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Abstract

Tracking error minimization is commonly used by the traditional passive
fund managers as well as alternative portfolio (for example, hedge fund) man-
agers. We propose a graduated non-convexity method to minimize portfolio
tracking error with the total number of assets no greater than a specified integer
K. The solution of this tracking error minimization problem is the global min-
imizer of the sum of the tracking error function and the discontinuous counting
function. We attempt to track the globally minimal tracking error portfolio by
approximating the discontinuous counting function with a sequence of contin-
uously differentiable non-convex functions, a graduated non-convexity process.
We discuss the advantages of this approach, present numerical results, and
compare it with two methods from recent literature.

Keywords: index tracking, tracking error, variance minimization, optimization,
small portfolio



1 Introduction

Portfolio managers evaluate the performance of their portfolios by comparing it to a
benchmark, e.g., the index portfolio. Holding relatively few assets prevents a port-
folio from holding very small and illiquid positions and limits administration and
transaction costs. A practical problem for passive portfolio management is the index
tracking problem of finding a portfolio of a small number of stocks which minimizes
a chosen measure of index tracking error; for example, consider minimizing the index
tracking error with the portfolio size no greater than a specified number of instru-
ments K. Although our discussion is illustrated with the index tracking example, our
proposed method is applicable to any tracking error minimization problem subject to
a constraint on the total number of assets.

This tracking error minimization problem, with a restriction on the total number
of assets, is NP-hard and consequently heuristic methods have been suggested. The
brute-force approach has been suggested for tracking error minimization problems,
see e.g., Scherer (2004). As described in Jansen and Dijk (2002), a simple heuristic
algorithm that is common for solving the cardinality-constrained index tracking prob-
lem can be illustrated as follows. As an example consider the problem of choosing a
portfolio consisting of 25 stocks to track the S&P500 index. Suppose that the track-
ing error function is TEjp(z) = (v — w)TQ(x — w), which is used in Jansen and Dijk
(2002). Here, the ith component x; of x is the percentage of the portfolio invested in
stock 1, 1 <1 < n, w is the vector of percentage weights of the stocks in the index,
and @ is the (positive definite) covariance matrix of the stock returns. This measure
of tracking error, along with two others, are discussed further in the next section.
The simple heuristic algorithm consists of the following steps. First, one solves the
quadratic programming problem: choose the best weights z; of the 500 stocks in the
S&P500 to minimize the tracking error (so @ = w is optimal initially). Then, remove
the 25 stocks that are weighted smallest in this solution, and solve the problem of
finding the best portfolio of the remaining 475 stocks to minimize the tracking error.
This is also a quadratic programming problem. Continue in this way until only 25
stocks remain. In general, this algorithm could proceed by removing any number of
stocks after each solution, say 10 stocks or 1 stock at a time. Besides being ad hoc,
a disadvantage of this heuristic method is that it may require solving many index
tracking sub-problems with hundreds of variables.

Another heuristic method for the index tracking problem is proposed by Beasley,
Meade and Chang (1999). They use a population heuristic (genetic algorithm) to
search for a good tracking portfolio by imposing the cardinality constraint explicitly.
In this case, all members of the population of tracking portfolios have the desired
number of instruments. This heuristic approach admits a very general problem for-
mulation, allowing the imposition of a limit on transaction costs (assuming some
initial tracking portfolio is held, and re-balancing of the initial portfolio is needed) as
well as limiting the maximum or minimum holding of any stock in the portfolio and
the use of virtually any measure of tracking error.

Meade and Salkin (1989) investigate tracking an index by constructing a portfolio



that matches the sector-weightings of the index. They also consider using the relative
market capitalizations of the stocks in the index as the relative holdings in the tracking
portfolio. However, restriction on the total number of stocks in the portfolio is not
considered.

Mathematically, a tracking error minimization problem subject to a cardinality
constraint can be formulated as computing the global minimizer of an objective func-
tion involving a measure of tracking error and a discontinuous counting function
S A(xi), where A(z;) equals 1 if «; # 0 and 0 otherwise. In addition, simple
constraints (typically linear) may exist. The tracking error minimization problem
is difficult to solve since there is an exponential number of local minimizers, with
each one corresponding to an optimal tracking portfolio from a fixed subset of stocks.
Jansen and Dijk (2002) present the idea of solving the index tracking problem by
approximating the discontinuous counting function A(z) by a sequence of continu-
ous but not continuously differentiable functions. To implement this idea they use a
penalty function approach and choose one approximation function from the sequence
to approximate the counting function.

In this case, however, the lack of differentiability of the selected approximation
to the counting function causes some difficulty. In particular, the first and second
derivatives of the objective function are not well-behaved when one or more of the
holdings z; are close to zero. This is problematic because many of the stock hold-
ings are expected to approach zero when the desired total number of stocks, K, is
small. In particular, under reasonable assumptions (see Appendix C for details) the
reduced Hessian matrix can be arbitrarily ill-conditioned at or near solutions to the
cardinality-constrained index tracking problem. This method is described in detail in
section §4 in which computational results are presented.

In this paper, we propose to solve the tracking error minimization problem sub-
ject to a cardinality constraint by approximating the discontinuous function A(z;)
by a sequence of continuously differentiable non-convex piecewise quadratic functions
which approach A(z;) in the limit. To further describe this approach, consider the
convex tracking error function for example. The proposed method begins by solving
a convex programming problem without the cardinality constraint and computes its
global minimizer. Then, from this minimizer, a sequence of local minima of approxi-
mations to the tracking error minimization problem is tracked, using the minimizer of
the previous approximation problem as a starting point. In each successive approxi-
mation to the tracking error minimization problem, additional negative curvature is
introduced to the objective function through the approximation to the counting func-
tion. Our proposed method is an adaptation of the known graduated non-convexity
method for tracking the global minimum for the image reconstruction problem [Blake
and Zisserman (1987)]. We also note that it is established in Henniger (2005) that
the proposed graduated non-convexity method is guaranteed to achieve the global
minimum in some special cases.



2 Tracking Error Minimization

Let x; represent the percentage weight of asset ¢ in the portfolio . A tracking error
minimization problem subject to a constraint on the total number of assets can be
formulated as a constrained discontinuous optimization problem,

iél&enn TE(x)

subject to Y A(z;) < K (1)
i=1

Zl’,’:l
=1
x>0

where A(x;) = 1 if @; # 0 and A(x;) = 0 otherwise. Here we discuss the problem
in terms of the percentage holding z, noting that the formulation in terms of the
actual units, y, is similar. The function TE(x) measures the tracking error and
the cardinality constraint, >ir | A(z;) < K, can be interpreted as enforcing an upper
bound on the administration costs (modeled as a linear function of the total number of
stocks with a possible holding). Solving this problem is NP-hard and, not surprisingly,
all of the existing methods for the tracking error minimization problem subject to a
cardinality constraint are heuristic in nature.

To further develop the index tracking problem mathematically, let y; be the num-
ber of units of asset 7 in the portfolio y. To simplify notation, we will describe some
measures of tracking error as functions of x and others as functions of y. We note
that the relationship between x and y at time ¢ is

Sityi
YT STy 2)

where S;; is the price of stock 7 at time ¢t and 5; is the vector of time ¢ stock prices.

There are a few different ways of measuring tracking error. Beasley, Meade and
Chang (1999) measure the tracking error based on historical stock and index prices
as follows:

TEavc(e) 2 1 (o) - 2 (3

t=1

where T is total number of periods, R; = In (Itlil) is the return of the index at the
period [t — 1,1],

T
re(x) defn (Ss;f iyy)
t—

and S; € R", I; are the stock prices and index price at ¢ respectively. Note that the
tracking error function TEgpmc(y) is not convex. For our computational results and

for the results presented from Beasley et al (1999), p = 2 is used.
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A similar measure of tracking error, denoted here by TEgm(y), is used by Salkin
and Meade (1989); it is obtained by setting R; = % as the return of the index
during the period [t — 1,¢] and

def StTy — StT—ly
r(x) = T, y
t—1

The tracking error functions used by Beasley et al (1999) and Salkin and Meade
(1989) explicitly penalize any deviation of each period return (daily, weekly, etc) of
a tracking portfolio from the return on the index. Furthermore, deviations in each
time period (each day or week) are counted equally towards the total tracking error,
and these measures are sensitive to the choice of time period. For example, assume
that there is a total of two weeks, the tracking portfolio underperforms the index
by 1% during the first week, and it outperforms the index by 1% in the next week.
Then the two-week return on the tracking portfolio and the index are quite similar,
but both TEgmc(y) and TEgum(y) (with one week per period) can be large. If the
time period were doubled, to two weeks, then the two errors would offset each other
and TEpmc(y) and TEgum(y) would be smaller than that corresponding to one week
per period. In this respect, both TEgme(y) and TEgy(y) depend on the time period
selected for calculating returns.

Another frequently used definition of tracking error measures the active risk of a
portfolio based on the covariance matrix of the stock returns [Beckers (1998)]; this
definition is used in Jansen and Dijk (2002) and we denote it by

TEjp(z) ¥ (2 — w)TQ(x — w) (4)

where w denotes the stock weights for the index and ) is the covariance matrix of
the stock returns. Here, as before, x; represents the percentage weight of asset ¢ in
the portfolio = and w; is similarly defined as the percentage weight of asset ¢ in the
index portfolio. Note that the function TE;jp(x) is convex and is mathematically
more appealing. This active risk is a direct function of the extent to which stocks
are weighted differently to their weights in the index. This measure of tracking error
has a convenient financial interpretation if the covariance matrix @) is assumed to be
accurate for that of future returns. In this case, if the tracking error (TEJD(x))1/2 =
1%, then you can expect the return on your tracking portfolio to be within £1% of
the return on the index about 67% of the time in one observation period, and to be
within £2% about 95% of the time, assuming the excessive return has a standard
normal distribution.

3 Tracking Error Minimization Via Graduated Non-
Convexity

Standard optimization software does not apply to the index tracking problem (1)
directly since the cardinality constraint function is discontinuous. One possible way of
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overcoming this difficulty is to consider a sequence of approximations which approach
the tracking error minimization problem in the limit. How well this type of method
works depends on what the sequence of approximations is and how the sequence of
approximations approaches the original tracking error minimization problem.

For simplicity, one may consider, see Jansen and Dijk (2002) for example, an
equivalent form of the tracking error minimization problem for (1):

min (TE(x) +p 2:; A(xi))

zERM

subject to Z:L', =1 (5)

where ¢ > 0 is a penalty parameter. Here TE(x) is a smooth function which measures
the tracking error for a general portfolio benchmarking problem. By varying p > 0,
solutions of (5) yield optimal tracking portfolios of different number of assets.

To handle the discontinuity introduced by the counting function A(x;), Jansen
and Dijk (2002) approximate A(x;) by a¥, where p > 0 is small, e.g., p = 0.5 is used

in their paper. Thus the following problem is solved

3

min (TEJD(:L') + fo)
=1

M- 4

subject to r; =1 (6)

1
> 0

<.
Il

=

The motivation behind this method is that a? converges to A(z;) as p converges to
zero. As mentioned before, one of the difficulties of this approach is that, when p < 1,
the objective function is not everywhere differentiable and standard optimization
software is not guaranteed to yield a minimizer of the problem (6); this is illustrated
in §4 in which computational results are presented.

We attempt to track the portfolio of the globally minimal tracking error by first
computing the minimizer of the tracking error function without the cardinality con-
straint, i.e., a solution to the continuous optimization problem

91;2%%1% TE(x)

subject to Z:L', =1
=1
x>0

Note that if the tracking error function is continuously differentiable and convex, e.g.,
TE(z) = TE;p(x), a global minimizer can be computed from standard optimization
software. Starting from this minimizer, a sequence of approximations {Px}r=12,.. to
the tracking error minimization problem (1) is solved by approximating the counting
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function A(x;) with continuously differentiable piecewise quadratic functions with
graduated non-convexity; the solution of the approximation problem Py_; is used as
the staring point for the approximation problem P;. The main idea is that, non-
convexity introduced by each counting function A(x;) is locally centered around = =
x;. One thus uses the minimization problem which minimizes the tracking error
globally (especially if the tracking error function is convex) without non-convexity
from cardinality consideration and gradually introduces non-convexity for cardinality
consideration to guide the solution searching process.

Next, we motivate and describe, in greater details, our proposed method; we show
the connection of the proposed method to the graduated non-convexity technique
used in image reconstruction [Blake and Zisserman (1987)] in appendix B.

To motivate our approximations {Pj}ir=12,. to the tracking error problem (1),
let us first approximate the discontinuous counting function A(z) by the following
continuous function hy(z)

2 1
ha(z) :{ i‘z if || < \/g’

otherwise.

where A > 0 is a large constant (which is set to 10® in our computations). The function
ha(z) is illustrated in Figure 1; it is used in image segmentation to approximate
counting the number of edges in an image.

0 I I I I I I
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
z

Figure 1: Function hy(z): A =100

Now problem (1) can be formulated as a continuous but non-differentiable math-
ematical programming problem.

zERM

min (TE(x) +p XZ; hx(l‘z))

6



subject to Z:L', =1 (7)
=1
x>0

In appendix A, we illustrate how this formulation can be derived from a penalty
function formulation and a line elimination technique similar to that used in image
reconstruction [Blake and Zisserman (1987)].

The above minimization problem (7) is not everywhere differentiable and it has
many local minimizers. We consider the following graduated non-convexity method
to attempt to track the global minimizier of (7), based on a similar method used in
image segmentation [Blake and Zisserman (1987)].

We approximate the nondifferentiable function hy(z) by the continuously differ-
entiable function gx(z;p) below:

Az? if 2] <¢q
a(zp) = 1=5(z| =r)? ifg< |zl <r
1 otherwise

B 2_|_1 1
"= p A =\

Here p > 0 is a parameter. Note that, for any p > 0, r > % Thus ¢ < % < r. Note

that the function ga(z;p) is symmetric with respect to z and it can be verified that
ga(z; p) has the following properties when taking left limit and right limit:

lim gi(23p) = lim gi(z;p) =1

z—rt

lim ¢(2;p) = lim gy(z;p) =0
zZ=rT

z—rt
P

+p
2
T

lim gx(21p) = lim gx(z;p) = 53

z—qt

lim g} (z;p) = lim gy(z:p) =
z—rq z—rq
Thus g(z; p) is indeed continuously differentiable.

The function g(z;p) is a piecewise quadratic with a concave quadratic piece for
z € (q,r). Let {pr} be a given monotonically increasing sequence which converges
to +00. As pg increases, the curvature of the quadratic function defining gx(z;p)
for z € [qk, k] becomes more negative, introducing a graduated nonconvexity. In
addition, as pr — 400, 1k, gk converge to \/g and the functions gx(z, px) approach
ha(z). Figure 2 illustrates how the sequence of approximations gi(z;p) approaches
the function hy(z) as p increases.

Substituting ga(z;p) for ha(z) in (7), the following sequence {Py} of approxima-
tions to the tracking error minimization problem arises:

min (gnck(x) TE(x) 4 13 ga(as ,ok))

n
z€R =1
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Figure 2: Graduated Non-convexity Approximations

subject to Z:L', =1 (8)
=1
x>0

To appreciate why this is a reasonable process to track the global minimizer of
the tracking error minimization problem subject to a cardinality constraint, consider
a convex tracking error function and suppose that there are no other constraints for
simplicity. For a sufficiently small p > 0, the objective function gnc,(x) of (8) remains
convex, where

gucy(e) = TE(x) + 1) oa(ii pr) (9)

i=1

Thus, for a small pg, the solution to Pk (8) is the unique global minimizer. For
sufficiently small p, Approximations gncy(x), can be regarded as multi-dimensional
convex envelopes of the objective function of (5) with respect to all asset subsets,
see Fig. 3. We start with minimizing the tracking error function; each subsequent
approximation introduces increasingly more negative curvature to the objective func-
tion gney(z) through ga(x;pr). The negative curvature interacts with the positive
curvature of the tracking error function to ensure that optimal tracking portfolios of
subsets of stocks are reachable via minimizing gnc, (). The minimizer of gne,_(x)
is then used as a starting point to compute a minimizer for the subsequent approx-
imation gncg(x). As py converges to 400, the approximate problems approach the
tracking error minimization problem (7).

Fig. 3 illustrates this process for a one-dimensional function TE(x) = %(:1; +2)%
Without loss of generality, this process is depicted without constraints. In the top-left
subplot of Figure 3 we see the original non-convex function TE(x) 4+ phy(x), a convex
approximation (corresponding to pr = 0.001), and its minimizer. Increasing p to 1
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we see the next approximation (in this example, still convex) to the original function
in the top-right subplot. With the minimizer of the first approximation function
as a starting point, the minimizer of the new approximation, which is very close to
the global minimizer, is computed. In the bottom two subplots (pr = 10 and 1000
respectively ) we see how the approximating functions gne,(x) approach the original
function as pj increases. From this illustration we see that the proposed process
first considers large-scale features of the original function and gradually focuses in on
features of a smaller scale.

P = 0.001 Py = 1
8 — 8 —
— original — original
— gan _ gnck
sl gnc, minimizer 6l gnc, minimizer /]
/
/
4 71 4 /
7
- /
./ T ~ e~ /
21> s g 2 T
~ N P P
0 — = o
-4 -3 -2 -1 o 1 -4 -3 -2 -1 (0] 1
Py = 10 Py = 1000
8 — 8 —
—— original —— original
gnc, —. gnc,
6l gnc, minimizer /7 el gnc, minimizer
/ f
4 \/ / | 4 \—/
N /
M
2 v 2
(0] (0]
-4 -3 -2 -1 o 1 -4 -3 -2 -1 (0] 1

Figure 3: Tracking the Global Minimizer: Graduated Non-convexity Approximations

The proposed graduated non-convexity process starts with minimizing the track-
ing error without any limit on the total number of instruments, i.e.,

min TE(x)

subject to > ;=1 (10)
=1
x>0

When the tracking error function is convex, e.g., TE;p, problem (10) is a convex pro-
gramming problem and a global minimizer can be computed. Under the assumption
of convexity, if the minimizer «* of (10) satisfies the condition Y- A(z]) < K, then our
proposed method is guaranteed to yield z* as the solution, since our algorithm then



terminates after Step 0 and yields the global minimizer of the tracking error function
which also satisfies the cardinality constraint.

We have so far described the proposed graduated non-convexity method with
respect to the tracking error minimization formulation (5), in which the size of the
optimal tracking portfolio is chosen by varying the parameter . Typically a portfolio
manager explicitly wants to obtain a tracking portfolio with an upper bound K on
the number of stocks. Using the formulation (5), it is necessary to experiment with
different values of p in order to generate a tracking portfolio of the desired number
of stocks. To compute a tracking portfolio of the desired size directly, we consider
the following exact penalty formulation of the tracking problem (1) with 37", hx(z;)

replacing >% | A, (),

=1

min (TE(x) +u max(zn: ha(ai) — K, 0))

zERT?

subject to ;=1 (11)
=1

o~

> 0

=

where p is an exact penalty parameter corresponding to the cardinality constraint.
For a sufficiently large p, e.g., ¢ = 100 in all our subsequent computations, the
minimizer of Tracking error minimization formulation (11) yields a tracking portfolio
of no more than K stocks.

The graduated non-convexity approximation problem Py can similarly be gener-
ated:

zERT?

=1

min (TE(x) + Mmax(zn: oz o) — K, 0))

subject to ;=1 (12)
=1

o~

>0

=

Intuitively, when Y"1, ga(2;; pr) > K, decreasing the objective function of (12) leads
to the decrease of the objective function gncy(x) of (8). Moreover, for initial ap-
proximate problems Py with small pg, >0, ga(i;pr) < K. As more negative cur-
vature is gradually introduced into the objective function by g(x;px), the function
TE(x) + >0, gx(@i; pr) is gradually decreased as described above to track the global
minimizer. The graduated non-convexity process is terminated when, for all ¢, either
(2;)r < q (the ith stock is not in the tracking portfolio) or (;)x > r (the ith stock is
in the tracking portfolio). This computational procedure is described in Fig. 4.

It may seem, from the description in Fig. 4, the proposed graduated non-convexity
method requires solving an excessive number of approximation problems Py. This is,
in fact, not the case. Firstly, we note that, for many updates of parameter pj, the
minimizer of the problem Pj_; remains the minimizer of Py. Secondly, the minimizer
of Pr_1 1s a good starting point of Pj even when it is not a minimizer for Py; thus a
small number of iterations are typically required to reach the minimizer of Py.
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Algorithm. Let A > 0 be a large constant and {pi} be a
monotonically increasing sequence which converges to +oo.

Step 0 Compute a minimizer to the tracking error minimiza-
tion problem (10) without cardinality constraint. Let

k=1

Step 1 Compute a solution to (12), the problem Py, using the
solution of the approximation at Pr_; as a starting point

Step 2 If, for all ¢, either (@;)r < qr or (;)r > 7k, terminate.
Otherwise, k < k + 1 and go to Step 1.

Figure 4: A Graduated Non-Convexity Method for Index Tracking Problem

4 Computational Results

To illustrate, we present numerical results using several publicly available historical
data sets for equity index tracking. We compare the quality of the solutions produced
by the proposed graduated non-convexity method to those of the exact optimal so-
lutions (computed via brute force) when K is very small. We also compare the
graduated non-convexity method to the population heuristic method from Beasley,
Meade and Chang (1999) and the method from Jansen and Dijk (2002), which uses
a continuous but not differentiable function to approximate the counting function
iy Aai).

To test the proposed graduated non-convexity (GNC) algorithm described in Fig.
4, we use the data sets made publicly available by Beasley, Meade and Chang (1999).
These data sets consist of weekly price observations on stocks in five indices from
different world markets during the period of March 1992 to September 1997. Both
stock price data and index price data are included in the data sets for the market
indices Hang Seng, DAX 100, FTSE 100, S&P 100, and Nikkei 225. In each case,
stocks were dropped from the data set if they were not present during the entire
period of observation. Table 1 describes the data sets where the number of stocks, n,
and the number of weeks of data, m, are given for each set of historical price data.

First, we present computational results using the quadratic tracking error function
TEjp(z). Since index weights are not given in the data sets, we artificially generate
the index from equally weighting the stocks, i.e., w; = 1/n, 1 <i <n.

Table 2 presents (annualized) optimal quadratic tracking errors (TEJD(J}))% ob-
tained using the graduated non-convexity method (GNC) with K" = 25. The annu-
alized tracking errors are given for two different GNC solutions corresponding to two
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Table 1: Data Sets

Data set n m
Hang Seng | 31 | 291
DAX 100 85 | 291
FTSE 100 | 89 | 291
S&P 100 98 | 291
Nikkei 225 | 225 | 291

The second column n lists the total number of assets and the third
column m lists the total number of weekly returns for each index in
the data set

different sequences {pi} that define the optimization subproblems. In particular the
p update rules pri1 = 1.2p; and pry1 = 2py are compared. Because the GNC method
solves a different sequence of subproblems in each case, the solutions achieved from
these two rules are different. In Table 2 we also give the number N of optimization
subproblems which are solved for each data set and each update rule. In most cases,
we observe that the pri1 = 1.2p update rule (which imposes the cardinality con-
sideration "more gradually”) typically yields a solution with slightly smaller tracking
error. However, in two cases we see that the "less gradual” update rule pry1 = 2pg
gives a slightly better tracking portfolio. This illustrates a sensitivity of the quality
of the solution on the updating rule for the parameter p. This is not surprising since
there are many local minimizers corresponding to tracking portfolios with different
stocks, and they can achieve similar tracking errors. Theoretically one would like to
update py as gradually as possible; but this needs to be balanced with the computa-
tional time that can be afforded. The update rule pp1; = 1.2p; seems to work best
for a range of K and different measures of tracking error and the GNC results in this
paper, except for the results in Table 2, all use this rule.

For both rules in Table 2 we see that, using no more than 25 stocks, a annualized
tracking error of approximately 2% is obtained for all the data sets except Hang Seng
(for which a smaller tracking error of 1.27% is achieved). As mentioned before, we can
interpret the results as the standard deviation of the difference between the return
on the tracking portfolio and the return on the index. For example, consider the
computed 25 stock tracking portfolio on the 225 stock Nikkei index and let R; denote
the annual percent return of the index. Then we expect the tracking portfolio to have
annual return Ry + 2% about 67 percent of the time.

Although the graduated non-convexity method gives solution portfolios with rea-
sonably small tracking errors, we would like to assess how close the tracking error
of the portfolio computed by GNC is to the global minimum of the cardinality con-
strained tracking error minimization problem. However, a brute-force computation
of the optimal solution for K = 25 using the S&P 100 data set, for example, would
require solving over 1.3 x 10%* (small) optimization sub-problems. While this is im-
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Table 2: Annualized Optimal Tracking Errors Using GNC with K = 25

Data set n | prrr =120 | N | pryr =2p | N
Hang Seng | 31 0127 71 .0140 19
DAX 100 85 0225 71 0251 19
FTSE 100 | 89 0210 71 0205 19
S&P 100 98 0219 71 0233 19
Nikke1 225 | 225 .0206 72 .0198 20

The second column n lists the total number of assets in an index. The
third column presents the annualized optimal tracking errors using
GNC with 25 assets and the updating rule pgx11 = 1.2pg. The fifth
column corresponds to the updating rule pri1 = 2pg in GNC. The
fourth and sixth columns list the total number N of optimization
subproblems solved for each case.

practical, we can compare the results of our GNC algorithm to the optimal solution
for very small K. Table 3 compares, for K = 3, the tracking error achieved by GNC
with the global minimum tracking error computed by a brute-force method. It can be
observed that the GNC method produces nearly optimal tracking portfolio for these
tests: the accuracy of the tracking error achieved by the GNC method, compared
with the global minimum tracking error, ranges from 86% to 95%.

In the rest of this section, we compare the graduated non-convexity method with
the method used by Jansen and Dijk (2002) and the method used by Beasley, Meade
and Chang (1999).

The method proposed by Jansen and Dijk (2002) is similar to our proposed GNC
algorithm in that both methods attempt to solve the index tracking problem by ap-
proximating the discontinuous counting function by continuous functions. However,
the two methods are fundamentally different. Jansen and Dijk (2002) approximate the
discontinuous counting function using a non-differentiable function while we approx-
imate the counting function by a continuously differentiable function. In addition,
the proposed GNC method includes a graduated non-convexity process of solving a
sequence of continuously differentiable optimization problems (which can be solved
using a constrained minimization approach or a penalty function approach) to track
the global minimizer.

Jansen and Dijk (2002) first solve the following minimization problem for a fixed
small p (p = 0.5 is used),

min (TEJD(:L') —I-/,szf)
=1

zER?
subject to > ;=1 (13)
=1
x>0
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Table 3: Comparing Tracking Errors using GNC with the Global Minimum Tracking
Errors

K=3
Data set n | GNC (TEJD)1/2 optimal (TEJD)1/2
Hang Seng | 31 .0961 .0869
DAX 100 85 .0850 0732
FTSE 100 | 89 .0924 0825
S&P 100 98 .0891 .0854
Nikkei 225 | 225 .0881 .0810

The third column lists the tracking error measured by (TEJD)l/2
achieved using GNC. The fourth column lists the global tracking

error (TEJD)I/2 using brute force.

From a computed solution to (13), a set [ = {i : x; > €} is identified for some small
threshold value € and a smaller quadratic tracking portfolio programming problem is
solved with the z; fixed at zero for i ¢ I, i.e.,

min TEp(x)

subject to Z:L', =1
i=1

Vid I,z; =0 (14)
x>0

One of the difficulties due to the use of the function z? to approximate the count-
ing function A(z) is that z? is not differentiable when z = 0 and p < 1. If a standard
optimization method for a continuously differentiable optimization problem is used to
solve (13), convergence is not guaranteed. In addition, solving (13) presents numerical
difficulties, especially for larger values of p which typically are required for tracking
portfolios with small number of assets. In particular, the reduced Hessian matrix can
be arbitrarily ill-conditioned near a solution to (13). Larger values of p exacerbate
this problem by magnifying the ill conditioning from the function #¥. A more detailed
discussion of this ill-conditioning is given in the appendix. The lack of a theoretical
convergence property and ill-conditioning issues means that the computational soft-
ware may yield non-minimizers and, depending on the starting point, optimization
software can terminate at different applroximations. For example, with ¢ = 0.005, the

annualized tracking error (TEJD(J}))E ranges from 0.0228 with 28 stocks to 0.0274
with 23 stocks when 10 different starting points, randomly perturbed from the index
portfolio, are used to solve for 10 solutions (8 were distinct). Perturbations of about
20 percent were randomly chosen to generate the 10 starting portfolios.

In spite of the numerical difficulties in Jansen and Dijk’s method, Table 4 compares
the average tracking errors from the Jansen and Dijk (2002) method (using different
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Table 4: Comparison of Annualized Tracking Error: average from (13) vs. GNC

7 Avg. # of assets | Avg (TEJD(x))1/2 GNC portfolio size | GNC (TEJD(x))1/2
.02 9.64 .0504 10 0437

.0105 15.08 .0373 15 .0344

.005 25.29 .0245 25 0218

The second and third columns list, for different values for parame-
ter p, the average (from ten random starting points) portfolio size
and average tracking error using the formulation (13). The last two
columns provide comparable portfolio sizes and the tracking error
achieved by GNC respectively.

starting points) for several different choices of p1 and the proposed GNC method on
the S&P 100 data set. For each pu, the reported tracking error and the number of
stocks for the Jansen and Dijk (2002) method are the averages of 15 solutions of (14)
using 15 different randomly generated initial portfolios and p = 0.5. For comparison,
for each p, the result from a single invocation of the GNC method with K closest to
the corresponding average portfolio size is reported in the right columuns.

From Table 4 we see that the results from the GNC method are 8 to 15 percent
better than the average results from the solutions of the method described in Jansen
and Dijk (2002). In our investigation we were unable to reliably use the Jansen and
Dijk method to solve the index tracking problem for a portfolio smaller than about
10 stocks (using the S&P data set). The GNC method, on the other hand, handles
small portfolio selection well (as in Table 3 where we use K = 3.)

Finally, we compare the proposed GNC algorithm to the population heuristic
algorithm in Beasley, Meade and Chang (1999). To do this, we use K’ = 10 and
we choose the tracking error measure TEgy () for the GNC computations. This is
slightly different from the tracking error TEgmc(2.) but we report the tracking error
measure TEgyc(2.) corresponding to our computed solution for comparison with the
results in Beasley et. al. (1999). In Table 5 we compare the GNC results described
above with the results from Beasley, Meade and Chang (1999) with transaction cost
limit 4 = 0.01. In contrast to results using quadratic tracking error, here actual index
price data, instead of the index weights, is used for these calculations. Because of
changes in the composition of the index over the period of observation and stocks
which were dropped from the data sets due to missing observations, there is no port-
folio with a tracking error of zero as measured by TEgyme. To give some idea of the
smallest possible tracking error, we include in Table 5 the approximate solution to
the tracking error problem with no cardinality constraint, which is computed in Step
0 of the algorithm in Fig. 4. Note that all solutions from Beasley, Meade and Chang
(1999) are 10-stock portfolios.

From the results in Table 5 we see that the GNC tracking error results are 11%
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Table 5: GNC Results and BMC [Beasley et. al (1999)] Results Using TEgmc(2)

Data set n | GNC unconstrained | GNC (k =10) | BMC (K = 10)
Hang Seng | 31 9.94 x 107° 2.37 x 1074 421 x 107
DAX 85 2.91 x 10~* 3.79 x 1074 4.28 x 1074
FTSE 89 6.31 x 107° 3.90 x 10~¢ 5.42 x 1074
S&P 98 4.21 x 107° 3.67 x 10~¢ 4.60 x 10~*
Nikkei 225 1.31 x 107° 3.53 x 10~* 4.59 x 10~

The third column provides the optimal tracking error achieved with-
out cardinality constraint. The fourth column lists the tracking error
achieved by GNC with K = 10 and the last column provides the
tracking error achieved by BMC with K = 10.

to 44% smaller than the BMC results. Of note, however, is that the BMC results
satisfy an additional constraint. Specifically, the BMC results satisfy a transaction
cost limit constraint which effectively permits turnover of only half of the value of the
initial position in 10 stocks. We did not impose this constraint on our method, which
lends our method an advantage in the results in Table 5; nonetheless comparison
to the optimal unconstrained tracking error (no cardinality constraint) suggests that
the GNC method produced reasonably good tracking portfolios. We also note that
TEgmc(x) is a non-convex function, so the GNC method we describe no longer starts
with a convex approximation (the tracking error is non-convex in this case). Instead,
we start with the non-convex function TEppmc(2) and move towards the (also non-
convex) function TEpmc(2) + X1, ha(x;). It is interesting to see that the GNC
method is successful in sequentially approximating the cardinality constraint even
when the tracking error function is not convex.

5 Concluding Remarks

The problem of tracking error minimization with a constraint on the total number of
assets in the tracking portfolio is an important problem for both passive as well as
dynamic fund managers. Finding the optimal tracking portfolio with a fixed number
of stocks K is an NP-hard problem and heuristic approaches are common ([Beasley,
Meade and Chang (1999)], [Jansen and Dijk (2002)]). We propose a graduated non-
convexity method by approximating the discontinuous counting functions using a se-
quence of continuously differentiable piecewise quadratic functions with increasingly
more negative curvature. When the tracking error is measured with a convex function,
this graduated non-convexity (GNC) method starts with the optimal tracking port-
folio without considering the cardinality constraint and gradually moves towards a
solution satisfying the constraint on the total number of assets. This is more appealing
from a theoretical perspective than a purely heuristic approach (as in [Beasley, Meade
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and Chang (1999)]) or solving a single approximation to the cardinality-constrained
problem (as in [Jansen and Dijk (2002)]).

In addition to being mathematically more appealing, we have illustrated that the
GNC method gives good computational results for the index tracking problem. When
compared with results from Jansen and Dijk (2002) the GNC method gives results
that are 8% to 15% better on average. For small K" where an optimal solution can be
found by exhaustion (Table 3), the GNC method solution is within 4 to 16 percent of
the optimal solution. In the case where the tracking error is a non-convex function, we
have seen that the GNC method is able to gradually impose the cardinality constraint
to arrive at a solution which is often better than the solution obtained by a heuristic

approach [Beasley, Meade and Chang (1999)].
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A Line Elimination

We now show that the approximation problem (7) to the original tracking error min-
imization problem (5) can be derived using a penalty function technique for the con-
straint and an integer variable elimination technique (similar to the line elimination
used in image segmentation [Blake and Zisserman (1987)]).

From the index tracking problem (5), we first introduce the equality constraint
z;(1 — ;) = 0 to handle the discontinuous function A(x;) and formulate the problem
(5) equivalently as a mixed integer programming problem

min (TE(x) +u an z,»)

xE%",liE{O,l} i=1

subject to  a;(1—10;)=0, i=1,---,n (15)
Zl‘,’ =1
=1
x > 0.

To handle the nonlinear constraint ;(1 — ;) = 0, we consider a quadratic penalty
function formulation of (15):

min (TE( )+ ¢ min (anl,»JrAanx?(l—li)))

c€RN 1;€{0,1}
subject to Z (16)

20

S i

where A > 0 is a large penalty parameter associated with the quadratic penalty
function for x,;(1 — ;) = 0. Note that 1 — [, > 0.

Similar to the line elimination technique in Blake and Zisserman (1987), we ex-
plicitly solve

min (Zl —I-)\Z:L' (11 )

1;€{0,1}

to eliminate the (line) integer variable /; and obtain

1;e{0,1}

where

h(z) = {)\Z 1f||<\/§

otherwise.

The line elimination idea and the function hy(z) are illustrated in Figure 5.
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Figure 5: Line Elimination

Thus the problem (16) is now formulated as a continuous but nondifferentiable
programming problem.

min ( +MZhA )

zER?
subject to Z (17)

20

S i

Note that we can regard hy(x) as an approximation to A(x) for a large A > 0.

B Connections to Image Analysis

The proposed GNC method for tracking error minimization subject to a constraint
on the total number of assets is similar to the GNC method for image reconstruction
[Blake and Zisserman (1987)] to generate an image which is faithful to the original
noisy image and has invariance properties such as optical blurring and noise. We
show here how the tracking error minimization problem is related to the image recon-
struction problem. To illustrate, we consider the quadratic tracking error and assume
that one can hold both long positions and short positions.

In Appendix A, we have shown that the tracking error minimization problem (15),
using a penalty approach, can be approximated by

min ((:z;—w)TQ(x—w +u min (Zz —I—)\Zx ))

reRN I;€{0,1}
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subject to Y ;=1 (18)
=1

for a positive definite matrix @) (so the problem is convex if the cardinality constraint
is removed), a vector of data w, and a subset I C {1,2,...,n}. For our tracking
error minimization problem, () is the covariance matrix, w represents the percent
composition of the index, K is the upper bound on the number of stocks in our
tracking portfolio, and I = {1,2,....,n}. We will show that this optimization problem
is a generalization of a problem arising naturally in the study of image analysis.
Particularly, this problem generalizes the problem of solving for the state of a weak
elastic string (as in [Blake and Zisserman (1987)]) which is related to the problem of
detecting edges in images.
Rename the two penalty parameters o and g to o and A in (18) to get

; _ T _ ; - . - 201 _ 7.
iél&enn ((:1; w) Qz —w) + zﬁ%ﬁ} (a; L+ )\ ; x; (1 l,)))
subject to doa=1 (19)

zERM

The weak elastic string problem can be formulated as follows. Consider the prob-
lem of finding a piecewise smooth function u(x) that best fits some data d(x). One
approach is to look for a solution u(x) that represents a weak elastic string. That is,
an elastic string (so there is a resistance to too much "bending”) that may have a
number of breaks (step discontinuities) in it. In computing a solution, breaks in the
string are penalized (otherwise, after discretizing the problem, you could simply take
u(x;) = d(x;), with a break at each node). The total energy of the weak elastic string
i1s modeled as the sum of three energy components, one component measuring the
faithfulness of u(x) to the data d(x), one component measuring the elastic energy of
the string (this component prohibits excessive bending), and a final component penal-
izing breaks in the string,. If the problem is discretized over a grid {uw; : i = 1,2,...,n}
then the energy function is

n n—1 n—1
Z(u, - d,)z + A Z(u,;H - u,)z(l - l,) + « Z l, (20)
i=1 i=1 i=1

with line variables [; € {0,1} such that there is a break in the string in the interval
[€i-1, 2] if [; = 1 and no break if [, = 0. Minimizing the energy function (20) yields
a solution to the edge detection problem in one-dimensional image analysis where
discontinuities in the solution u correspond to edges in an image. We wish to show
that this problem fits into the more general framework of tracking error minimization
problem (18).

Consider the tracking error minimization problem (19): introduce change of vari-
ables x; = w41 —u; for e =1,2,...,n — 1 and 2z, = —u,. The equality 3" x; =1
becomes u; = —1. Hence the tracking error minimization problem (19) becomes the
unconstrained minimization problem
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min ((:1; —w)"Q(z — w) + min (asz,» + Anf(u,»ﬂ — )1 — z,»)) +au2(1— zn))

Le{oly \ 3 =1
(21)

Now consider the n x n upper triangular matrix V with every element on or above
the diagonal equal to —1. That is,

111 1 1
011 1 1

v=—]1001 11 (22)
000 0 1

V is clearly nonsingular, so let w solve Vw = d where d is the data vector in the weak
elastic string problem. Now, notice that V& = u. That is,

111 1 1 Uy — Up Uy
011 1 1 Uz — Us Ug
1001 1 1|« : = : (23)
S Up — Up_1 Up—1
0 00 0 1 —Up, Uy,

So with Q = VTV and w satisfying Vw = d, (21) becomes

ueR”

min ((u —d)(u—d) + min (a;l + Az(um —u) (1= 1) + (1 — zn))))(%)

which differs from (20) only by the addition of the term Au?(1 —1,,) and u; = 1.

In Blake and Zisserman (1987), it has been shown that, for the isolated discon-
tinuity image analysis problem, GNC solves the global minimization problem (20).
In Henniger (2005), it is established that this graduated non-convexity method is
guaranteed to achieve the global minimum in some special cases.

C Ill-conditioning in problem (13)

The method proposed in Jansen and Dijk (2002)is to solve the constrained optimiza-
tion problem

N
wp (£ -0l Qu—w i) 2

N i=
subject to Y ;=1 (26)
;; >0 (27)
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for a small value of p and a positive penalty parameter p (p = 0.5 is used in Jansen
and Dijk (2002) and in our implementation of their method, described above.) The
method is designed to give a solution where many of the variables x; are close to
zero, thus selecting a small tracking portfolio. When any z; is close to zero, however,
the gradient and Hessian of the objective function f(x) in (25) have elements of very
large magnitude. In particular

of

P 2Q] (v — w) + ppal™ (28)
where (); is column ¢ of the covariance matrix. So for p < 1, % — o0 as x; — 0.
Further,

0? _

0 = 2Qu + uplp— 1)t (29)

2 . o .
so for p < 1, % — —o0 as z; — 0. We now examine the condition number of the

reduced Hessian as elements of x approach to zero.

Let H be the Hessian of the objective function f(z) in (25) at some = > 0. Let
the set ) be the set of all ¢+ such that x; = 0, i.e., Q is the set of all variables at
which the constraint @ > 0 (27) is active. Write H for the matrix H with row and
column ¢ removed for all 7 € Q. Let H, = Z'HZ where Z is a matrix whose columns
form a basis for the null space of the linear constraint matrix (26) for the non-active
variables. Then H, is the reduced Hessian with respect to the constraints (26) and
(27). To simplify notation, set & = &, and re-number as 1, ..., n the remaining variables
in  (and the remaining rows and columns in H). Denote the condition number of a
matrix A as k(A) = || A||||A7|| where || A is the 1-norm of A.

With these definitions, if 0 < p < 1 and there exist integers j and k and real
€ > 0 such that x; > € and xx > € as some x; — 0 then x(H,) — oo. In other
words, as any solution is approached where one stock holding is becoming nearly zero
and at least two stock holdings are bounded away from zero the reduced Hessian
becomes increasingly ill-conditioned. Note that this is the situation that we expect
to encounter in a financially interesting solution to the tracking error minimization
problem.

It can be shown mathematically that x(H,) — oo under these conditions; we omit
the proof here for simplicity.
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