In
contrast to total risk minimization, in local risk minimization the expected
quadratic incremental cost is minimized. As can be seen for European options
[3], optimal local risk minimization hedging strategies typically lead to a small
total risk. Moreover, it has been shown that the choice of measure for incre-
mental cost is important when the market is highly incomplete. For example,
L; and L, norms can lead to significantly different trading strategies.

Literature in risk minimization pricing and hedging has focused on Euro-
pean options. However, in practice, traded options are typically of American
style. For example, benefits of variable annuities in insurance are embedded
with surrender options, allowing an early exit strategy. In this paper we gen-
eralize the local risk minimization hedging framework to American options.
We consider the hedging problem from a writer’s perspective and assume that
the holder of an American option selects an optimal exercise strategy to max-
imize the value of the option; the manner in which the writer hedges risk is
assumed to be irrelevant to the holder’s exercise strategy. We show that, for
American-type options, delta hedging with infrequent rebalancing can become
relatively unattractive. In particular, delta hedging is more expensive and
offers less protection against risk when hedging infrequently, in contrast with
local risk minimization hedging. In addition, minimizing expected L; incre-
mental costs, rather than minimizing expected quadratic incremental costs,
can yield significantly different hedging strategies, resulting in strategies with
larger probabilities of small costs but also larger extreme costs.

We first consider a simplified model in which early exercise is allowed only
at hedging times. This simple model illustrates the local risk minimization
framework for American-type options. Later we discuss the more complex case
when hedging times and permitted early exercise times are different. Section 2



describes local risk minimization in the simplified model. Section 3 formulates
local risk minimization problems in a binomial model. Section 4 describes
the performance measures used. We present the computational results for the
simplified model in section 5. Section 6 shows how a general model can be
formulated. We conclude in section 7.

2 A simplified model

Consider a standard American-type option with strike price K and expiration
time T'. In this paper, an American option refers to an option which can be
exercised at any time specified in the assumed asset price model. A Bermudan
option refers to an option which can be exercised at a subset of times. With-
out loss of generality, we assume that the asset does not pay any dividends.
We describe here a local risk minimization framework for American-type put
options; a formulation for call options is similar.

Let X(;) denote the discounted asset price at time 74, wheres = 0,1,..., N
and 7 > 0 is a constant satisfying ' = N - 7. Assume that asset price X(;,
i =0,1,..., N, is an adapted process on a probability space (Q, F, P).

Consider the problem of hedging a put option with strike price K and
expiry T. Assume that only a finite number of hedging times, tf = 0 <t <

- < til = T, are permitted. For simplicity we suppose that these times
are spaced evenly, i.e., tf = kry and the asset price at hedging time ¢ is
simply denoted by X, £k = 0,1,..., M. In this presentation, it is assumed
for simplicity that N/M is an integer and N > M. We consider the filtration
(Fi)k=01,- .M given by Fi, = o(X,|7 < k), which is the o-field generated by
the variables X, -+ , Xj.

Let t¥, & = 0,...,L, denote exercise times permitted by a Bermudan
option. To avoid unnecessary complexity, we consider first a simplified model
in which hedging is permitted only at the early exercise times, i.e., t£ = ti.
This assumption is made through sections 2-5. The more general case will be
presented in section 6.

If the option holder exercises the option at time i € [0, T, the discounted
payoft Hy is given by the formula:

Hy, = max(0, X — e_”fK)

where r > 0 is the constant interest rate.

We assume that the holder of an American option selects an optimal ex-
ercise strategy to maximize the value of the option; the manner in which the
writer hedges risk is irrelevant to the exercise strategy. In addition, we consider
the hedging problem from a writer’s perspective, assuming that the exercise
strategy is chosen to maximize the value to the holder. Hence it is assumed



that the decision of the option holder to exercise early at time ¢ depends only
on the value of asset price X;: the early exercise occurs as soon as X(; falls
below a critical value X(;y. The set {(i, X)), ¢ =0,1,..., N} is the set of
the early exercise critical values; we discuss in §3.4 methods for determining
it.

Denote a stopping moment as M* = min({k : k € {0,..., M} and X <
X;}). This corresponds to the hedging moment at which the early exercise
occurs. The corresponding stopping time will then be 777 M*.

A trading strategy is given by two stochastic processes (& )r=o,. a+ and
(& )k=o0,... M+, adapted to the filtration {Fi}, where & is the number of shares
held at time #, and 7, is the amount invested in the bond at time t. Let
Enrx = 0, which means that we liquidate our portfolio at the stopping moment.

The value of the portfolio at time tx, £ =0,1,..., M™, is given by

Vi = & X + i

Denote Gy = Ef;é £(Xjm1 — Xj), k=1,...,M*. Hence Gy, is the accu-
mulated gain due to changes of asset prices up to time #/. At time moment 0,
G 1s set to zero.

The cumulative cost Cy 1s then given by

Cro=Vi—Gp k=0,... M.

A strategy is self-financing if its cumulative cost process (Ci)r=01,.. M 18
constant over time: Cp = C; = -+ = Cyy+.

A market is complete if any claim Hjys is attainable, i.e., there is a self-
financing strategy with value Vs« equal to Hys+ almost surely. If the market
i1s incomplete, as in the case of discrete hedging, a claim is generally non-
attainable and a hedging strategy has to be chosen based on some measure of
optimality.

In total risk minimization, one tries to minimize the deviation of the self-
financing portfolio value Vi« from the claim Hys«. Usually this is done by
considering the expected value of the quadratic difference:

E[(Hye — Vi)

However, a solution to this minimization problem may not exist [11]. Al-
though efficient algorithms have been developed to solve this problem (e.g.,
see [6]), solutions can be hard to compute for general asset models, and espe-
cially if one considers a different norm (e.g., I-norm) to measure the difference
between the portfolio value and the claim. As an alternative, a local risk min-
imization hedging strategy, which is meaningful in a hedging context and is
easier to compute, can be considered.



In local risk minimization for European options, the incremental cost AC}, =
Crt1 — C 1s minimized at each hedging time k = M —1,...,0. The final con-
dition is Vay = Hyp, €y = 0,my = Hyy. For American-type options, the
incremental cost needs to be minimized at a hedging time if the option has
not been exercised.

Since the change (Cit1 — Ci)|Fi is a random variable, there are different
measures for its associated risk. In most of literature on pricing and hedging in
an incomplete market, e.g., [11, 12], the expected quadratic incremental cost
is minimized. This approach is called the quadratic local risk minimization.

We generalize the local risk minimization for European options to American
type options as follows.

At a stopping moment, Viss = Hpyps, Eapx = 0 and npge = Vigs.
If £ < M~, the quadratic local risk minimization problem at hedging mo-
ment t is
min F [(Ck-H — Ck)2|.7:k] (1)
€k Mk
There are many ways to measure incremental costs; therefore it is natu-
ral to wonder how different measures will affect the resulting determination
of fair values and hedging strategies. For European options, this has been
investigated in [3]. In this paper, we investigate this for American options.
We similarly consider a piecewise linear local risk minimization problem
for American-type options: at any hedging moment ¢, (k= 0,...,M — 1), if
k< M~,
min E [|Cyy1 — Ck|[Fi] (2)

Ek ke

The quadratic local risk minimization produces a mean-self-financing strat-
egy, i.e., E[(Cry1 — Cx)|Fi] = 0. This is not the case for the piecewise linear
local risk minimization. However, we can enforce the hedging strategy to be
mean-self-financed and consider a constrained piecewise linear local risk min-
imization problem: at any hedging moment ty, k = 0,...., M — 1, if & < M*,
we determine hedging positions &, nx from

min F [|Cry1 — Ckl|Fi]

€k Mk

st E[(Crsi— Co)lF] =0 (3)

A local risk minimization hedging strategy can be computed via stepping
backwards k = M — 1,...,0. Next we discuss in greater detail the local risk
minimization approach for American-type options in a binomial model. In
particular, we discuss determination of critical values which define the holder’s
early exercise strategy.



3 Local risk minimization in a binomial model

To further illustrate local risk minimization hedging strategies, we consider
a discrete asset price process described by a binomial tree, which can be a
discrete approximation to a continuous price process satisfying a stochastic
differential equation,

d
ﬁ = pudt + odZ;,

t
where Z; is a standard Brownian process [4].

Let us model the underlying stock price over time period [0,7] using a
binomial tree with N periods. Denote 7 = T/N. At the node (7,7) of the
binomial tree, the time moment is 2 = 77 and the stock price is SZB =u¥1S,

fori=10,...,N, 7 =0,...,i, where u = 1/d = ¢’V™. The discounted stock
price is th' = e "%~ X,. For simplicity, X(;) denotes Xyp and S(;) denotes
Sip as before.

" For each node the (discounted) stock price goes up with probability p and
down with probability 1 — p, where p = %.
At each node (i, 7) early exercise occurs if X(l.) < X(,»), where X(i) denotes

the critical value for early exercise.

Nodes of the binomial tree corresponding to hedging times are called hedg-
ing nodes. Hedging node [k, j] is the same as node (k- ngy,7) in the binomial
tree.

To summarize, there can be four different meanings when we refer to time:

e Continuous time, t € [0, 7.

e Time in the binomial tree, t? =7.7 i=0,..., N.
e Discrete hedging times, t¥ =k -7y k=0,..., M.
e Early exercising times, t¥ = k-7z k=0,..., L.

European options correspond to the special case when 75 = T and ngy = N.

In §3.4, we will discuss determination of critical exercise values. In order to
describe local risk minimization calculations, for the next three subsections we
assume that the critical exercise values X}, are pre-computed for each hedging
moment k.

The local risk minimization hedging strategy for American-type options
can be computed by backward iterations: for k =M —1,...,0

e Set §k+1 = 0, Ne+1 = Hk_|_1 if Xk_|_1 < Xk—l—l-

o Compute & and n; by minimizing incremental cost with the specified
measure.
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Figure 1: Timing in the model.

We now discuss computation in greater detail for each measure of incre-

mental risk.

3.1 Quadratic local risk minimization

At time I with binomial tree state j € {0, ...,k - ny}, the objective function

in the quadratic risk minimization (1) can be written as

E[(Cryr — Cu)*|Fi] = E [(Cryr — Co)*| Xk = X}] =

nH nH

I (g g i) It xd
Z b k-|—1(§k-|—1 fk)+(77k+1 m)) + Z Pr\fip k

=0 =0

i+ v i+ %
XiE> X X <Xk

_|_
_|_

Lei 3\
1§k_77k>

The first sum corresponds to situations when the holder does not exercise

at 7, ;, and the second when the holder does.

In a binomial model, we can write the expected quadratic incremental cost
in a more compact form by introducing a 2-column matrix A, a vectors b, and

a vector = defined by
j VB XD,
z= ( o ) C A= s
VPra /P X"

\/p_O((l - Wz’;+1)(Xi+1§i+1 + 77114-1) + Wiﬂﬂiﬂ)
b= :

\/}E((l _ 7Tj+nH)(Xj+nH§j‘|:nH + 77j+nH) + 7Tj+nHHj+nH

k+1 k+1 k+1 k+1 k+1 k+1

7

)



where 7T£ = ]I(X,z < Xj), indicating early exercise when ]I(X,z < X;) =1. The
function I(-) is the indicator function which equals one when the argument has
a nonzero value.
The corresponding quadratic local risk minimization problem can now be
written as
min ||Az — b||2
z€R?2
Since all prices X,Z_I_l, . ,X,Z::__?H are different, A has full column rank.
Thus, the solution can be written explicitly!: z* = (AT A)=1 ATb.
The quadratic local risk minimization problem has an analytical solution
in general and properties of the optimal hedging strategy can be examined.
For example, the optimal hedging strategy is mean-self-financing, i.e.,

E[(Cryr — Cy)|Fi] = 0. (4)

Equation (4) can be established by differentiating the objective function.

3.2 Piecewise linear local risk minimization

At time moment t;, binomial tree state j, the objective function in the piece-
wise local risk minimization (2) can be formulated as:

E[|Crs1 — Ckl [Fi] = E [|Crpr — Ci| | Xk = X{]

g ng
_ g+ g+ 7 g+l J g+ g+ ¢35 J
= E yzi ‘Xk+1(§k+1 - fk) + (77k+1 - 77k) + § yui ‘Hk+1 - Xk+1§k — Nk
. l207 . l:07
X{1> K X[ <K

(3)

Similarly we can write (5) in a more compact form by introducing matrix
a 2-column matrix A, a vector b, and a vector = defined by

x = 772 A=
(&)

po((1 — 7TI]c-|-1)(‘le§-|-1§1]¢-|-1 + 771]c+1) + 7Tli+1HIg+1)

Po pOX]g_|_1

J+nm
an anXk-H

b — .
i+ g et i+ i+ i+
Prg (1 — 7T1]c+?H)(XIg+?H§l]<+?H + nl]<+rllH) + lecq-rllHHng-?H)

where 7T£ = ]I(X,g < Xpi).

IThis expression is not a good way of actually computing the solution. See [1] for more
discussion.



In a binomial model, the piecewise linear local risk minimization problem
can be written as
min ||Az — by
x€R2

Unfortunately, there is no analytical solution to this problem. However,
the solution can be found numerically using the approach described in [10].

In addition, the resulting trading strategy is not mean-self-financing in gen-
eral. However, we can impose the mean-self-financing condition and consider
the constrained piecewise linear local risk minimization problem.

3.3 Constrained piecewise linear local risk minimization

For the constrained piecewise linear local risk minimization problem (3), the
constraint can be rewritten as:

E[Ciy1 — Cy |Fi) = E [Cr1 — C | X = X]]

nH nH

_ S (D el — ) S (EE - X )

1=0 ~1=0

it o o
Xiil>Xk+1 XiLng_H

nH
=3 (0= alDOERE +nlth) + =l B - X)) ol =0
=0

Substituting the expression for n,i into the objective function results in a
one-dimensional L problem for ¢j.

3.4 Critical Values for the Early Exercising Decision

The formulation of hedging strategies for a writer has been described assuming
the holder exercises a put option when the asset price falls below a critical
value. We now describe how these critical values are determined.

In a complete market, no-arbitrage pricing uniquely determines the early
exercise strategy: the holder exercises optimally to maximize the no-arbitrage
value. In an incomplete market, no-arbitrage value is not unique even for
the European option. In this paper, we are only focusing on the hedging
problem for a writer. What is the exercise strategy a writer should assume
when determining hedging strategies?

From the point of view of the option holder, he has a contract that permits
exercising every ng periods. Thus the holder will choose an exercise strategy
to maximize the option value to him; hedging decisions of the writer are ir-
relevant to his exercise decision. In absence of an objective view on fair value
pricing in an incomplete market, let us assume that the holder uses the initial



hedging cost or the mean cumulative cost of a local risk minimization strat-
egy as a guideline to fair values, then the maximum value to the holder will
correspond to hedging every period, since initial hedging costs and average cu-
mulative hedging costs seem to increase as hedging frequency increases. This
is illustrated in Tables 3.1 and 3.2 for the European option, see [3].

Table 3.1: Initial Costs for European Puts (ng = N)

IniCost ng
1 5 25 50 100 300 600
90 | Ly | 1.4254 | 0.0299 | 0.6442 | 0.0837 0 0 0

Ly | 1.4254 | 1.4204 | 1.3962 | 1.3669 | 1.3118 | 1.1348 | 0.9671
Lic | 1.4254 | 1.3718 | 1.3057 | 1.264 | 1.203 | 0.8722 | 0.6516
A | 1.4254 | 1.4254 | 1.4254 | 1.4254 | 1.4254 | 1.4254 | 1.4254

100 | Ly | 3.7499 | 0.5544 | 2.3361 | 0.8783 | 0.7925 0 0
Ly | 3.7499 | 3.7422 | 3.7035 | 3.6557 | 3.5626 | 3.2321 | 2.8703
K Lic | 3.7499 | 3.6674 | 3.5739 | 3.5236 | 3.4766 | 2.8802 | 2.2359

A | 3.7499 | 3.7499 | 3.7499 | 3.7499 | 3.7499 | 3.7499 | 3.7499
110 | Ly | 7.7139 | 3.3123 | 6.1464 | 4.2234 | 4.1045 | 5.2699 | 2.6164
Ly | 7.7139 | 7.7046 | 7.6583 7.6 7.4833 | 7.0297 | 6.4581
Lic | 7.7139 | 7.618 | 7.5224 | 7.4866 | 7.4951 | 6.9909 | 5.9606
A | 77139 | 7.7139 | 7.7139 | 7.7139 | 7.7139 | 7.7139 | 7.7139

When constructing a hedging strategy for the writer, we assume that the
holder determines the optimal exercise strategy by evaluating the fair value
under the assumption that hedging can be done at every time period (as if the
market is complete in the binomial hedging model). We can construct the early
exercise critical values using the binomial tree representation. Define &) =
I(: = m - ng for some positive integer m), i.e., the indicator that the early
exercise can occur at the stage ¢. For each node (4, j) in the binomial tree define
the discounted value of the option (from the point of view of policyholder) V(Z)
in the following way. The discounted final value at moment T should be
equal to the discounted payoff: V(]N) =V} =(""K - X3)",j=0,...,N.
Naturally, set X(N) =e¢"TK.

For node (7,5), it =N—1,...,0, j =0,...,1, calculate option value as the
and the

maximum of the continuation value CV(];) = p*Vdii) + (1 - p*)V(g_H)

payoff (if early exercise is allowed):
J J J o

where p* = (e'” — d)/(u — d) is the risk neutral probability.

10



Table 3.2: Average Cumulative Costs for European Puts (ng = N)

AvgCumCost ny

1 5 25 | 50 | 100 | 300 | 600
90 | Ly | 1.43]0.92|1.18 [ 0.91 | 0.82]0.62 | 0.52
Ly | 143|1.42 139|137 131 |1.13]0.97
Lic|143137] 1.3 | 1.26 | 1.2 | 0.87 | 0.65
A | 1.43|1.43 (144|146 | 1.5 |1.64|1.89
100 | Ly |3.75]3.16 | 3.5 |3.12 | 2.99 | 2.09 | 1.66
L, | 3.753.74 | 3.7 | 3.65 | 3.56 | 3.23 | 2.87
K Lic|3.75|3.67|3.57 352|348 288|224
A 1375 (3.75 | 3.78 | 3.81 | 3.87 | 4.13 | 4.55
110 | Ly | 7.71 | 7.59 | 7.62 | 7.49 | 7.38 | 6.9 | 4.98
Ly | 771 7.7 | 765 | 7.6 | 7.47|7.02 | 6.45
Lyc | 7.71|7.62 | 7.51 | 7.49 | 7.48 | 6.98 | 5.96
A TTL| 772 775 | 779 | 7.86 | 8.19 | 8.73

The state 7' = minj(CV(z) > H(ji)), at which the switch from the payoff

to the continuation value occurs, determines the early exercise critical value:
X = X[y 2

If the payoff is less than the continuation value for any j or the early
exercise is not allowed at this time moment, we set X(i) =0.

3.5 Delta-hedging strategy

Delta-hedging is a popular method for hedging an option, and we consider
it for comparison purposes. In a binomial model, delta hedging positions at
binomial tree nodes can be computed in a standard way:

I A 7
Afy= L N1 =0,
Xy = X

This computation proceeds backwards in time. At each time, delta is computed
for each node with the underlying stock price above the early exercise critical
value. We can then use these delta values to construct the delta-hedging
strategy: at hedging times t2,k = 0,..., M — 1, the number of shares in the
underlying stock is

& = A

2In the actual implementation, we take the mid-point between two binomial nodes (rather

than the lowest one) to avoid numerical issues, i.e., we take X(i) = %(X‘(j;) + X‘(jil)_l).

11



4 Performance measures

In this section, we compare the hedging performance of different hedging
strategies. In [3], performance of local risk minimization strategies was mea-
sured by cumulative cost and incremental risk.

The definitions of these random variables can be naturally extended to our
model. We have already introduced the final cumulative cost Cyy«, which can
be expressed in terms of holdings in the underlying stock as

M*—1

Crys = Hye — Z Ek (X1 — Xk ).

k=0

Similarly, we consider incremental risk (average per period) as

M*—1
1

IR = e ; |Cry1 — Chl

For each of these random variables we can find the mean, standard devia-
tion, quantiles (including the median), skewness, kurtosis, etc. by simulation
techniques. Moreover, the expected values in the binomial model can be ob-
tained explicitly as follows.

For each hedging node of the binomial tree [k, s] we can compute

o the distribution of change in cost conditioned on the stock price at hedg-

ing node v = [k, 5], i.e., ACk|[k, s] = (Cry1 — Ci)|[E, s].

e probability Pr(v) of reaching hedging node v = [k, s] if & < M*. We can

compute Pr(v) for each node v using a recursion:

an

Pr([0,0]) = 1, Pr([k+1,s]) = I(X},; > Xt1) Z Pr([k, s])Pr{[k+1, s]|[k, 5|}

5=0
fork=0,....M—1,s=0,...,(k+ 1)ng.
Note that
{w:k < M*} = {w: hedging node [k, s] is reached for which X} > X}

Hence the expected cumulative cost is:

12



M*—1 M—1
E(CM*):E Co + Z ACL| =Co+ E ZACk]I(k<M*)] =
k=0 k=0
M-1 M-1
Co+ Y E[ACKI(k< M) =Co+ Y E[B[ACHk < M7]] =
k=0 k=0
M-1
Cot+ Y Y E[ACHE s)|P([k, s])
k=0 s:X£>Xk

The expected incremental risk can be calculated in the following fashion.
Let random variable e represent the node of the binomial tree at which

the exercise occurs. Let v = [k, 5] be the last hedging node visited before
exercising at e.
Then,
1 M*-1 1 M*-1 1 k
E ACyl| =E |E | — AC =F|——F AC

For calculating the conditional expectation inside the expression, we use a
recursive formula:

k k—1
pv) =B | IACH|v| =E | ) |ACK + |AC|v| =
k=0 k=0

E|E

k—1
D IACK + |AC
k=0

v, 1/] 1/] ,
where v~ is the hedging node visited before v..
Given v, the distribution of ACY} for k& < k — 1 is not affected by v. Thus
p(v) is equal to

kol
|
—

plv)=E |ACK|| v~ | + E[JACH| v, v]

vl =

b
Il

0

E [p(v7) + E[|AC| v, v]|v]

Obviously p([0,0]) = 0. Note that [|AC;||v~,v] is deterministic since it
represents a change in cost while going from node v~ to v. Since the prob-
ability of reaching each node is precomputed, we can write down each of the

13




conditional expectations explicitly:

p)= Y (o) + [IACH| v, v]) Pr(vT|v) =
V- ir[%“fi,s]
B B Pr(vlyv=)Pr(v™)
e e =
vT =[k—1,s]

Finally, the expression for the expected incremental risk is:

M*—1

1
E|— A

= Z %-I-l (v)Pr(v)Pr{Xg,, < Xpnlv}

v=lk,5]

5 Computational results in the simplified model

In this section we compare performance characteristics of delta hedging and
three local risk minimization hedging strategies for American-type options.
We consider the simple model: the option holder can exercise early only at
predetermined hedging times, i.e., ny = ng. We refer to this case as “the
Bermudan option™.

We consider a number of parameter sets and compute local risk minimiza-
tion hedging strategies as described in the previous section. A binomial tree
model is constructed for the asset price assuming 7' =1, Sy = 100, p = 0.2,
o = 0.2 and r = 0.1. The number of periods in the binomial tree is N = 600.

We compute the holdings (£, 7) in the portfolio at each node in the binomial
tree using, as described in §3, delta-hedging, piecewise local linear risk min-
imization, local quadratic risk minimization, and constrained local piecewise
linear risk minimization.

We compare the performance of these four methods. We generate 100,000
paths for the stock price based on the binomial tree. For each path we de-
termine the moment of early exercise tys«, and at this moment calculate the
final cumulative cost Cys«. Thus, we are able to obtain the distribution of
the cumulative costs and, in particular, report mean and 95% quantile of the
distribution. We also report mean of the incremental risk.

The results for the Bermudan option with ng = ny are presented in Tables
3.1, 3.2, and 5.1-5.6. The calculations are done for different strike prices K
and time periods between hedging moments ny = N/M. As can be expected,

3We are particularly interested in the situation when ng = ng > 1 because ng = ng = 1
corresponds to a standard American option hedged at every time period. However, in the
tables we report results for this case as well.
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performance differences are small when rebalancing is frequent, with all four
methods becoming equivalent when the hedging portfolio is rebalanced at every
time period (hence the market is complete).

Table 5.1: Initial Cost of the portfolio for the Bermudan option with ng = ngy

IniCost ng
1 5 25 50 100 300 600
90 | Ly | 1.7177 | 0.0333 | 0.7712 | 0.0879 0 0 0

Ly | 1.7177 | 1.7091 | 1.6678 | 1.6191 | 1.5297 | 1.2517 | 0.9671
Lyc| 1.7177 | 1.6531 1.557 1.4867 | 1.3665 | 0.9356 | 0.6516
A 1.7177 | 1.7146 | 1.7001 | 1.6834 | 1.6518 | 1.553 | 1.4254

100 | Ly | 4.8149 | 0.6977 | 3.2128 | 1.2822 | 1.0042 0 0
Ly | 4.8149 | 4.7994 4.725 4.6353 | 4.4615 | 3.8008 | 2.8703
K Lic| 4.8149 | 4.7188 | 4.5696 | 4.4564 | 4.2659 | 3.2412 | 2.2359

A | 4.8149 | 4.8073 | 4.7722 | 4.7295 | 4.6505 | 4.3122 | 3.7499

110 | Ly | 10.7182 | 5.8008 | 9.4925 | 7.7425 | 8.2208 | 7.2594 | 2.6164
Ly | 10.7182 | 10.6976 | 10.5982 | 10.4494 | 10.1128 | 8.6063 | 6.4581
Lic | 10.7182 | 10.6398 | 10.4898 | 10.3542 | 10.0112 | 8.4011 | 5.9606
A | 10.7182 | 10.7034 | 10.6339 | 10.5255 | 10.2811 | 9.2042 | 7.7139

The initial hedging cost, Cy, shows differences in hedging style for the
strategies considered. Low initial hedging cost might indicate that the hedging
strategy requires aggressive financing in the remaining life of the option to
match the option payoff at the moment of exercise. Tables 3.1 and 5.1 show
that, when hedging is infrequent, delta hedging has significantly higher initial
cost than local risk minimization hedging. Note that Ly local risk minimization
has the least initial cost. Comparing to Table 3.1, Table 5.1 shows that the
initial costs for Bermudan options vary with the hedging frequency in the
same fashion as initial costs for European options except that the initial costs
for Bermudan options are higher. Note that the relative difference becomes
smaller when hedging less frequently (npy is large). This is reasonable since
the early exercise can occur only at hedging times and thus it is harder for the
option holder to benefit from the early exercise opportunity.

Tables 3.2 and 5.2 show that, when rebalancing is infrequent, the aver-
age cumulative cost for delta hedging is significantly higher than the average
cumulative cost for local risk minimization hedging. In addition, average cu-
mulative costs for Bermudan options change with hedging frequencies in a
similar pattern as those for European options. As in the case of European
options, the piecewise linear (L;) method tends to give lower average cumu-
lative cost, especially for out-of-the money options. The difference is most
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Table 5.2: Average Cumulative Cost for the Bermudan option with ng = ngy

AvgCumCost ny

1 5 25 50 100 | 300 | 600
90 | L, | 1.72 | 1.11 | 1.42 | 1.07 | 0.94 | 0.68 | 0.52
Ly | 1.72 | 1.71 | 1.67 | 1.62 | 1.53 | 1.25 | 0.97
Lic| 1.72 | 1.65 | 1.56 | 1.49 | 1.37 ] 0.93 | 0.65
A | L7272 172 | 172 | 173 1 179 | 1.89
100 | Ly | 481 | 4.09 | 453 | 4.03 | 3.7 |2.41|1.66
L, | 481 | 48 | 472 | 463 | 446 | 3.8 | 2.87
K Lic| 481 | 472 | 457 | 445 | 426 |3.24 | 2.24
A | 481 | 481 | 4.8 | 479 | 4.78 | 4.72 | 4.55
110 | Ly | 10.72 | 10.72 | 10.65 | 10.6 | 10.48 | 8.53 | 4.98
L, |10.72 | 10.7 | 10.59 | 10.45 | 10.1 | 8.62 | 6.45
Lic|10.72 | 10.64 | 10.48 | 10.35 | 10 | 8.41 | 5.96
A 110.72 ] 10.71 | 10.66 | 10.58 | 10.4 | 9.69 | 8.73

Table 5.3: 95% quantiles of Cumulative Cost for the European option (ng =
N)

q95 CumCost ng

1 5 25 50 100 | 300 | 600

90 | Ly | 1.43 | 433 | 3.07 | 4.52 | 5.21 | 4.96 | 3.32
Ly 143 ] 1.86 | 2.53 3 3.99 | 4.12 3.6

Lic | 1431 1.93 | 2.64 | 3.13 3.8 441 | 3.056
A | 143] 1.86 | 2.53 | 3.01 | 3.65 | 5.3 | 7.16
100 | Ly |3.75| 7.53 | 6.11 | 8.08 | 9.09 | 12.29 | 12.37
Ly [3.75] 4.46 | 5.51 | 6.21 | 7.24 | 9.52 | 10.23
K Lic | 3.75 | 453 | 5.64 | 6.39 | 7.48 | 10.19 | 11.16
A |3.75| 446 | 552 | 6.28 | 7.34 | 10.55 | 14.43
110 | Ly | 7.71 | 11.95 | 10.56 | 12.77 | 13.79 | 15.9 | 19.33
Ly | 7.71] 8.6 9.88 | 10.74 | 11.89 | 15.01 | 17.24
Lic | 771 | 865 | 9.95 | 10.87 | 12.22 | 15.35 | 17.3
A | 771 862 | 9.96 | 10.93 | 12.38 | 16.69 | 22.61
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Table 5.4: 95% quantiles of Cumulative Cost for the Bermudan option with
ng =ng

q95 CumCost ng

1 5 25 50 100 | 300 | 600

90 | Ly | 1.72 | 5.15 | 3.68 | 5.48 | 6.16 | 6.13 | 3.32
L, 1.72 | 2.24 | 3.03 | 3.58 4.2 4.57 3.6

Lic| 1.72 | 2.33 | 3.22 | 3.83 | 4.56 | 5.37 | 3.05
A 1.72 | 2.24 | 3.01 | 3.54 4.2 5.75 | 7.16
100 | Ly | 4.81 | 9.82 | 7.45 | 9.43 | 10.87 | 14.18 | 12.37
Ly | 481 | 561 | 6.73 | 7.52 | 8.58 | 10.28 | 10.23
K Lic | 481 | 5.67 | 6.89 | 7.75 | 892 | 11.71 | 11.16
A 481 | 5.61 | 6.77 | 7.54 | 8.65 | 11.52 | 14.43
110 | Ly | 10.72 | 17.65 | 13.86 | 17.25 | 19.4 | 17.72 | 19.33
Ly 110.72 | 11.51 | 12.6 | 13.31 | 14.51 | 17.09 | 17.24
Lic | 10.72 | 11.47 | 12.59 | 13.46 | 14.44 | 16.85 | 17.3
A 110.72 | 11.53 | 12.77 | 13.69 | 15.09 | 18.77 | 22.61

Table 5.5: Average Incremental Risk for the European option

MeanlIncRisk ny

1 5 25 50 | 100 | 300 | 600
90 | Ly | 0.00 | 0.01]0.05]0.09]0.17 | 0.36 | 0.51
L, 10.000.01]0.070.13]0.25|0.6811.12
Lic | 0.00 | 0.01 | 0.06 | 0.13 |0.25 | 0.61 | 0.90
A |10.00]0.0110.070.14 ]10.29 | 0.97 | 2.21
100 | L; [0.00 |0.02]0.11 ]0.23|0.45|1.23]1.63
L, 10.00 10.0210.12]0.24 |0.48 | 1.42 | 2.60
K Lic]0.00]0.02]0.12 024|048 | 1.40 | 2.37
A 10001002012 10.25]0.51 |1.76 | 4.06
110 | L; | 0.00 | 0.04 | 0.15 | 0.35 | 0.70 | 2.18 | 3.79
L, [0.00 10.03]0.16 |0.32|0.67 211 |4.21
Lic | 0.00 | 0.030.16 | 0.32 | 0.65 | 2.15 | 4.13
A 10.000.031]0.16 |0.33 ]0.69|2.36 | 5.47
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Table 5.6: Average Incremental Risk for the Bermudan option (ng = ng)

MeanlIncRisk ny

1 5 25 50 | 100 | 300 | 600
90 | Ly | 0.00 | 0.01]0.07|0.13]0.27 | 0.51 | 0.51
L, 10.000.02]0.08/0.16 0.33|0.8111.12
Lic | 0.00 | 0.02 | 0.08 | 0.17 | 0.32 | 0.74 | 0.90
A 1000002008017 10.36 |1.1112.21
100 | L; | 0.00 | 0.05|0.20 | 0.63 | 1.17 | 2.11 | 1.63
L, 10.000.04]0.1810.39]0.76 | 1.81 | 2.60
K Lic]0.00]0.04]0.19|041|0.79 | 1.83|2.37
A 10.00|0.04]0.18|0.38]0.75 | 2.08 | 4.06
110 | L; [ 0.00 | 0.23 | 0.41 | 0.84 | 0.96 | 2.77 | 3.79
L, [ 0.00 10.07{0.33]0.59]|1.05]|261]4.21
Lic | 0.00 | 0.07 | 0.39 | 0.61 | 1.06 | 2.63 | 4.13
A 10.00|0.06|0.31]0.551]0.97]2.69 | 547

striking when the market is more incomplete (e.g., hedging is infrequent in the
Black-Scholes setting). Similar to the case of European options, performance
of constrained piecewise linear (L;c) method is between Ly and L.

Tables 5.3 and 5.4 report 95% quantiles of cumulative costs. Although
delta hedging incurs higher average cumulative costs, we observe that the
tail risk VaR is much higher than those of local risk minimization methods
when rebalancing is highly infrequent. In addition, the 95% quantiles are
higher for Ly than for Ly which is consistent with the conclusion in [3] that L4
method tends to produce larger right tails for the distribution of cumulative
costs. However, for the Bermudan option, though the same pattern holds,
the difference is sometimes larger than in the case of European option. This
can be explained by the following argument. Since the L; objective function
does not penalize large deviations as much as Ly does, larger incremental cost
may happen with a significant probability. But the Bermudan option, which
is more beneficial for the option holder due to the early exercise feature, has
more opportunities for large losses for the writer, thus boosting the right tail
of cumulative cost distribution.

In order to underscore this difference, we compare distributions of the cu-
mulative costs for the European and Bermudan options. Figure 2 present
histograms corresponding to L risk minimization and Figure 3) present dis-
tributions corresponding to Lo risk minimization. We see that, for Lj, the
distributions are close to normal in both cases and differ only in the mean and
variance. For L;, however, while the distribution in the case of the European
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the European option the Bermudan option

Mean 2.99 | 3.69
StdDev 2.98 | 3.46

Figure 2: Cumulative cost distributions for European option (ng = N) and
the Bermudan option (ngy = ngy); Ly optimization is used. Calculations are
performed for parameter values K = 100, M = 6.

the European option the Bermudan option

L2 210"

25F T T T T T = 18000

10

Mean 3.56 4.45
| StdDev 2.05 2.34

Figure 3: Cumulative cost distributions for European option (ng = N) and
the Bermudan option (ng = npy); Ly optimization is used. Calculations are
performed for parameter values K = 100, M = 6.
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option has a nicely declining tail, the right tail of the cumulative distribution
for the Bermudan option is more uneven.

Figure 4 contrasts empirical cumulative distribution functions (CDFs) for
cumulative costs obtained by different methods. We observe that L; method
produces a significantly different shape for the CDF. In particular, probabili-
ties of small cumulative costs are significantly higher than the corresponding
probabilities for the other three methods.

The average incremental risk is lower for L; methods than for the L, for
out-of-the money puts - the effect also observed in the European option case.
However, while this is true in the case of European options for both out-of-the
money and at-the-money (A = 100) options, for the Bermudan option this
holds only when the option is out-of-the-money.

Figure 4: Cumulative cost CDF's for the Bermudan option (ng = ng); Calcu-
lations are performed for parameter values K = 100, M = 6.

6 A general model: hedging times different
from exercising times

To this point we have considered the case when the option holder is permitted
to exercise only at predetermined hedging times. However, a more practical
situation is when the early exercise can occur at any moment (ng = 1) (or at
least more often than when the hedging portfolio is rebalanced). Recall that
we refer to this case as the American option.
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We can extend the local risk minimization technique to this framework.
Suppose that we are formulating the objective function at hedging node [k, j]
in order to determine the portfolio holdings. For each subtree, we need to
calculate the probabilities of reaching terminal points and calculate payoffs or
continuation values at these points and use them, along with the probability
of arriving at a given terminal point, to formulate a corresponding term in the
objective function, see Fig. 5.

< . 2 . - terminal point,

Doy S early exercise doesn't occur

13 - terminal point,
i - 93 N =
= 4 early exercise oceurs
1-p e N {_/ - unreachable point
4_—}4 g below the early exercise curve
R )
)
2

P
\'t\.
| |
I |

k k+1

Figure 5: Illustration of the algorithm in case the early exercise can occur at
any moment.

Earlier, when we assumed that the early exercise can occur only at hedging
times, subtrees for all points were the same. Now, subtrees can be different.
Processing of subtrees makes the problem computationally more intensive.

However, we can speed up calculations by observing that if all the lowest
nodes of the subtree are above the early exercise critical values then no early
exercise can occur in the whole subtree and the objective function can be
constructed in the usual way. If the initial point [k, j] lies below the early
exercise critical value then there is no need to calculate hedge positions since
the hedging portfolio should have been liquidated at that point.

All other definitions from the simplified model are carried through with
minor adjustments, for example, M* is defined as the number of the subtree
in which the early exercise occurs.

To allow easy comparisons, numerical results are presented for the same set
of parameters as in the simplified model. We observe that average cumulative
costs are lower for L; methods than for the L, when the option is out-of-the-
money. However, behavior of the average incremental risk is not as clear as in
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the simplified model.

Moreover, if we compare the average cumulative cost and average incre-
mental risk for the simplified and general models (Tables 5.2, 6.2, 5.6, and
6.4) we observe that, in the general case, average cumulative cost is higher
while average incremental risk becomes lower. A possible explanation is that
each subtree in the general model (see Fig. 5) is ‘narrower’; hence there is less
variance in the incremental cost and the local optimization problem can be
solved more successtully.
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Figure 6: Dependence of cumulative cost and incremental risk on the exercising
frequency

In fact, we can show that this holds for intermediate values of ng. For
K = 100,ny = 60 we plot the average and the standard deviation of the
cumulative cost and the average incremental risk for L, strategy as ng changes
from 1 (the American option) to ny (the Bermudan option)* (see Figure 6).
We see that the average cumulative cost declines as ng increases. The standard
deviation of the cumulative cost, on the other hand, gradually goes up. The
behavior of the mean incremental risk is trickier - it grows in steps.

So far we have considered put options. We note that the risk minimization
framework and solution methods can readily be applied to call options as well
as other more complex options.

In [3] the discrete hedging was done for the European put option and
then the discrete hedging put-call parity was established, providing a way to
calculate the portfolio holdings for the European call option.

In the case of American options, however, there is no put-call parity. For
standard American and Bermudan call options it is never optimal to exercise
the option early if there is no dividend payment; the solution coincides with
the one for the European call option.

Ywe do the calculations only when ng is a divisor of ng.
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Table 6.1: Initial Cost of the portfolio for the American option (ng =

1)

IniCost ng
1 5 25 50 100 300 600
90 | Ly | 1.7177 | 0.0350 | 0.7793 | 0.1253 | 0.0588 | 0.0000 | 0.0000
L, 1.7177 | 1.7122 | 1.6864 | 1.6573 | 1.6072 | 1.4752 | 1.3894
Lic| 1.7177 | 1.6571 | 1.5926 | 1.5529 | 1.4838 | 1.2115 | 1.0548
A 17177 | L4177 | 17177 | 17177 | L7177 | L7177 | 1710
100 | Ly | 4.8149 | 0.7379 | 3.2278 | 1.5294 | 1.8541 | 2.0861 | 0.0000
Ly, | 4.8149 | 4.8070 | 4.7703 | 4.7298 | 4.6632 | 4.5158 | 4.4367
K Lic| 4.8149 | 4.7285 | 4.6591 | 4.6260 | 4.5741 | 4.3703 | 4.3318
A 4.8149 | 4.8149 | 4.8149 | 4.8149 | 4.8149 | 4.8149 | 4.8149
110 | Ly | 10.7182 | 5.9696 | 9.5724 | 9.1121 | 9.8727 | 11.4220 | 12.4540
Ly | 10.7182 | 10.7127 | 10.6897 | 10.6678 | 10.6367 | 10.5809 | 10.5613
Lic | 10.7182 | 10.6592 | 10.6740 | 10.7093 | 10.7379 | 10.9415 | 11.0943
A 1 10.7182 | 10.7182 | 10.7182 | 10.7182 | 10.7182 | 10.7182 | 10.7182
Table 6.2: Average Cumulative Cost for the American option (ng = 1)
MeanCumCost nyg

1 5 25 50 100 300 600

90 Ly 1.72 | 1.12 | 1.43 | 1.15 | 1.08 | 0.88 | 0.81

L, 1.72 | 1.71 1.69 | 1.66 | 1.61 1.47 | 1.38

Lic | 1.72 | 1.66 | 1.59 | 1.55 | 1.48 | 1.21 | 1.05

A 1.72 | 172 | 1.74 | 1.76 | 1.82 | 2.07 | 2.50

100 | Ly 481 | 413 | 458 | 426 | 423 | 3.85 | 3.05

L, 481 | 4.81 | 477 | 473 | 4.66 | 4.52 | 4.43

K Lic | 481 | 473 | 4.66 | 4.62 | 4.57 | 4.37 | 4.32

A 481 | 482 | 486 | 491 | 5.01 | 5.58 | 6.61

110 | Ly | 10.72| 10.79 | 10.76 | 10.87 | 10.85 | 10.79 | 10.91

Ly, |10.72 ] 10.72 | 10.69 | 10.66 | 10.63 | 10.57 | 10.55

Lyc | 10.72 ]| 10.66 | 10.68 | 10.70 | 10.73 | 10.93 | 11.09

A 10.72 | 10.73 | 10.77 | 10.83 | 11.00 | 11.74 | 12.98
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Table 6.3: 95% quantiles of the Cumulative Cost for the American option
(np=1)

q95 CumCost ng

1 5 25 50 100 | 300 | 600
90 | Ly | 1.72 | 5.17 | 3.69 | 5.32 | 6.10 | 7.79 | 9.11
L, 1.72 | 2.24 | 3.04 | 3.63 | 4.39 | 6.11 | 7.69
Lic| 1.72 | 2.34 | 3.23 | 3.86 | 4.70 | 6.67 | 8.52
A 1.72 | 2.24 | 3.03 | 3.59 | 4.37 | 6.65 | 8.27
100 | Ly | 4.81 |10.01 | 7.46 | 9.63 | 9.88 | 10.80 | 12.71
Ly | 481 | 5.61 | 6.72 | 7.44 | 857 | 9.88 | 10.59
K Lic| 481 | 5.68 | 6.96 | 7.78 | 8.81 | 10.12 | 10.73
A 481 | 5.62 | 6.80 | 7.69 | 8.65 | 12.64 | 19.34
110 | Ly | 10.72 | 18.23 | 13.90 | 17.09 | 17.03 | 16.91 | 16.45
Ly [10.72 | 11.51 | 12.45 | 12.97 | 13.45 | 13.47 | 13.41
Lic | 10.72 | 11.49 | 12.87 | 13.80 | 14.71 | 17.57 | 18.00
A |10.72 | 11.55 | 12.81 | 13.89 | 15.76 | 22.73 | 34.87

Table 6.4: Average Incremental Risk for the American option (ng = 1)

MeanlIncRisk ny

1 5 25 50 | 100 | 300 | 600
90 | Ly | 0.00 | 0.010.07|0.14]0.29 | 0.66 | 0.81
L, 10.000.02]0.08)0.171]0.330.90|1.52
Lic | 0.00 | 0.02 |0.08 | 0.17 | 0.33 ] 0.86 | 1.35
A 10.000.02]0.080.17]0.36|1.21]2.68
100 | L; | 0.00 | 0.05 | 0.20 | 0.54 | 1.03 | 2.37 | 3.05
L, [ 0.00 0.03{0.1810.37|0.75|1.98 | 3.27
K Lic | 0.00 | 0.03 |0.18 | 0.37 | 0.74 | 2.00 | 3.26
A 10.000.03]0.17]0.36 0.72]2.11 | 4.81
110 | L; [0.00 | 0.21 | 0.42 | 0.62 | 0.86 | 1.65 | 2.89
L, 10.00 0060320541090 |1.97]3.38
Lic | 0.00 | 0.07 | 0.26 | 0.40 | 0.68 | 1.64 | 3.13
A 10.000.06|026|0.41|0.67|1.98|5.12
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7 Conclusions

When a market is incomplete and the asset price model is complex, hedging
American-type options is more difficult than hedging European options in
theory as well as in practice. In these situations total risk minimization is
computationally more expensive. In practice, simpler approaches like delta-
hedging are frequently used. However, using overly simplified methods may
result in poor hedging strategy performance when the market is significantly
incomplete. Hence identifying methods that are computationally attractive
and sufficiently sophisticated to produce good hedging strategies is of both
theoretical and practical importance. Local risk minimization methods are
examples of such methods.

In this paper we have evaluated performances of delta-hedging, quadratic,
and piecewise linear local risk minimization methods for discrete hedging of
American-type options. Local risk minimization methods are relatively easy
to implement and outperform delta-hedging when the market is highly in-
complete. Specifically, delta-hedging can incur higher cost with lesser risk
reduction when the market is sufficiently incomplete. In addition, when hedg-
ing rebalancing is infrequent, performance of various local risk minimization
methods can be significantly different. In particular, hedging performance de-
pends on moneyness of the option. For example, the piecewise linear local
risk minimization method and its modifications tend to perform better than
quadratic risk minimization when the option is out-of-the-money.

We have observed that local risk minimization methods do not necessarily
achieve optimality in terms of global risk measures, e.g., average incremental
cost per period. This suggests that these methods may suffer from locality in
this rather complex framework. Hence it would be interesting to investigate
how close local risk minimization methods can approach the optimal total risk
measures achievable by more complex total risk minimization methods.
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