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Abstract Computing optimal stochastic portfolio execution strategies under an appropriate
risk consideration presents many computational challenges. Using Monte Carlo simulations,
we investigate an approach based on smoothing and parametric rules to minimize mean and
Conditional Value-at-Risk (CVaR) of the execution cost. The proposed approach reduces
computational complexity by smoothing the nondifferentiability arising from the simulation
discretization and by employing a parametric representation of a stochastic strategy. We fur-
ther handle constraints using a smoothed exact penalty function. Using the downside risk
as an example, we show that the proposed approach can be generalized to other risk mea-
sures. In addition, we computationally illustrate the effect of including risk on the stochastic
optimal execution strategy.

Keywords Optimal execution · Computational stochastic programming · Dynamic
programming · Penalty functions

1 Introduction

Institutional fund managers typically have large portfolios of hundreds of securities with
individual positions constituting significant portions of market daily volumes. To achieve
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investment performance objectives, they often need to rebalance portfolios in a short time
horizon. Such trading implementation results in permanent and temporary price impact,
potentially yielding unfavorable trading performance. Market impact and importance of the
execution strategy to adapt to market information can be seen in the Flash Crash incidence
in the US equity market on May 6, 2010 (Kirilenko et al. 2011).

Given a trading target and a trading horizon, the optimal portfolio execution problem
provides an execution strategy to trade within the trading horizon, typically to minimize a
weighted combination of the expected cost and risk in execution, see e.g., Almgren (2008).
Since trading takes time and the permanent price impact of a trade can affect the future
asset price, the optimal portfolio execution problem is fundamentally a stochastic dynamic
programming problem, see e.g., Pérold (1988) and Bertsimas and Lo (1998). In a single asset
case, Almgren and Lorenz (2007) provide an optimal adaptive strategy. Stochastic (adaptive)
trading strategies can explicitly recognize market price change during the trading horizon.
In addition it has been shown in Almgren and Lorenz (2007) that a significant improvement
over static strategies can be achieved through stochastic trading strategies.

When no risk is considered, analytical solutions have been found for the stochastic dy-
namic programming problem which minimizes the expected execution cost under several
price models, see e.g., Bertsimas and Lo (1998), Bertsimas et al. (1999) and Moazeni et al.
(2013). Under a specific additive market price model with a deterministic market impact
model and volatility, Huberman and Stanzl (2005) have obtained a closed-form solution for
minimizing the mean and variance of the execution cost.

In addition to the expected execution cost, one is often interested in controlling the risk
in execution, e.g., including minimizing variance of the execution cost as an objective. Un-
fortunately, under general price models, the mean-variance objective formulations for the
optimal portfolio execution problem are not amenable to stochastic dynamic programming
techniques; the dynamic programming equation may not exist. When this occurs, a time-
consistent dynamic solution cannot be determined using a stochastic dynamic programming
technique. Even when a dynamic programming equation exists, obtaining a closed-form
solution in general may not be possible, particularly when constraints are included.

In Moazeni et al. (2013), a model is proposed which explicitly characterizes uncertain
arrivals of other large trades by including jump processes to the market price dynamics. The
proposed jump diffusion model includes two compound Poisson processes, with random
jump amplitudes capturing uncertain permanent price impact of other large buy and sell
trades respectively. Since the execution cost distribution is now asymmetric and may have
fat tails, variance is no longer an appropriate risk measure. Alternative to variance, Value-at-
risk (VaR) is a standard benchmark for a firm-wide measure of risk (Duffie and Pan 1997).
For a given time horizon t̄ and confidence level β , the value-at-risk of a portfolio is the
loss in the portfolio’s market value over the time horizon t̄ that is exceeded with probability
1−β . However, as a risk measure, VaR has recognized limitations. For example it lacks sub-
additivity and convexity, see e.g., Artzner et al. (1997) and Artzner et al. (1999). The CVaR
risk measure, also known as the mean excess loss, mean shortfall or tail VaR, is an attractive
alternative to VaR. For a given time horizon t̄ and confidence level β , CVaR is the condi-
tional expectation of the loss above VaR for the time horizon t̄ and the confidence level β .
It has been shown that CVaR is a coherent risk measure and has many attractive properties
including convexity, see e.g., Artzner et al. (1999). In addition, minimizing CVaR typically
leads to a portfolio with a small VaR. The CVaR risk measure is widely used to measure
and manage risk in various industries, such as finance, see e.g., Pflug and Romisch (2007)
or Follmer and Schied (2011), electricity markets, see e.g., Yau et al. (2011) or Downward
et al. (2012), and supply chain management (Goh and Meng 2009). Some of these works
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adopt deterministic optimization approaches to deal with the modeled stochastic program-
ming problem, see e.g., Shapiro et al. (2009) for a review on these methods. Using CVaR for
the optimal portfolio execution problem seems appropriate as short term asset returns have
fat tails and trading impact leads to price jumps (Moazeni et al. 2013).

In Shapiro (2008), dynamic programming equation is applied to dynamically coherent
risk measures; however no computational result is provided. In general, when the objective
function includes a risk measure such as CVaR, numerical methods are required to compute
stochastic dynamic programming solutions. When a portfolio of risky assets are involved,
solving a multi-stage optimal portfolio execution problem is computationally challenging,
since computational complexity grows exponentially in the number of state variables. Thus
computing a stochastic dynamic programming solution is often computationally intractable
in practice; this is known as the curse of dimensionality. As discussed in Shapiro (2008),
while two stage linear stochastic programming problems can be solved with a reasonable
accuracy, computational complexity in solving multistage stochastic programming problems
grows quickly with the increase of the number of stages. Many approximation algorithms in
the literature have been considered to obtain approximations to stochastic programming so-
lutions, see e.g., de Farias and Roy (2003) and Powell (2011). Solving a multi-stage stochas-
tic programming problem is even more challenging when there are inequality constraints
(Haugh and Lo 2001).

The goal of this paper is to propose a tractable computational approach to obtain an
approximate stochastic dynamic programming solution for the optimal portfolio execution
problem when mean and some risk measure of the execution cost are minimized. To achieve
optimality at each time period k, a new stochastic strategy can be computed by considering
optimality conditional on the information set Fk at time k. In particular, our approach re-
lies on Monte Carlo simulations, where simulation price paths are generated by iid samples
for the random variables in the decision time horizon. Compared to the backward itera-
tion in the dynamic programming approach, methods based on forward simulation paths
have attractive features. While backward dynamic programming approaches to multi-stage
stochastic programming problems suffer the curse of dimensionality when applied to prob-
lems with high dimensional state spaces, the use of a forward simulation base approach for
multi-stage multi-asset stochastic optimization problem does not incur exponential growth in
computational complexity. Simulation based approximation solution approaches have been
previously applied successfully in Longstaff and Schwartz (2001) to solve a stochastic dy-
namic programming for pricing an American option. Coleman et al. (2007) also use a similar
method for the total risk minimization with a quadratic objective. In this case, they observe
that this approach is capable of achieving relatively good accuracy comparing to the ana-
lytic solution. In Coleman et al. (2007), decision variables are approximated using cubic
splines.

There are, however, additional computational challenges in solving the multi-stage multi-
asset optimal portfolio execution problem based on simulations. Firstly, if a strategy is al-
lowed to be an arbitrarily path dependent, the number of variables in the simulation opti-
mization problem is proportional to the number of scenarios which is very large in general.
Furthermore, unlike the single period simulation CVaR optimization problem, the multi-
period simulation optimal portfolio execution problem is piecewise nonlinear rather than
piecewise linear due to the presence of permanent market impact. This can be problematic
since solving a general nonlinear programming problem is more difficult than solving a lin-
ear programming problem. Moreover, if constraints, e.g., bound constraints, are imposed,
the number of corresponding constraints in the simulation optimization problem also be-
comes proportional to the number of simulations.
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In this paper, we propose techniques to overcome these computational challenges for
the simulation approach to multi-stage CVaR execution cost minimization. To reduce the
number of variables, we first represent execution strategies using a parametric model with
unknown parameters. Different parametric forms can be used. In this paper, we assume that
an execution strategy depends linearly on the price and the trading accomplished thus far;
this parametric form is motivated by the analytic formula for the minimum mean execu-
tion strategy derived in Moazeni et al. (2013). To alleviate the piecewise nonlinearity in the
objective function arising from the simulation discretization to the CVaR measure, we ap-
ply the smoothing technique proposed in Alexander et al. (2006) for a single period CVaR
optimization problem. The motivation behind the smoothing is the same as in the single
period case: the piecewise nature in the simulation CVaR optimization problem arises from
simulation discretization but the CVaR risk measure in the continuous model is in fact con-
tinuously differentiable. To handle constraints, we first apply the exact penalty function and
then use smoothing to alleviate the piecewise nature of the exact penalty function. Indeed,
our proposed smoothing method of the exact penalty function corresponds to applying a
new penalty function which is piecewise quadratic but continuously differentiable. The new
penalty function can be regarded as a combination of the quadratic and exact penalty func-
tions.

Using the proposed parametric representation and smoothing method, we obtain a static
nonlinear optimization problem with a potentially nonlinear objective function. We then
use the trust region algorithm in Coleman and Li (1996) to solve this problem. The first
and second derivatives of the objective function are computed using automatic differenti-
ation, see e.g., Coleman and Verma (2000). We further note that our proposed computa-
tional approach is quite general and it can be applied to alternative risk measures other than
CVaR.

The presentation is organized as follows. In Sect. 2, we present the mathematical for-
mulation for the optimal portfolio execution problem. Our smoothing and parametric rules
are explained in Sect. 3. In Sect. 3.3, we describe handling constraints using a smoothed
exact penalty function. Our computational investigation is provided in Sect. 4. Concluding
remarks are given in Sect. 5.

2 The optimal portfolio execution problem

We now present a mathematical formulation for the optimal portfolio execution problem.
Without loss of generality, we assume that the decision maker wants to execute a sell order
in a given time horizon. Mathematical analysis is similar for a buy execution.

Assume that a decision maker plans to liquidate his holdings in m assets during N pe-

riods in the time horizon T . Let t0 = 0 < t1 < · · · < tN = T , where τ
def= tk − tk−1 = T

N

for k = 1,2, . . . ,N . The decision maker’s position at time tk is denoted by the m-vector
xk = (x1k, x2k, . . . , xmk)

T . Here xik is the decision maker’s holding in the ith asset at time tk .
We assume that the decision maker’s initial position is x0 = S̄ and final position is xN = 0,
which guarantees complete liquidation by time T . The amount of trading in the kth period
is given by the difference between positions at two consecutive times tk−1 and tk , denoted
by an m-vector nk , where

nk = xk−1 − xk, k = 1,2, . . . ,N. (1)

Negative nik implies that the ith asset is bought between tk−1 and tk . We refer to a sequence
{nk}N

k=1 satisfying
∑N

k=1 nk = S̄ as an execution strategy.
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Let the m-vector Pk denote the unit market asset prices at time tk . The deterministic
initial market price, before the trade begins, is denoted by P0. Assume that the permanent
price impact of the decision maker’s trade is a deterministic function g(·) of the trading
rate:

Pk = Φ(Pk−1, ξk) − τg

(
nk

τ

)

, k = 1,2, . . . ,N − 1. (2)

The random variable Φ(Pk−1, ξk) denotes the stochastic model for the market price at time
tk when the decision maker does not trade in (tk−1, tk], e.g., Φ(Pk−1, ξk) = Pk−1 + Σξk with
the covariance matrix ΣΣT and ξk a multi-variate standard normal random variable, e.g.,
see Almgren and Chriss (2000/2001). Random price Φ(Pk−1, ξk) at time tk can also be spec-
ified by other models, e.g., it can correspond to a jump diffusion model (Merton 1976) or a
stochastic volatility model (Heston 1993). In Moazeni et al. (2013), we use a jump-diffusion
model with two compound Poisson processes to represent the uncertain price impact from
uncertain arrivals of other large buy and sell trades. Under this model assumption, the exe-
cution cost distribution is asymmetric and may have fat tails. Under such a model, using the
CVaR risk measure is more appropriate in the optimal portfolio execution problem formu-
lation.

The decision maker’s trade nk induces a temporary price impact on the execution price
at period k. Similar to Almgren and Chriss (2000/2001), we assume here that the expected
temporary price impact only depends on the trading rate; this temporary impact is repre-
sented by the function h(·). Hence, the m-vector unit execution price P̃k at time tk is given
by

P̃k = Pk−1 − h

(
nk

τ

)

, k = 1,2, . . . ,N. (3)

The total amount received by the decision maker at the end of the time horizon by executing
the strategy {nk}N

k=1 is
∑N

k=1 nT
k P̃k . This random value depends on the specifications of the

market price dynamics (2) and the execution price model (3). The difference between this
quantity and the value of an ideal benchmark trade is the execution cost (Almgren 2008).
The benchmark is commonly taken as the portfolio value at the initial price P0. Hence, the
execution cost associated with the execution strategy {nk}N

k=1 is defined as

X = P T
0 S̄ −

N∑

k=1

nT
k P̃k.

The optimal portfolio execution problem yields an execution strategy which minimizes the
expected value and a risk measure in the execution cost.

Since trading takes time and the permanent price impact affects the future market price,
optimal portfolio execution problem is a multi-stage stochastic programming problem. The
solution to this multi-stage stochastic programming problem can potentially yield a solution
which adapts to market price and the impact of other large trades.

While the main objective of the decision maker is to minimize the expected execution
cost, he may be concerned with the execution risk, i.e., the uncertainty in the total amount
that will be received from the trade implementation. When execution risk is considered, the
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stochastic programming formulation for the optimal portfolio execution problem is:

min
n1,...,nN

nk :Fk−measurable, k=1,...,N

E

(

P T
0 S̄ −

N∑

k=1

nT
k P̃k

)

+ μ · Ψ
(

P T
0 S̄ −

N∑

k=1

nT
k P̃k

)

subject to
N∑

k=1

nk = S̄,

(4)

where Ψ (·) is a risk measure for the execution cost and μ ≥ 0 is a risk aversion parameter.
Here Fk denotes the information set observable at time tk .

Stochastic dynamic programming has been previously used to minimize the expected
execution cost when the market price evolves according to a Brownian motion, and the per-
manent price impact of the decision maker’s trade makes a discrete price change, see e.g.,
Bertsimas and Lo (1998) and Bertsimas et al. (1999). However, when a risk measure such
as variance or CVaR is included in problem (4) with a positive risk aversion parameter, the
multi-stage stochastic programming problem becomes significantly more complex. More-
over, when a dynamic programming equation cannot be found, a solution {nk}N

k=1 of the
stochastic programming problem (4), computed at the initial time t0, does not necessarily
have the time consistency property. More precisely, nk from problem (4) is not optimal at
time tk , i.e., it may not solve the following problem:

min
nk ,...,nN

nj :Fj −measurable, j=k,...,N

E

(

P T
0 S̄ −

N∑

i=1

nT
i P̃i

∣
∣
∣
∣ Fk

)

+ μ · Ψ
(

P T
0 S̄ −

N∑

i=1

nT
i P̃i

∣
∣
∣
∣ Fk,

)

subject to
N∑

k=1

nk = S̄.

(5)

Here it is assumed that n1, . . . , nk−1 are given.
Given that problems (4) and (5) yield different solutions at time tk , k ≥ 2, the decision

maker has two different ways to implement an execution strategy through the multi-stage
stochastic programming formulations. The first possibility is to compute the optimal strat-
egy {nk}N

k=1 at the initial time based only on problem (4). Then at time tk , the amount nk ,
computed from (4), is implemented even though it may not be optimal from tk perspective.
Alternatively, to ensure conditional optimality at time tk , the decision maker can ignore the
already computed strategy for tk from problem (4) and adopts the strategy for time tk by
solving a conditional stochastic programming problem (5) to determine trading amount for
this period.

No matter which method the decision maker adopts for execution, she needs to solve one
of the multi-stage stochastic programming problems (4) or (5). Computing solutions to these
problems is a daunting task. In the remaining part of the paper, we focus on developing a
tractable computational technique applicable to both problems, and we are not concerned
with whether the strategy at time tk should be computed from problem (4) or problem (5).
Since our proposed computational method can be applied to both problems (4) and (5),
without loss of generality, we present our proposed approach for problem (4).

Notice that problem (4) or (5) may have additional constraints, such as a no-buying re-
quirement while selling. In this case, even when a dynamic programming equation exists,
computational methods cannot easily handle constraints since the value function from the
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dynamic programming under constraints becomes nondifferentiable, see e.g., Bertsimas and
Lo (1998).

Different risk measures can be included in the objective function of problem (4). Typi-
cal choices of the risk measure Ψ (·) are variance, VaR, or CVaR. As discussed before, in
this paper, we focus on CVaR risk measure since we believe that the short horizon return
is far from a normal distribution and it is important to properly capture the tail risk. We
note however that our proposed computational approach is applicable to other risk measures
including variance and downside risk.

CVaR is frequently defined based on VaR. In the context of the optimal portfolio ex-
ecution problem, let X denote the execution cost in the given time horizon. For a given
confidence level β , VaR is the smallest cost over the time horizon that is exceeded with
probability no greater than 1 − β , i.e., VaRβ(X) = inf{x ∈ R : Pr(X ≤ x) ≥ β}, see e.g.,
Duffie and Pan (1997) and Alexander et al. (2006). Using VaR, CVaR can be defined as

CVaRβ(X) = E
(
X : X ≥ VaRβ(X)

)
.

Without referencing to VaR, a more direct way of defining CVaR is:

CVaRβ(X) = min
α

(

α + 1

1 − β
E

([X − α]+)
)

, (6)

where [z]+ = max(z,0), see, e.g., Rockafellar and Uryasev (2000). When the random cost
X has a strictly increasing and continuous probability distribution function, these two defini-
tions are equivalent. However the latter definition yields a coherent risk measure even when
the distribution is discontinuous. In addition, formulation (6) directly leads to linear or non-
linear programming formulations under simulation discretizations. It then can be solved by
available linear programming or nonlinear programming optimization techniques.

The mean-CVaR optimal portfolio execution problem with the risk aversion parameter
μ ≥ 0 is then given as below

min
n1,n2,...,nN

nk :Fk−measurable

E

(

P T
0 S̄ −

N∑

k=1

nT
k P̃k

)

+ μ · CVaRβ

(

P T
0 S̄ −

N∑

k=1

nT
k P̃k

)

subject to
N∑

k=1

nk = S̄.

(7)

Using CVaR definition (6), formulation (7) is reduced to the following problem:

min
α∈R,n1,n2,...,nN

nk :Fk−measurable

E

(

P T
0 S̄ −

N∑

k=1

nT
k P̃k

)

+ μα + μ

1 − β
E

([

P T
0 S̄ −

N∑

k=1

nT
k P̃k − α

]+)

,

subject to
N∑

k=1

nk = S̄.

(8)

Additional nk ≥ 0 constraints can also be incorporated in problem (8).
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We note that, when the objective of the optimal portfolio execution problem is to mini-
mize only the variance of the execution cost, i.e.,

min
n1,...,nN

Var

(

P T
0 S̄ −

N∑

k=1

nT
k P̃k

)

subject to
N∑

k=1

nk = S̄, (9)

the optimal execution strategy is the strategy of liquidating the entire holding in the first
period:

n1 = S̄, nk = 0, k ≥ 2. (10)

This can be easily seen since the variance of the execution cost associated with this strategy
equals zero. The CVaR of the execution cost associated with the execution strategy (10) is

CVaRβ

(

P T
0 S̄ −

N∑

k=1

nT
k P̃k

)

= 1

τ
S̄T h

(
S̄

τ

)

.

We note that the strategy (10) for minimizing the variance is in general not the strategy
for minimizing CVaR.

In the next section, we describe our proposed smoothing and parametric approach to
obtain an approximate solution of problem (8) efficiently.

3 The proposed smoothing and parametric approach

Since the CVaR risk measure does not have an analytic expression in general, Monte Carlo
(MC) simulation is typically applied to discretize the CVaR optimization problem. For the
optimal portfolio execution problem, the discretized problem is more complex since the
price path changes when the trading amount changes due to permanent price impact. Assume
that the market price dynamics in the kth time period is given by Φ(Pk−1, ξk) where ξk

is a random vector. We generate M random paths {ξ1, . . . , ξN−1} and these sample values
are fixed for simulation CVaR problems even when price paths change with the trading
amount {nk}. For any given {nk}N

k=1, let {Pk}N
k=1 denote market price path corresponding to

{ξ1, . . . , ξN−1}, we obtain a discretized stochastic optimization problem for problem (8):

min
n1,n2,...,nN ,α

nk :Fk−measurable

1

M

M∑

j=1

(

P T
0 S̄ −

N∑

k=1

nT
k P̃

(j)

k

)

+ μα

+ μ

M(1 − β)

M∑

j=1

[

P T
0 S̄ −

N∑

k=1

nT
k P̃

(j)

k − α

]+

subject to
N∑

k=1

nk = S̄.

(11)

The superscript (j) indicates the j th scenario. Note that for each k and j , P̃
(j)

k is a m × 1
vector, where m is the number of assets in the portfolio. The continuously differentiable
nonlinear objective function in problem (8) now becomes a piecewise nonlinear objective
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function. Each simulation corresponds to one nonlinear function piece; here the nonlinear-
ity arises from the iterative dependence due to the permanent price impact. Using a standard
technique of replacing the piecewise function [·]+ with a set of constraints, this piecewise
nonlinear minimization problem can be formulated as a nonlinear programming problem
with the number of nonlinear constraints proportional to the number of Monte Carlo sim-
ulations M . Solving such a large scale nonlinear programming problem is computationally
expensive, as the number of scenarios M is typically very large. Therefore, as the first step,
we use a smoothing method to avoid dealing with a very large number of constraints; this is
described in Sect. 3.1.

3.1 Eliminating non-differentiability

To reduce computational complexity of problem (11), we use a smoothing technique, pro-
posed by Alexander et al. (2006) for a single period CVaR optimization problem. The basic
idea is to approximate the piecewise linear function [z]+ with a continuously differentiable
piecewise quadratic function ρε(z) with a small resolution parameter ε:

ρε(z) =

⎧
⎪⎨

⎪⎩

z if z > ε

z2

4ε
+ 1

2 z + 1
4ε if − ε ≤ z ≤ ε

0 if z < −ε

(12)

Note that ρε(z) ≥ 0 for every ε and z. Using (12), problem (11) is then reduced to the
following continuously differentiable nonlinear minimization problem:

min
n1,n2,...,nN ,α

nk :Fk−measurable

1

M

M∑

j=1

(

P T
0 S̄ −

N∑

k=1

nT
k P̃

(j)

k

)

+ μα

+ μ

M(1 − β)

M∑

j=1

ρε

(

P T
0 S̄ −

N∑

k=1

nT
k P̃

(j)

k − α

)

subject to
N∑

k=1

nk = S̄.

(13)

In problem (13), the objective function is actually continuously differentiable, since each
simulation no longer introduces a nonlinear function piece. Therefore, there is no need to
include an additional constraint for each simulation to avoid non-differentiability.

3.2 Using parametric trading rules

To obtain a stochastic execution strategy which adapts to the market price, one can let nk

freely depend on each price scenario, i.e.,

min
n
(j)
1 ,n

(j)
2 ,...,n

(j)
N

,α

nk :Fk−measurable

(

P T
0 S̄ − 1

M

M∑

j=1

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k

)

+ μα

+ μ

M(1 − β)

M∑

j=1

ρε

(

P T
0 S̄ −

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k − α

)

(14)
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subject to
N∑

k=1

n
(j)

k = S̄, j = 1,2, . . . ,M.

The number of decision variables in the nonlinear minimization problem (14) is of order
M · N , where M is the number of scenarios and N is the number of periods. Hence, solving
problem (14) directly is computationally expensive as the number of scenarios M is typically
large.

In addition we need to ensure that the execution strategy is non-anticipatory, nk is
Fk-measurable. More precisely, execution strategy at stage k must only depend on the in-
formation available up to time tk .

To resolve these two issues, we explicitly require that the execution strategy to have a
parametric representation as below:

nk = fk(Pk−1, xk−1), k = 1,2, . . . ,N − 1. (15)

Here fk is a deterministic function of Pk−1 and xk−1, where Pk−1 represents the market price
at tk−1 and xk−1 quantifies the total number of shares to be sold. This explicitly restricts the
strategy to be non-anticipatory.

Applying the decision rule (15) in problem (14), we arrive at:

min
n
(j)
1 ,n

(j)
2 ,...,n

(j)
N

,α

n
(j)
k

=fk(P
(j)
k−1,x

(j)
k−1)

1

M

M∑

j=1

(

P T
0 S̄ −

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k

)

+ μα

+ μ

M(1 − β)

M∑

j=1

ρε

(

P T
0 S̄ −

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k − α

)

subject to
N∑

k=1

n
(j)

k = S̄, j = 1,2, . . . ,M.

(16)

Assuming that the parametric function fk depends on a small number of parameters, the
number of unknown variables in the optimization problem (16) is then significantly reduced.
The equality constraint can also be eliminated by an explicit variable substitution. Thus
problem (16) can be represented as an unconstrained continuously differentiable nonlinear
minimization problem with a total of O(l × (N − 1)) variables, where l denotes the number
of parameters in the definition of fk .

Now, we describe a specific linear trading rule used in our computational investigation
for approximating the optimal execution strategy. This parametric representation is moti-
vated by the explicit formula derived in Moazeni et al. (2013) for minimizing the expected
execution cost under a multiplicative jump-diffusion model.

Specifically we assume the following linear parametric model for a stochastic optimal
execution strategy:

nk = YkPk−1 + Zkxk−1 + ck, k = 1,2, . . . ,N − 1,

nN = S̄ −
N−1∑

k=1

nk,
(17)
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where Yk and Zk are m×m unknown matrix parameters, and ck is an m unknown parameter
vector. The m vector Pk−1 represents the market price in the previous period and xk−1 is the
m vector of shares remaining to be sold.

Indeed the optimal execution strategy for minimizing the expected execution cost has ex-
actly this linear parametric representation (Moazeni et al. 2013). Thus the computed optimal
execution strategy based on (17) when μ = 0 and no constraint is included, attains minimum
execution cost (i.e. no loss of optimality). When a positive risk aversion parameter is used,
the parametric model assumption (17) may lead to a suboptimal solution. When Yk = 0 and
Zk = 0, the strategy is a static execution strategy. One further may assume that Y1 = 0 and
Z1 = 0 to reduce parameter redundancy since the strategy at k = 1 is deterministic and n1

can be determined solely by c1.
Using representation (17) for nk , problem (16) is reduced to computing

c1, Y2, Z2, c2, . . . , YN−1, ZN−1, cN−1 and α

from the following problem:

min

(

P T
0 S̄ − 1

M

M∑

j=1

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k

)

+ μα

+ μ

M(1 − β)

M∑

j=1

ρε

(

P T
0 S̄ −

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k − α

)

subject to
N∑

k=1

n
(j)

k = S̄, j = 1,2, . . . ,M,

n
(j)

1 = c1,

n
(j)

k = YkP
(j)

k−1 + Zkx
(j)

k−1 + ck, k = 2,3, . . . ,N − 1.

(18)

After eliminating the decision variables n
(j)

k in problem (18), the number of decision vari-
ables in this problem equals (N − 2)(2m2 + m) + m + 1 which does not depend on the
number of simulations M .

3.3 Handling inequality constraints using penalty functions

In an optimal portfolio execution problem, one may want to impose additional inequality
constraints, for example, no buying during a selling order execution. Handling inequality
constraints in stochastic dynamic programming is in general challenging, see e.g., Gross-
man and Vila (1992) and Bertsimas and Lo (1998). This is because stochastic constraints
make the value function nondifferentiable while applying dynamic programming equation.
Using the simulation approach as in problem (16), the number of constraints becomes pro-
portional to the number of simulations, since there exists a constraint corresponding to each
future scenario. Thus computational complexity becomes prohibitive, particularly when the
objective function is nonlinear due to permanent price impact.

Penalty functions are well established methods for handling constraints in nonlinear op-
timization, see e.g., Nocedal and Wright (2000). Quadratic penalty functions, exact penalty
functions, and barrier functions are frequently used in practice. While barrier functions typ-
ically require a strictly feasible point to start with, the quadratic penalty function and exact
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penalty function achieve feasibility in the optimization process. One attractive property of
the exact penalty function, in comparison to the quadratic penalty function, is the exis-
tence of a finite penalty parameter (under suitable assumptions) using which a minimizer
of the penalized optimization problem is a minimizer of the original optimization prob-
lem. If a quadratic penalty function is used, the penalized optimization yields a solution
of the constrained optimization problem asymptotically as the penalty parameter converges
to +∞.

Consequently we prefer to use the exact penalty function. To illustrate this technique,
assume that we want to include the following set of L constraints in optimization prob-
lem (7):

a�(n1, . . . , nN) ≤ 0, � = 1,2, . . . ,L.

Therefore, the simulation problem corresponding to (16) will have the following M · L

constraints:

a�

(
n

(j)

1 , . . . , n
(j)

N

) ≤ 0, j = 1,2, . . . ,M, � = 1,2, . . . ,L.

When the number of simulations M increases, the number of constraints increases
accordingly. Consequently the computational cost for solving the corresponding non-
linear optimization problem can quickly become prohibitive. Using the exact penalty
function max{0, a�(n

(j)

1 , . . . , n
(j)

N )} for the inequality a�(n
(j)

1 , . . . , n
(j)

N ) ≤ 0 and a large
enough penalty parameter ϑ > 0, we arrive at the following penalty optimization prob-
lem:

min
α∈R,n

(j)
1 ,n

(j)
2 ,...,n

(j)
N

n
(j)
k

=fk (P
(j)
k−1,x

(j)
k−1)

k=1,2,...,N−1

(

P T
0 S̄ − 1

M

M∑

j=1

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k

)

+ μα

+ μ

M(1 − β)

M∑

j=1

ρε

(

P T
0 S̄ −

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k − α

)

+ ϑ ·
L∑

�=1

M∑

j=1

max
{
0, a�

(
n

(j)

1 , . . . , n
(j)

N

)}

subject to
N∑

k=1

n
(j)

k = S̄, j = 1,2, . . . ,M.

(19)

Unfortunately the above penalty optimization problem is piecewise differentiable due to the
use of the exact penalty function, with the number of function pieces proportional to the
number of simulations. Once again, computational cost for solving the penalty optimization
problem can quickly become prohibitive. Instead of resorting to the quadratic penalty, we
choose to smooth the exact penalty function, given its similarity to nondifferentiability in
the CVaR risk measure. Using smoothing based on the function ρε(·) defined in (12), we
approximate the penalty optimization problem (19) by the following smooth unconstrained
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minimization problem:

min
α∈R,n

(j)
1 ,n

(j)
2 ,...,n

(j)
N

n
(j)
k

=fk (P
(j)
k−1,x
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(j)

k

)

+ μα
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P T
0 S̄ −

N∑

k=1

(
n

(j)

k

)T
P̃

(j)

k − α
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+ ϑ ·
L∑

�=1

M∑

j=1

ρε

(
a�

(
n

(j)

1 , . . . , n
(j)

N

))

subject to
N∑

k=1

n
(j)

k = S̄, j = 1,2, . . . ,M.

(20)

Here we can regard the smoothed function ρε(·) as a new penalty function; it is a hybrid
of the quadratic penalty function and the exact penalty function. Indeed this new penalty
function can be regarded as an exact penalty function with a resolution determined by the
parameter ε. This parameter ε can be different from that in the smoothed function for CVaR
and it can vary with the constraints. We are currently investigating theoretical properties of
this new penalty function.

The objective function of problem (20) is continuously differentiable but quite nonlinear
due to smoothing of piecewise functions as well as the existence of the permanent price
impact. Optimization methods for minimizing a continuously differentiable objective func-
tion typically require derivative calculations to achieve a good computational performance.
In our subsequent computational investigation, we use the trust region method in Coleman
and Li (1996) with the derivative evaluations using automatic differentiation; for further dis-
cussion on automatic differentiation we refer an interested reader to Griewank and Corliss
(1991), Coleman and Verma (2000), Nocedal and Wright (2000) and references therein.

4 Computational results

This section presents several computational examples to illustrate feasibility and efficacy of
our proposed smoothing and parametric representation approach for approximating optimal
stochastic execution strategies. In addition we assess performance of the computed stochas-
tic execution strategy. The objective of our computational investigation is to demonstrate

• Accuracy of the computed execution strategies by comparing them to the strategies from
analytic formulae when they exist;

• Capability of the proposed technique to handle inequality constraints;
• Applicability of the technique to alternative risk measures. This also allows us to study

the effect of the choice of a risk measure on the optimal execution strategy.

Specifically, we approximate the optimal execution strategy by solving problem (18). We
assume that the market price follows a jump diffusion process

Φ(Pk−1, ξk, Jk) = Diag(Pk−1)
(
em + τ 1/2Σξk + Jk

)
,
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where em is the m-vector of all ones, Σ is the m × l volatility matrix, ξk is the l-vector
of independent standard normals, and Jk is the m-vector of random jumps which mainly
captures permanent price impacts of other concurrent trades. As in Moazeni et al. (2013),
Jk is defined as below:

( Y
(1)
tk

−Y
(1)
tk−1∑

�=1

(
χ

(1)
� (k) − 1

) −
X

(1)
tk

−X
(1)
tk−1∑

�=1

(
π

(1)
� (k) − 1

)
, . . . ,

Y
(m)
tk

−Y
(m)
tk−1∑

�=1

(
χ

(m)
� (k) − 1

) −
X

(m)
tk

−X
(m)
tk−1∑

�=1

(
π

(m)
� (k) − 1

)
)T

,

where {X(i)
t } and {Y (i)

t }, i = 1,2, . . . ,m, are two independent Poisson processes with con-
stant arrival rates λ(i)

x and λ(i)
y , respectively. We assume that the jump amplitudes are log-

normally distributed and identically distributed over period, i.e., logπ
(i)
� (k) and logχ

(i)
� (k)

have normal distributions for all i and k, with means μx and μy , and standard deviations σx

and σy , respectively. We further assume that the arrival rates λ(i)
x and λ(i)

y of different assets
in the portfolio are equal to λx and λy , respectively.

In our computation, price impacts are assumed to be proportional to the trading rate, as
linear price impact functions have been frequently used in the literature, see e.g., Bertsimas
and Lo (1998), Bertsimas et al. (1999), Almgren and Chriss (2000/2001), Huberman and
Stanzl (2004), Moazeni et al. (2010) and Moazeni et al. (2013). Linear price impact func-
tions are defined by the temporary impact matrix H and the permanent impact matrix G, as
below:

g(v) = Gv, h(v) = Hv, (21)

where v = n
τ

is the trading rate. Here impact matrices H and G are expected price depres-
sions caused by trading assets at a unit rate.

In summary the execution price model and market price dynamics are as follows:

P̃k = Pk−1 − H

τ
nk, (22)

Pk = Diag(Pk−1)
(
em + τα + τ 1/2Σξk + Jk

) − Gnk. (23)

Unless otherwise stated, our computation generates M = 12,000 sample paths of ran-
dom variables {(ξ1, J1), . . . , (ξN−1, JN−1)}. We use automatic differentiation in ADMAT:
Automatic Differentiation Toolbox (Coleman and Verma 2000) to compute gradients. The
Hessian is then computed using the finite difference method.

The optimal execution strategy in general differs with the choice of the risk measure. For
example, it can be shown that the variance of the execution cost, under our assumed model,
does not depend on the impact matrices. However, CVaR of the execution cost depends on
the impact matrix.

The proposed computational method can be applied to other downside risk measures
such as Semi-standard deviation, see, e.g., Fabozzi et al. (2007, p. 59):
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Ψ
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)
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)T
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(j)

k

)

. (24)

To assess accuracy and effect of risk measures, we compare the following execution
strategies:

StrategyM : strategy which minimizes the expected execution cost, i.e., μ = 0 in prob-
lem (18).

StrategyC : strategy which minimizes CVaR95 %, without considering the expected execu-
tion cost.

StrategyS : strategy which minimizes the variance (or standard deviation) of the execution
cost.

StrategyN : the naive strategy, nk = S̄
N

, k = 1,2, . . . ,N .
StrategyD : strategy which minimizes the semi-standard deviation risk measure (see (24)).

4.1 Accuracy of the computational approach

To illustrate accuracy of the proposed computational approach, we compare the computed
execution strategy from (18) and its performance with the exact optimal execution strategy
for minimizing the expected execution cost only and for minimizing the variance of the
execution cost only, since an analytic solution exists for both cases. StrategyS is obtained by
solving problem (18) with the objective function replaced by the variance of the execution
cost:

Var

(

P T
0 S̄ −
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k=1

nT
k P̃k

)

≈ 1
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k

)T
P̃

(j)

k

))2

.

Let Strategy∗
M and Strategy∗

S denote the exact strategies from the analytic formulae to mini-
mize mean and variance of the execution cost, respectively.

We consider an execution problem for a portfolio of three assets with the parameter
setting described in Table 1.

Table 1 Parameter values used
in our simulations Parameters Values

Trading horizon T = 5 days

Number of periods N = 5

Interval length τ = T/N = 1 day

Initial portfolio price P0 = 50e3 $/share

Initial holdings S̄ = 106e3 shares

CVaR confidence level β = 0.95
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Table 2 Mean, standard deviation, and CVaR95 % of the execution cost corresponding to each strategy

Mean Standard deviation CVaR

StrategyS 1.0319544883 × 106 0.0338536247 1.0319549344 × 106

Strategy∗
S

1.0319545000 × 106 0 1.0319545000 × 106

StrategyM 1.9618159824 × 105 3.2645688653 × 105 8.6482124208 × 105

Strategy∗
M

1.9618206384 × 105 3.2634725096 × 105 8.6451163525 × 105

We assume that the daily asset return covariance matrix is

C =
⎛

⎝
0.324625 0.022983 0.420395
0.022983 0.049937 0.019247
0.420395 0.019247 0.764097

⎞

⎠ × 1 %. (25)

We further assume:

H = 0.5 × 10−4 · C, G = 0.5 × 10−5 · C, Σ = (0.001 · C)1/2.

We let arrival rates and jump amplitudes be identical for the three assets:

λx = 0.5, μx = 10−4, σx = 10−3, λy = 2, μy = 10−4, σy = 10−3.

When only variance of the execution cost is minimized, the exact optimal execution strat-
egy is given in (10) for which the optimal objective value equals zero. Furthermore, when
only the expected execution cost is minimized, an analytical formula for the optimal exe-
cution strategy obtained from the stochastic dynamic programming is provided in Moazeni
et al. (2013). We use these two cases as benchmarks to illustrate the accuracy of the proposed
technique.

Table 2 compares the expected execution cost, standard deviation, and CVaR of the com-
puted execution strategies with those of the optimal execution strategies using explicit for-
mulae. Comparing StrategyM with Strategy∗

M , we observe approximately five significant
digits of accuracy in the expected execution cost and three significant digits in standard de-
viation. The variance of the StrategyS is about 10−3 compared to zero for Strategy∗

S ; however
the expected execution cost agrees in about 6 significant digits.

To examine the difference in the execution strategy, we quantify the percentage difference
between the exact optimal execution strategy and the computed execution strategy using the
following measure:

ε(i, k)
def= (

100/‖S̄‖∞
) × max

1≤j≤M

∣
∣n(k)

∗ (i, j) − n̂(k)(i, j)
∣
∣, i = 1, . . . ,m, k = 1, . . . ,N,

where, for asset i in simulation j , n(k)∗ (i, j) and n̂(k)(i, j) are the analytical solution and
the computed solution at period k, respectively. Values of ε(i, k) are reported in Table 3
for M = 12,000 simulations. The results indicate that the computed solutions are relatively
close to the exact ones, and the maximum difference between them is at most 1.5 % which
most likely comes from computational errors.

For minimizing CVaR, there is no analytic solution. Table 4 presents mean and CVaR95 %

of the execution cost corresponding to the computed solution of problem (18) for different
choices of μ. Even though we cannot explicitly assess the accuracy in this case, we do
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Table 3 Comparisons to benchmark strategies Strategy∗
M

and Strategy∗
S

Percentage difference ε(i, k) corresponding to StrategyM

Asset k = 1 k = 2 k = 3 k = 4 k = 5

1 0.02150 1.49049 0.360879 −0.00558 −0.94410

2 −0.21806 −0.79442 1.43315 0.05718 0.25880

3 −0.01826 −0.74518 −0.00558 0.34084 0.69127

Percentage difference ε(i, k) corresponding to StrategyS

Asset k = 1 k = 2 k = 3 k = 4 k = 5

1 1.91090×10−6 2.82690 × 10−4 3.34015 × 10−4 1.66590 × 10−4 3.40619 × 10−4

2 2.35354×10−6 3.19347 × 10−4 1.20114 × 10−4 2.76442 × 10−4 2.74782 × 10−4

3 −2.51376×10−6 2.55169 × 10−4 2.03557 × 10−4 1.72027 × 10−4 2.72080 × 10−4

Table 4 Mean and CVaR95 % of
the execution cost in dollar per
share

μ CVaR (95 %) Expected execution cost

0 0.86482 0.19620

1 0.77781 0.20439

10 0.77485 0.20505

+∞ 0.77464 0.20512

observe that, for the computed strategy, the expected execution cost increases while the
CVaR95 % decreases, when the risk aversion parameter μ increases.

Improvements in the objective function value by the optimization solver over iterations
are presented in Fig. 1. These plots demonstrate that for the portfolio example of three assets
considered, a relatively small number of iterations (10 to 15) in the optimization solver is
enough to obtain a near optimal solution. The computational time for each iteration varies
significantly according to the objective function. The investigation of the computational time
of the approach and its improvement remains for future work.

4.2 Handling constraints

We now illustrate effectiveness of the smoothed penalty function to handle constraints. We
also investigate the effect of the constraint nk ≥ 0 on the computed optimal execution strat-
egy and the corresponding objective function value. We consider liquidation of S̄ = 106

shares of a single asset whose initial market price is P0 = 50 dollar per share. Permanent
and temporary price impact values are assumed to be G = 2.5 × 10−7 and H = 2.5 × 10−6,
respectively, and Σ = 0.009. Jump parameters are as follows:

λx = 3, μx = 9.5 × 10−3, σx = 10−2, λy = 0.5,

μy = 6.9 × 10−4, σy = 3.2 × 10−2.

CVaR and mean of the execution costs corresponding to the optimal execution strategies
with and without the constraint nk ≥ 0 are presented in Table 5.

Figure 2 depicts the optimal execution strategy for minimizing mean and CVaR of the ex-
ecution cost with the risk aversion parameter μ = 100 in the presence of the non-negativity
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Fig. 1 Progress of the optimization solver over iterations

Table 5 Effect of constraint
nk ≥ 0: cost and risk values in
dollars per share

Execution strategies CVaR95 % Expected execution cost

nk unconstrained (μ = 100) 3.13030 1.42585

nk ≥ 0 (μ = 100) 5.38058 2.50723

nk unconstrained (μ = 0) 3.28077 1.41696

nk ≥ 0 (μ = 0) 5.38061 2.50704

constraints nk ≥ 0. These plots show that the computed optimal execution strategy using the
penalty parameter ϑ = 104 indeed satisfies nk ≥ 0. In particular, while the execution strat-
egy when nk is not bound constrained suggests to sell more in the first period and buy in the
last periods (k = 4,5); the execution strategy computed under nk ≥ 0 is more conservative
and the strategy does not seem to vary with the asset price significantly.

4.3 Applicability to other risk measures

Here we illustrate application of the proposed approach for the semi-standard deviation risk
measure when trading a single asset. The setting is as in Sect. 4.2.

Figure 3 demonstrates that StrategyD is very similar to Strategy∗
S . Furthermore,

StrategyM is more aggressive comparing to StrategyC , i.e., it suggests to trade more in
the first periods and buy over the last periods.

It is worth mentioning that the results provided in this section depend on our assumed
linear parametric representation in (17). If we choose other representations, the configuration
of the computed optimal execution strategies might differ. We leave investigating properties
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Fig. 2 The 100 realizations of the computed optimal execution strategies as functions of the market price
for a single asset trading with and without non-negativity constraints. The circles show the execution strategy
when buying is allowed, and the diamonds are the strategy when buying is prohibited. The line in each
graph indicates StrategyN . Strategies have been computed using the penalty parameter ϑ = 104 and the risk
aversion parameter μ = 100. In the first period when buying is allowed, n∗

1 = 76.64867 % of the initial
holding and when buying is prohibited, n∗

1 = 75.28936 % of the initial holding

of the solutions under different parametric representations for the execution strategy for
future research.

5 Concluding remarks

Solving multi-stage stochastic programming problem is a daunting task, particularly when
there are constraints. Under both temporary and permanent price impact, the objective func-
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Fig. 3 The 100 realizations of the optimal execution strategies StrategyM (squares), StrategyC (circles),
and StrategyD (triangles) as functions of market price for a single asset trading when no constraint is im-
posed. The line in each graph indicates the naive strategy StrategyN . In the first period, StrategyN sug-
gests to sell n∗

1 = 20.00 %, StrategyM suggests to sell n∗
1 = 77.44418 %, and StrategyC suggests to sell

n∗
1 = 76.63369 %, and StrategyD suggests to sell n∗

1 = 97.57436 % of the initial holding

tion of the optimal portfolio execution problem can be quite nonlinear when a risk measure
for the execution cost is included.

In this paper, we propose a tractable computational approach to compute an optimal port-
folio execution strategy. The approach relies on Monte Carlo simulations, a smoothing tech-
nique, and parametric rules for the optimal strategy. The smoothing technique alleviates the
nondifferentiability arising from the CVaR risk measure for each simulation. The paramet-
ric rule allows a strategy to be stochastic and reduces the number of optimization variables.
In particular, a linear parametric representation permits the exact representation of the ex-
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ecution strategy for minimizing the expected cost. The approach then yields a stochastic
execution strategy which depends on the price and holdings at trading time. The computa-
tional complexity of the resulting method does not depend on the number of simulations.

While we focus on CVaR risk measure, the proposed computational method is applicable
to different risk measures, e.g., downside risk as well as variance. In addition, a smoothed
exact penalty function is applied to handle stochastic constraints.

Since the CVaR risk measure has become a widely used risk measure in many indus-
tries beyond finance, for example in energy market or supply chain management, it will be
useful to investigate the effectiveness of the proposed computational stochastic program-
ming method for other applications or embedded in alternative risk management method-
ologies, e.g., Wu and Olson (2010). Performance of the approach, however, relies on an
appropriate choice of the parametric rule, or policy function approximation as explained
in Powell (2011). Furthermore, applying some tools such as structure-exploiting automatic
differentiation modes and parallel computing can improve the computational efficiency of
the methodology.
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