
SIAM J. SCI. COMPUT. c© 2013 Society for Industrial and Applied Mathematics
Vol. 0, No. 0, pp. 000–000

EFFICIENT (PARTIAL) DETERMINATION OF DERIVATIVE
MATRICES VIA AUTOMATIC DIFFERENTIATION∗
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Abstract. In many scientific computing applications involving nonlinear systems or methods
of optimization, a sequence of Jacobian or Hessian matrices is required. Automatic differentiation
(AD) technology can be used to accurately determine these matrices, and it is well known that if
these matrices exhibit a sparsity pattern (for all iterates), then not only can AD take advantage of
this sparsity for significant efficiency gains, AD can also determine the sparsity pattern itself, with
some additional work in the first iteration. Practical nonlinear systems and optimization problems
often exhibit patterns beyond just “zero-nonzero.” For example, some elements may be duplicates of
other elements at all iterates; some elements may be constant (not necessarily zero) for all iterates.
Here we show how the popular graph-coloring approach to AD can be adapted to account for these
cases as well, with resulting gains in efficiency. In addition, we address the problem of determining,
by AD technology, a prescribed set of the entries of the Jacobian (or Hessian, in the optimization
context) matrix.
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1. Introduction. Computations in science and engineering often require the fre-
quent determination of matrices of the first or second derivatives. For example, many
methods for multidimensional zero-finding, or minimization of nonlinear functions,
require a sequence of Jacobian matrices (first derivatives) or Hessian matrices (sec-
ond derivatives), respectively. Determination of these matrices is often an expensive
proposition; in fact, in many problems the dominant work in solving the entire prob-
lem is in the calculation of these derivative matrices. In light of this, many techniques
have been developed to efficiently compute or approximate these matrices.

New tools and techniques have been developed in recent years that marry auto-
matic differentiation (AD) technologies and the natural sparsity and structure that
arises in large-scale problems, to allow for the efficient and exact determination of
Jacobian and Hessian matrices [5, 6, 9]. In this paper we extend some of these sparse
techniques to exploit the existence of constant nonzero terms, duplicate (nonconstant)
entries in the Jacobian/Hessian matrices, and allow for partial determination of the
derivative matrices. These are all very practical situations, and we illustrate that
the sparse techniques developed in [3, 4, 5, 6] can be adapted to this setting to great
advantage.

The general situation for repeated entries is the case where identical (noncon-
stant) copies of entries of the Jacobian/Hessian matrix occur. Since the entries are

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section October 7,
2011; accepted for publication (in revised form) February 25, 2013; published electronically DATE.
This work was supported in part by the Ophelia Lazaridis University Research Chair (held by Thomas
F. Coleman), the National Sciences and Engineering Research Council of Canada, and the Natural
Science Foundation of China (project 11101310).

http://www.siam.org/journals/sisc/x-x/85061.html
†Department of Mathematics, Tongji University, Shanghai, China, 200092 (wdxu@tongji.edu.cn).
‡Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON, Canada,

N2L 3G1 (tfcoleman@uwaterloo.ca).

A1



A2 WEI XU AND THOMAS F. COLEMAN

nonconstant they must be recomputed at every iterate x; however, since there are
many “copies” only one “designate” of a set of copies needs to be computed by auto-
matic differentiation. We explore how to do this in section 4.

Clearly some Hessian or Jacobian structures will not only have elements that are
zero for all iterates x, but will also have some elements that are constant (but nonzero)
for all iterates. Ignoring this fact can be costly not just because the same elements
are recomputed at each iterate x, but their nonzero status can trigger additional un-
necessary computations. For example, suppose the Jacobian structure of a nonlinear
mapping F (x) : Rn →Rn is as follows, illustrated for the case n = 5:

J(x) =

⎡
⎢⎢⎢⎢⎣

Y X X X X
Y

Y
Y

Y

⎤
⎥⎥⎥⎥⎦ ,(1.1)

where the nondiagonal nonzero entries, X , are (generally, different) constants and
the diagonal entries are true nonlinear functions of the iterate x. A 1-sided auto-
matic differentiator (i.e., “forward-mode”) [10, 11] computes the product JV for an
appropriate matrix V and then extracts the nonzero elements of J from this product.
Because of the dense first row, matrix V must have at least n columns, and so the
work to evaluate J at any argument x is proportional to n · ω(F ), where ω(F ) is the
work to evaluate F at any argument x. However, if the X-elements are constant (and
known), then matrix V can be a single column vector (e.g., V = (1, . . . , 1)T ), and it is
clear that all the diagonal elements can then be determined from the product JV, with
a simple arithmetic adjustment for the (1,1)-entry. So, given knowledge of the nonzero
constants (in this case in the first row), the work to compute the Jacobian matrix J at
an argument x by a 1-sided (forward mode) automatic differentiator is proportional to
ω(F ), i.e., the work required for a single evaluation of F . We generalize this example
in section 5.

Some multidimensional zero-finding methods, as well as some nonlinear minimiza-
tion techniques, request only a submatrix of the full derivative matrix at each iterate.
For example, the Newton–Krylov method described in [13] requires only the lower
triangular half of the sparse Jacobian matrix at each iterate. Therefore there is no
need to determine the entire matrix. Consider here another example. Consider the
minimization of a nonlinear function f : Rn → R1 via a linearized conjugate-gradient
technique that uses the diagonal elements of the current Hessian matrix to form a
preconditioner. It is clearly wasteful to compute the entire Hessian matrix, even if
sparse, when only the diagonal elements are required.

To see this, suppose the Hessian matrix of f , i.e., matrix H(x), is sparse for all x.
As is the custom in this area, we consider a graph to present the structure.

A graph G is an ordered pair G = (V, E), where V is a finite and nonempty set of
vertices and E is a set of edges between two vertices. If u ∈ V , v ∈ V , and (u, v) ∈ E,
then vertices u and v are said to be adjacent; otherwise they are nonadjacent. A path
of length l in a graph is a sequence v1, v2, . . . , vl+1 of distinct vertices such that vi is
adjacent to vi+1 for 1 ≤ i ≤ l. A p-coloring graph is defined on G = (V,E) if there
exists a function φ defined as

φ : V → {1, 2, . . . , p},
such that φ(u) �= φ(v) if (u, v) ∈ E. The smallest p for which G has a p-coloring is
known as the chromatic number χ(G). A p-coloring φ of G partitions vertices V into
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p groups Gk, k = 1, 2, . . . , p, such that

Gk = {u ∈ V : φ(u) = k}.

Let GA(H) = (V, E) be the corresponding adjacency graph of symmetric matrix H
[5]. It is not hard to see that a p-coloring of GA(H) will yield an n × p matrix V
from which the diagonal elements of H can be directly determined from the product
HV , via the automatic differentiation. The work required is therefore proportional to
p ·ω(f), where ω(f) is the work required to evaluate f at any argument x. However, if
the entire sparse matrix H is determined via sparse AD, and then the diagonal terms
extracted, the work required is proportional to pπ · ω(f), where pπ is the number of
colors required for a path coloring of GA(H); see [5]. Note that χπ(GA) ≥ χ(GA)
and, typically, χπ(GA) > χ(GA), where χ(G) is the chromatic number of graph G,
and χπ(G) is the path-chromatic number of a graph G (see [5]). There is no guarantee
that graph-coloring heuristics produce p, pπ close to χ, χπ, respectively, but for many
practical problems the difference is not large [5]. This example class illustrates that
when only a partial Jacobian (Hessian) matrix is required, it may be advantageous
to tailor the AD tools with this in mind and avoid computing the entire matrix. We
formalize and generalize these notions in section 2.

This paper is organized as follows. In section 2 we review the graph-theoretic ap-
proaches to the direct determination of a sparse Jacobian (Hessian) matrix by AD and
then show how they can be modified for partial Jacobian (Hessian) determinations. In
section 3 we consider substitution (indirect) partial determination of Jacobian (Hes-
sian) matrices. In section 4 we discuss how AD can be adapted to the case where
Jacobian/Hessian matrices have “copies.” In section 5 we indicate how AD tools can
be adapted to determine constant Jacobian (Hessian) terms. Two applications of
the partial matrix determination technique are suggested in section 6, and results of
computational experiments are given in section 7. Finally, in section 8 we summarize
our results and discuss future directions of inquiry.

2. (Partial) direct determination of Jacobian and Hessian matrices.
Generally, automatic differentiation (AD) methods compute matrices that represent
the product of a matrix of derivatives with a given input matrix. Such products are
produced accurately without first computing the matrix of derivatives. Direct de-
termination of the underlying matrix of derivatives, i.e., the Jacobian (or Hessian)
matrix, is a method that chooses this input matrix so that once the product matrix is
computed, the nonzero elements of the Jacobian (or Hessian) can be extracted from
the product by a simple diagonal system solver.

2.1. Direct determination of (partial) Jacobian matrices via automatic
differentiation. First we consider 1-sided (forward-mode) direct determination. Let
NZ be the set of nonzero (i, j)-elements of matrix J , for all x, and let Y ⊆ NZ be the
subset of elements to be computed (via AD) at the current point. The complement
of Y is denoted by N : N = NZ − Y . We are interested in efficiently determining
the values of the Jacobian matrix J , at current iterate x, corresponding to set Y . We
note that it is not possible to simply ignore the set N , i.e., treat elements in N as zero
elements, since their nonzero values may conflict with terms with indices in Y . The
intersection graph to be colored, for the forward-mode application of AD, is given by
the following definition.

Definition 2.1. Assuming set Y is not empty, then a Y-intersection graph
GYI (J) = (V, EY

I ) with i ∈ V and j ∈ V has an edge in the set of edges EY
I , i.e.,
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(i, j) ∈ EY
I if there exists k such that either (k, i) ∈ Y and (k, j) ∈ NZ or (k, i) ∈ NZ

and (k, j) ∈ Y .
Note that if Y = NZ, then we are reduced to the usual sparsity condition:

the column intersection graph GI(J) = (V, EI) is defined where n vertices V =
{v1, . . . , vn} correspond to the n columns of J with (i, j) ∈ EI if there exists an
index k such that (k, i) ∈ NZ and (k, j) ∈ NZ. Clearly EY

I ⊆ EI and therefore
χ(GYI (J)) ≤ χ(GI(J)), where χ(G) is the chromatic number of graph G. We illustrate
these concepts with a simple Jacobian structure J and set Y below. For example,
given the arrow matrix J in (2.1), where X represents a nonzero entry, if Y is equal
to the set of all nonzeros of J , NZ, then set V = In×n to compute the whole J , where
In×n is the n× n identity matrix; if Y represents all nonzeros of the lower triangular
part of J , then V = (e1, e2 + e3 + e4 + e5), where ei is the ith column of In×n.

J =

⎡
⎢⎢⎢⎢⎣

X X X X X
X X
X X
X X
X X

⎤
⎥⎥⎥⎥⎦ .(2.1)

Clearly, only two vectors are needed to compute the lower triangular part of J , while
n vectors are required to compute all nonzeros of J .

The best we can do in the 1-sided case when Y = NZ is to find p ≥ χ(GYI (J)); for
many practical problems good graph-coloring heuristics come close to this bound. The
product JV can be computed by the 1-sided application of AD, i.e., “forward-mode”
AD when Y ⊆ NZ.

In [5, 6] a superior 2-sided approach is developed: the matrices W , V are de-
termined by a “bicoloring” technique. If F is a vector-valued differentiable function,
F : Rn →Rm, with (sparse) Jacobian matrix J , then given a source code to evaluate
F at any argument x ∈ Rn, an AD tool can, in general, determine the pair of prod-
ucts (WTJ, JV ), where W is a matrix with m rows and V is a matrix with n rows.
If the nonzero elements of J can be directly extracted from this pair (by solving an
implicit diagonal system), then we say that J is directly determined. The amount of
work required is proportional to (p+ q) · ω(F ), where p is the number of columns of
matrix W , q is the number of columns of matrix V , and ω(F ) is a measure of the work
to evaluate F at an arbitrary argument x. The challenge is to choose matrices V , W
such that the sum p+q is as small as possible subject to the unique and efficient direct
determination of J from the AD-computed pair (WTJ, JV ). We note that some AD
packages only allow for a “forward-mode” computation, which means that only the
second member of the pair, JV , is computed. Methods for determining appropriate
pairs V , W (or just the singleton in the forward-mode case) with a small value of
p+ q (or just q in the forward-mode case) are given in [3].

Here we explore how to extend this technique to the case where only a designated
subset of the nonzero elements, Y ⊆ NZ, is required. Again we note that it is
not sufficient just to treat the elements in NZ − Y as designated zeros since the
AD computations will then produce unresolved conflicts. The first step in [5] is to
permute rows and columns of J to produce a jagged partition (see [5]), as in Figure 1.
In Figure 1, the matrix J is permuted to J̃ via J̃ = PJQ = [JC , JR], where P , Q
are permutation matrices chosen to induce the two sparse intersection graphs GI(JC)
and GI(J

T
R ). JC is the part to be colored by columns, while JR is to be colored

by rows. Our approach here is similar to the 1-sided approach introduced above,
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Fig. 1. Possible partitions of the matrix J̃ = P · J ·Q.

bearing in mind we care only to compute the elements in Y . The first step is to find a
good permutation (i.e., permutation matrices P , Q) so that the subsequent bicoloring
step is expected to be bounded by small chromatic numbers. Here we use algorithm
MNCO provided in [5, sect. 4.3]. Assume that J is partitioned (as illustrated in
Figure 1). The general approach now is to associate a suitable intersection graph
with each partition JC , JR and then color the corresponding graphs with as few
colors as possible to induce “thin” matrices V , W . We define the partial intersection
graph for JC , GI(JC) = (VC , EC) as follows.

Definition 2.2. Given a subset Y of the set of all nonzeros of J , NZ, the partial
intersection graph GYI (JC) = (VC , EC) can be defined as follows:

1. vertex j ∈ VC if nnz(column j ∩ JC ∩ Y ) �= 0, where nnz(x) refers to the
number of nonzeros in a vector or matrix x;

2. (r, s) ∈ EC if r ∈ VC , s ∈ VC , and there exists k such that either Jkr �= 0
and (k, s) ∈ Y ∩ JC or Jks �= 0 and (k, r) ∈ JC ∩ Y .

Similarly, we define the partial intersection graph for JR, GYI (JR) = (VR, ER).
Definition 2.3. Given a subset Y of the set of all nonzeros of J , NZ, the partial

intersection graph GYI (JR) = (VR, ER) can be defined as follows:
1. vertex j ∈ VR if nnz(row j ∩ JR ∩ Y ) �= 0;
2. (r, s) ∈ ER if r ∈ VR, s ∈ VR, there exists k such that either Jrk �= 0 and

(s, k) ∈ JR ∩ Y or Jsk �= 0 and (r, k) ∈ JR ∩ Y .
Valid (p, q)-colorings of the two intersection graphs Gb(JR) and Gb(JC), respec-

tively, will yield matrices W and V (of dimensions m × p and n × q, respectively)
such that the elements of Y can be determined directly from the AD-computed pair
(WT J, JV ).

2.2. Direct determination of (partial) Hessian matrices via automatic
differentiation. Direct determination of the set of nonzeros, NZ, of a symmetric
matrix H can be viewed as a (restricted) graph-coloring problem. In particular,
assuming that all the diagonal elements of H belong to NZ, then in [5] it is proven
that a path p-coloring of the vertices of the adjacency graph of H , GA(H) = (V, EA),
yields a matrix V ∈ Rn×p such that the nonzero elements of H can be directly
determined from the elements of the product HV (this product can be determined
by requesting that an AD tool twice differentiate nonlinear function f : Rn → R1)
along the columns of matrix V . (In fact this result is essentially a characterization of
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direct determination of a symmetric matrix if we restrict the matrix V to a matrix
that induces a partitioning of the columns of H .)

A path p-coloring of the vertices of a graph is a coloring using p colors such that
every path of at least 3 edges uses at least 3 colors. In [5], it is shown how to add edges
to GA(H) to produce a graph G̃A(H) = (V, ẼA), EA ⊆ ẼA, such that a p-coloring
of G̃A(H) is a path p-coloring of GA(H). The procedure advocated in [5] is to first
symmetrically permute the rows and columns of H (with the aim of adding few edges
to produce G̃A(H); see [5]), and then apply the following definition.

Definition 2.4. The intersection graph GI(H) = (V, ẼA) based on the symmetric
matrix H can be defined as follows: for each nonzero hij(i ≤ j) of H, (i, j) ∈ ẼA if
there exists k ≥ i such that Hk,i �= 0 and Hk,j �= 0.

We now modify Definition 2.4 to get a definition of partial estimation of H on a
subset Y .

Definition 2.5. Given a subset Y of the set of all nonzeros of H, NZ, the
partial intersection graph GYI (H) = (V, ẼA) can be defined as follows: for each index
(i, j) of Y with nonzero hij(i ≤ j), (i, j) ∈ ẼA if there exists k ≥ i such that (k, i) ∈ Y
and Hk,j �= 0.

For example, consider the case where H is a 8× 8 symmetric band matrix of full
bandwidth 5 as shown in (2.2), where X represents a nonzero entry,

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X X X
X X X X
X X X X X

X X X X X
X X X X X

X X X X X
X X X X

X X X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.(2.2)

Suppose that Y is the set of diagonal elements. In this case, we only need three
vectors, e.g., V = (e1+ e4+ e7, e2+ e5+ e8, e3+ e6), to obtain the diagonal elements
directly. On the other hand, five vectors are needed to directly estimate the whole
matrix, e.g., V = (e1 + e4 + e7, e2 + e5 + e8, e3 + e6, e4, e5).

3. (Partial) indirect determination of Jacobian (and Hessian) matrices.
Direct methods can be improved upon, in terms of work required to determine a
Jacobian matrix, by allowing for a substitution process to determine the nonzero
elements of the Jacobian [5]. Specifically, in [5] it was shown that it is often possible to
efficiently determine the sparse Jacobian matrix J by determining the pair (WTJ, JV )
by using forward and reverse modes of AD, and then recovering the nonzero elements
of J via a substitution process. In [5], the matrices W, V are determined by a
“bicoloring” technique. Here we explore how to extend this technique to the case
where only a designated subset of the nonzero elements, Y ⊆ NZ, is required. Again
we note that it is not sufficient just to treat the elements in N = NZ−Y as designated
zeros since the AD computations will produce unresolved conflicts.

Both direct and substitution processes locate matrices V and W to compute all
nonzero elements of J . The difference between a direct and a substitution process
is that the direct process extracts all nonzero elements from the pair (WT J, JV )
by solving an implicit diagonal linear system, while the substitution process extracts
nonzeros by solving a triangular system. In [5], it is illustrated that the substitution
process often requires fewer matrix-vector products than the direct process does.
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There are two steps for the substitution process. First, permute and partition
the structure of J : J̃ = P · J · Q = [JC |JR] as in Figure 1. Then define appropriate
intersection graphs GC , GR based on the partition [JC |JR]. The difference between
the direct and substitution process here is the definition of the intersection graphs
GC and GR and the procedure to extract nonzeros of J from pair (WTJ, JV ). The
following definitions show how to construct the intersection graphs GC and GR for JC
and JR, respectively, with the restriction on the subset Y .

Definition 3.1. Given a subset Y of the set of all nonzeros of J , NZ, the partial
intersection graph GYI (JC) = (VC , EC) for substitution determination can be defined
as follows:

1. for each column j of J , if nnz(column j ∩ Y ∩ JC) �= 0, then j ∈ VC ;
2. for i ∈ VC , j ∈ VC , (i, j) ∈ EC if there exists k such that either (k, i) ∈ Y ∩JC

and (k, j) ∈ NZ ∩ JC or (k, i) ∈ Y ∩ JC and (k, j) ∈ JR ∩N .
In the substitution determination, if entries aC ∈ JC

⋂
Y and aR ∈ JR

⋂
Y belong

to the same set, then we can determine aR by row coloring first, then determine aC
by a single substitution step. On the other hand, if aC and ãR ∈ JR

⋂
N belong to

the same set, we cannot determine aC from a single substitute process since ãR is not
determined by the row coloring. As a result, aC and ãR have to be separated into
two different sets. Similarly, we can get the substitute determination for GYI (JR) =
(VR, ER).

Definition 3.2. Given a subset Y of the set of all nonzeros of J , NZ, the partial
intersection graph GYI (JR) = (VR, ER) for substitution determination can be defined
as follows:

1. for each row j of J , if nnz(row j ∩ Y ∩ JR) �= 0, then j ∈ VR;
2. for i ∈ VR, j ∈ VR, (i, j) ∈ ER if there exists k such that either (i, k) ∈ Y ∩JR

and (j, k) ∈ NZ ∩ JR or (i, k) ∈ Y ∩ JR and (j, k) ∈ JC ∩N .
For example, we have a sparse Jacobian matrix J as in (3.1),

J =

⎡
⎢⎢⎢⎢⎣

J11 J13 J14
J23

J31 J32 J35
J42 J44
J52 J53

⎤
⎥⎥⎥⎥⎦ ,(3.1)

where Jij is the (i, j)th element of J . Let Y = {Jij | i ≥ j and Jij �= 0}, i.e., the lower
triangular part of J . The matrix J is partitioned into JC , the left lower part in (3.1),
and JR, the right upper part in (3.1). Then Figures 2 and 3 are the intersection graphs
of JC and JR restricted to Y via the direct and substitution estimation, respectively.

From Figure 2, the coloring of Gc and GR leads to the following matrices V and
W and results in the computation of JV and WTJ , where entry X means it is not
included in set Y , so we do not need to determine its value:

V =

⎡
⎢⎢⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

⎤
⎥⎥⎥⎥⎦ , JV =

⎡
⎢⎢⎢⎢⎣

J11 0 X
0 0 X
J31 X 0
0 X 0
0 J52 J53

⎤
⎥⎥⎥⎥⎦ ,
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Fig. 2. Graphs GI(JC) and GI(JR) for the direct process.

W =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦W

T J =

[
0 J42 0 J44 0
X J32 X X X

]
.

From Figure 3, the resulting matrices V and W and the computation JV and WTJ
are as follows:

V =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
0 1
0 0
0 0

⎤
⎥⎥⎥⎥⎦ , JV =

⎡
⎢⎢⎢⎢⎣

J11 X
0 X

J31 + J32 0
X 0
J52 J53

⎤
⎥⎥⎥⎥⎦,

W =

⎡
⎢⎢⎢⎢⎣

1 0
1 0
1 0
0 1
0 0

⎤
⎥⎥⎥⎥⎦W

TJ =

[
0 J42 0 J44 0
X J32 X X X

]
.

Thus, all nonzeros in Y can be determined easily from the pair (WTJ, JV ).
When the matrix is symmetric, for example, the Hessian matrix H , then the

intersection graph can be modified as the following definition restricted to subset
Y ⊆ NZ.

Definition 3.3. Given a subset Y of the set of all nonzeros of H, NZ, the
partial intersection graph GYI (H) = (V, ẼA) can be defined as for each index (i, j) of
Y with nonzero hij(i < j), (i, j) ∈ ẼA if there exists k ≥ i such that either k < j and
(k, i) ∈ Y and (k, j) ∈ N or k ≥ j and (k, i) ∈ Y and (k, j) ∈ NZ.

4. Automatic differentiation and repeated Jacobian/Hessian entries.
Symmetry is one obvious situation where entries in the (symmetric) Jacobian matrix
(often a Hessian matrix) are repeated. That is, for all (i, j), Jij(x) = Jji(x). AD
techniques have been developed to use this symmetry knowledge and significantly
decrease the work required to compute J(x), especially in the case where J(x) is also
sparse. For example, consider the Jacobian matrix J , corresponding to the arrow
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Fig. 3. Graphs GI(JC) and GI(JR) for the substitution process.

function, in (2.1). If J is symmetric, then for the 1-sided coloring using the product
J · V , the matrix V can be chosen V = (e1, e2 + e3 + e4 + e5). Otherwise, ignoring
symmetry, the matrix V has to be n× n.

Here we consider the more general situation where the pattern of repetition is
more complex than symmetry and the repetition can be more than pairwise. A given
Jacobian entry may be repeated several times in a haphazard pattern (the repeti-
tion and pattern is constant for all x). Clearly it can be inefficient to require the
calculation of all copies of a Jacobian entry: in principle it is possible to require the
computation of just one of the copies, say a designated member of the set of copies.

By sampling the Jacobian (or Hessian) matrix at several points on initiation, an
AD tool can determine the sets of equal-valued entries. Assume there are M disjoint
equivalence sets, I1, . . . , IM , each of cardinality at least two: if (i, j) ∈ Ik, (r, s) ∈ Ik,
then Jij(x) = Jrs(x) for all x. Clearly it is necessary that only one member of
each equivalence set be explicitly computed by AD (and the other members of the
equivalence set can then be assigned that computed value). Our strategy then is to
require that just one member of each equivalence set be computed by AD; we call
that member the designate of that set.

There are two questions to address. (1) How is the designate for each set I1, . . . ,
IM , chosen? (2) How should the AD/coloring approach be modified? First we focus
our attention on the first problem: choosing the equivalence set designates.

The main idea behind each of the cases discussed below is to attempt to choose
designates that will result in removing as many edges as possible, in a locally greedy
fashion, from the associated intersection graph.

4.1. 1-sided estimation of Jacobian matrices (in the presence of dupli-
cates). The basic idea behind our proposed algorithm is to successively consider all
equivalence sets that have yet to be assigned a designate. Order the indices included
in these remaining equivalence sets according to the number of nonzeros in all the rows
touched by the members of the corresponding equivalence set. The member with the
highest score is then selected to be the designate for its equivalence set, and that set
is then removed from further consideration (and all the other members of that set are
“marked” as copies.). For r = 1, . . . ,m, let NZr be the number of nonzeros in row r;
then our proposed algorithm can be formalized as follows.
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Algorithm 1. Given a Jacobian matrix J ∈ Rm×n and all its repeated nonzero
elements divided into M disjoint sets I1, I2, . . . , IM . The following algorithm deter-
mines the designate of each equivalence set.

% ASSIGN a score to each member of each equivalence set.
for each (i, j) ∈ Ik, (k = 1, . . . ,M), and for each r �= i with (r, s) ∈ Ik for

some s score(i, j) =
∑

NZr,
end
% CHOOSE the designates.
Let S = I1

⋃
I2

⋃ · · ·⋃ IM , with D = ∅;
while S is not empty

Find (i∗, j∗) such that score(i∗, j∗) ≥ score(i, j) ∀(i, j) ∈ S;
Let t be such that (i∗, j∗) ∈ It;
Index (i∗, j∗) is assigned to be the designate for set It;
Set D = D ∪ {(i∗, j∗)}; ord(t) = i∗;
Mark all other members of It as copies;
S ← S − {It};

end
Thus, the intersection graph for determination of the Jacobian matrix J consider-

ing the repeat entries can now be constructed as indicated by the following definition.
Definition 4.1. Let D ⊆ NZ be the set of designates and singletons in NZ,

and let C be the set of all copies, that is, all those indices identified by I1, . . . , IM with
the exception of the designated set D. The intersection graph GDI (J) = (V,ED

I ) can
be defined as follows:

1. vertex j ∈ V if j is a column of J ;
2. (i, j) ∈ ED

I if i ∈ V , j ∈ V , and there exists k such that either (k, j) ∈ D
and (k, i) ∈ D or (k, i) ∈ D ∩ Is and (k, j) ∈ It with ord(t) ≥ ord(s).

4.2. 2-sided estimation of Jacobian matrices (in the presence of dupli-
cates). The challenge in adapting the ideas presented above to the substitution ap-
proach is that the substitution process imposes a certain partial ordering. In principle
this may conflict with a designate selection process. For example, consider Figure 1.
The substitution process requires that nonzero elements in Block jj be resolved in
order that elements in Block kk be determined when kk > jj. Therefore the scoring
process (above) must be adjusted to ensure that the designate for each equivalence set
is in the lowest possible numbered section (with reference to Figure 1). Our approach
is to first determine the jagged partition

J̃ = PJQ = [JC , JR](4.1)

using Algorithm MNCO in [5, sect. 4.3]. This method determines the partition (4.1)
as well as the block ordering B1, . . . , Bs indicating the partial order in which the
elements of NZ must be resolved (see Figure 4).

The following algorithm to assign scores to the members of each equivalence set
Ik (k = 1, . . . ,M) is similar to Algorithm 1, with the major exception that only
duplicates in the lowest numbered block for each equivalence set are considered for
designate selection. Let NZ∗,s be the number of nonzeros in column s of JR if (r, s) ∈
JR, and let NZr be the number of nonzeros in row r in JC if (r, s) ∈ JC . Then the
algorithm can be formalized as follows.

Algorithm 2. Given a Jacobian matrix J ∈ Rm×n and its all nonzero elements
divided into M disjoint sets I1, I2, . . . , IM . The following algorithm determines the
designate of each equivalence set:
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% ASSIGN a score to each member of each equivalence set.
Let LB(k) be the lowest numbered index such that

Ik ∩BLB(k) �= ∅ (k = 1, 2, . . . ,M);
for each (i, j) ∈ Ik, (k = 1, . . . ,M)

if (i, j) /∈ BLB(k)

score(i, j) = 0;
elseif There exists r, s and r �= i, s.t. (r, s) ∈ Ik

score(i, j) =
∑

NZr;
else There exists r, s and s �= j, s.t. (r, s) ∈ Ik

score(i, j) =
∑

NZ∗,s;
end

end
% CHOOSE the designates.
Let S = I1

⋃
I2

⋃ · · ·⋃ IM}, with D = ∅;
while S is not empty

Find (i∗, j∗) such that score(i∗, j∗) ≥ score(i, j) ∀(i, j) ∈ S;
Let t be such that (i∗, j∗) ∈ It;
Index (i∗, j∗) is assigned to be the designate for set It;
Set D = D ∪ {(i∗, j∗)}; ord(t) = i∗;
Mark all other members of It as copies;
S ← S − {It};

end
The intersection graph for determination of the Jacobian matrix J by substitution

can now be constructed based on the following definition.
Definition 4.2. Let D ⊆ NZ be the set of designates and singletons in NZ, and

let C be the set of all copies, that is, all those indices identified by I1, . . . , IM , with
the exception of the designated set D. The intersection graph GYI (JC) = (V Y

C , EY
C )

satisfies the following:
1. for each column l of J , l ∈ V Y

C if nnz(Y ∩ column l ∩ JC) �= 0;
2. for i ∈ V Y

C , j ∈ V Y
C , (i, j) ∈ EY

C if there exists k such that either (k, i) ∈
D ∩ JC and (k, j) ∈ D ∩ JC or (k, i) ∈ D ∩ Is ∩ Jc and (k, j) ∈ It ∩ JC with
ord(t) ≥ ord(s).

Note that the corresponding row graph, GDI (JR) = (V,ED
R ), can be constructed

in an analogous manner.

Fig. 4. Graphs for substitution ordering.
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5. Automatic differentiation and constant terms in Jacobian and Hes-
sian matrices. In this section we consider that, in some applications, the correspond-
ing Jacobian/Hessian matrix has constant nonzero elements, which is a special case
of the repeated entries discussed in the previous section. For example, consider the
Broyden function in [1]. The explicit form of the Broyden function FB : Rn → Rn is

FB
i = (3 − 2xi)xi − xi−1 − 2xi+1 + 1,

where x0 = xn+1 = 0 and FB = [FB
1 , FB

2 , . . . , FB
n ]T . Then, given a vector x, its

corresponding Jacobian matrix is

J =

⎡
⎢⎢⎢⎢⎢⎣

3− 2x1 −2
−1 3− 2x2 −2

−1 3− 2x3 −2
. . .

. . .
. . .

−1 3− 2xn

⎤
⎥⎥⎥⎥⎥⎦
.(5.1)

It is obvious that J is a tridiagonal matrix with constant off-diagonal elements. If we
have knowledge of the constant elements in J , then only the main diagonal need be
computed to construct J at iterate x. Thus, matrix V = (e1+e3+e5+e7, e2+e4+e6)
can yield J from the product J · V when n = 7, given knowledge of the constant off-
diagonal terms. The total cost to construct J is 2 · ω(FB). However, if we ignore the
fact that there are two nonzero constants in J , that is, we compute every nonzero
in J , then matrix V needs three columns, e.g., V = (e1 + e4 + e7, e2 + e5, e3 + e6).
The total cost is 3 · ω(FB).

Another example is the linear function–full rank problem in [1]. As shown in [1],
the explicit form of this function FL : Rn → Rm is

FL
i = xi − 2

m

⎛
⎝ n∑

j=1

xj

⎞
⎠− 1, 1 ≤ i ≤ n,

FL
i = − 2

m

⎛
⎝ n∑

j=1

xj

⎞
⎠− 1, n+ 1 ≤ i ≤ m,

where FL = [FL
1 , FL

2 , . . . , FL
m]T . Obviously, the Jacobian matrix J has the form

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X C C · · · C
C X C · · · C
...

...
C C · · · C X
C C · · · C
...

...
C C · · · C

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where C = − 2
m and X = 1− 2

m . If we do not consider the constant elements of J , then
V needs n columns, e.g., V = I, to recover J via the forward-mode AD. However,
if we have knowledge of the constants in J , then only one vector e1 is required to
construct matrix J . Typically, the sparsity of matrix J has to be computed in the
first iteration before applying AD.
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Once the sets of constant Jacobian/Hessian entries have been detected on initial-
ization (or on input), and values stored, the technique for handling these nonzeros in
the procedure for applying AD to determine the other (varying) nonzeros is almost
identical to our procedure presented in section 4 for handling duplicates. There is one
exception: in this case clearly there is no need for determining “designates” since all
copies are known from the outset. In all other aspects the procedure is the same.

Once the constant entries in the Jacobian/Hessian matrix are detected at the
first iteration, they can be stored as one of the sparsity computational components
since these entries have no need to be determined again for the next iterations. To
update the Jacobian/Hessian matrix, we just need to employ the partial determination
technique or repeated entries technique proposed in previous sections to compute all
nonconstant entries only and keep the constant entries unchanged. Therefore, this
updating strategy will save a lot of computational time when frequent Jacobian or
Hessian updating is required—the Newton method, for example.

6. Applications. One application of the partial Jacobian estimation is to con-
struct the preconditioner for the Krylov subspace method to solve nonlinear equations
[13]. In [13], Xu and Coleman proposed a Jacobian-free Newton method, which did
not require the evaluation of the whole Jacobian matrix, but required only a lower
triangular or diagonal estimation [7] of the Jacobian for the preconditioner construc-
tion. Then they employed the forward-mode AD and the Krylov subspace method
to solve the nonlinear equations. The advantage of this method is that it is Jaco-
bian free, but produces accurate Jacobian-vector product estimation. As shown in
[13], the number of function valuations is reduced significantly compared to the New-
ton method, with full Jacobian evaluations in some cases based on the direct partial
Jacobian evaluation.

Another application of the partial Jacobian estimation is to solve the power flow
problem with the quasi-Newton method [12]. First, the Jacobian matrix for each New-
ton method is separated into the constant part and the updated part. The constant
part means some rows of the Jacobian matrix are kept constant for a number of iter-
ations to reduce computational cost. If the whole Jacobian matrix is kept constant,
the cost is lowest but the method converges linearly. Thus, Semlyen and de León pro-
posed a partial Jacobian update in the solution strategy. They updated some rows of
the Jacobian to accelerate the convergence while keeping the other rows constant. In
other words, Newton steps were combined with constant Jacobian steps and partial
Jacobian updates to get an efficient quasi-Newton method. Then, with the partial
updated Jacobian matrix, the matrix modification lemma was used to update its cor-
responding LU decomposition. Thus, only the backward and forward substitutions
were required to solve the Jacobian system. However, Semlyen and de León did not
specify any methodology to compute the updated Jacobian rows given a power flow
function. The finite difference method is an easy implementation for the Jacobian
approximation, but it can only approximate the Jacobian vector product Jv. As we
show in section 1 in [13], the finite difference method is not suitable to approximate
rows of the Jacobian matrix. When one row is dense, the cost to approximate the row
is similar to the cost to approximate the whole Jacobian matrix. Therefore, with the
proposed methodology in sections 2 and 3, the partial Jacobian rows can be updated
efficiently and accurately with AD.

7. Computational experiments. In this section, we will present some numer-
ical experiments on the direct/indirect partial bicoloring method and the constant
structure idea in section 4. All experiments are carried on a workstation with an
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Table 1

Testing matrices collection.

Matrix Type Size Nonzeros

garon1 Power network 3175×3175 84723

circuit 1 Circuit simulation problem 2624×2624 35823

rajat13 Circuit simulation problem 7598×7598 48762

nopoly Undirected weighted graph 10774×10774 70842

cond mat-2003 Undirected weighted graph 31163×31163 240058

TF15 Combinatorial problem 6334×7742 80057

g7jac080sc Subsequent theoretical problem 9506×9506 394808

orani678 Economic problem 2529×2529 90158

jan99jac020sc Economic problem 6774×6774 33744

jan99jac040 Economic problem 13694×13694 72734

g7jac050sc Economic problem 14760×14760 145157

mark3jac080 Economic problem 36609×36609 214643

mark3jac100 Economic problem 45769×45769 268563

fp Computational fluid problem 22560×22560 1014951

g7jac140 Computational fluid problem 14822×14822 7158404

ted A Thermal problem 10605 ×10605 424587

Si10H16 Quantum chemistry problem 17077×17077 875923

lp wood1p Linear programming 244×2595 70126

fomell Linear programming 12142×24460 71264

sctap1-2b Linear programming problem sequence 15390×33858 99454

FA Directed graph problem 10617×10617 72176

EAT SR Directed weighted problem 23219×23219 325589

cage10 Directed weighted graph 11397×11397 150645

C-39 Optimization problem 9271×9271 116578

C-43 Optimization problem 11125×11125 123659

C-42 Optimization problem 10471×10471 110285

C-48 Optimization problem 18354×18354 166080

onetone2 Frequency-domain circulate simulation 36057×36057 222596

zeros nopss 13k Power system 13296×13296 48827

bips98 1450 Power system 11305×11305 44678

aug3dcgq Extended system-3D PDE 35543×35543 128115

AMD Phenom II X6 1090T 3.2GHz processor, 16 GB RAM, and 1 TB hard drive
running 64-bit Windows 7 and MATLAB R2009a. As mentioned in previous sections,
the AD technique is employed to compute the Jacobian-vector products Jv and wT J .
Here, we use the MATLAB AD package ADMAT 2.0 [2] for the implementation of
the forward- and reverse-mode AD.

All testing sparse matrices are from the Tim Davis collection [8] and its subcollec-
tions. All selected testing matrices are listed in Table 1. The first column of Table 1
lists the names of the test matrices. The second column is the application background
from which selected matrices were generated. The third and fourth columns are the
matrix sizes and numbers of nonzeros of tested matrices, respectively. In our experi-
ments, we do not consider the 1-sided coloring determination since it has already been
illustrated in [5, 13] that the bicoloring determination is much more efficient than the
1-sided coloring whether through full matrix determination [5] or lower triangular
partial determination [13].

First, we compare the effectiveness of the direct/indirect partial bicoloring de-
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Table 2

Number of matrix-vector products for full bicoloring estimation, direct partial bicoloring, and
indirect partial coloring to estimate the lower triangular portion and diagonal of sparse matrices.

Matrix Full matrix Lower triangular Diagonal

Direct Direct Substitute Direct Substitute

markjac080 37 33 25 13 10

g7jac080sc 150 111 108 49 47

g7jac140 169 128 121 58 55

garon1 51 45 45 9 8

circuit 1 139 125 124 68 68

rajat13 28 19 16 9 9

nopoly 15 13 13 6 6

orani678 245 200 200 112 110

jan99jac020sc 68 44 44 13 13

jan99jac040 75 61 61 17 17

zeros nopss 13k 32 30 17 6 4

mark3jac100 37 33 24 13 10

fp 424 265 263 19 19

ted A 178 178 123 20 20

zeros nopss 13k 31 31 18 5 4

FA 53 42 42 3 3

aug3dcgp 31 31 17 6 4

C-39 206 111 111 4 4

C-43 111 83 64 4 4

C-42 67 46 34 6 5

C-48 96 45 45 6 5

EAT SR 264 195 195 14 14

cond mat-2003 113 91 89 2 2

onetone2 141 100 100 49 49

termination with the bicoloring direct full determination in [5]. All results are listed
in Table 2. The names of the test matrices are listed in the first column. The sec-
ond column is the number of matrix-vector products for full bicoloring determination.
The third and fourth columns are the number of matrix-vector products using the
direct and indirect partial bicoloring method to determine the lower triangular por-
tion of the tested matrices, respectively. The fifth and sixth columns are the number
of matrix-vector products using the direct and indirect partial bicoloring method to
determine the diagonal of matrices, respectively. These results illustrate that the
partial determination can reduce the number of matrix-vector products significantly,
while the indirect method requires even fewer matrix-vector products than the direct
method does in some cases.

Next, we test the constant structure idea introduced in section 4 on some large
sparse matrices. In this experiment, we will determine the sparse matrices by the
bicoloring method with and without the constant structure idea. Results are listed in
Table 3. The first column of Table 3 is the name of the tested matrices. The second
column is the number of matrix-vector products required by the full bicoloring method
in [5]. The third column is the number of matrix-vector products by the bicoloring
method taking into consideration the constant structure as in section 4. The last
column shows the number of distinct nonzero entries in the tested matrices. Our
results illustrate that more repeated entries result in fewer matrix-vector products.
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Table 3

Number of matrix-vector products for the full bicoloring estimation with/without constant struc-
ture idea.

Full Constant structure Number of

Matrix bicoloring bicoloring distinct nonzeros

garon1 51 47 11677

circuit 1 130 75 10676

rajat13 28 20 6940

nopoly 15 3 12

TF15 49 5 15

jan99jac020sc 68 41 4955

jan99jac040 75 47 8968

g7jac050sc 141 141 145157

zeros nopss 13k 31 30 20297

mark3jac100 37 31 127503

fp 424 373 319677

ted A 178 126 130214

Si10H16 506 257 26630

lp wood1p 107 33 3327

FA 53 11 1002

sctap1-2b 23 8 34

aug3dcgq 11 11 24915

cage10 66 5 237

C-39 206 187 33849

C-43 111 63 36081

C-42 67 59 51711

C-48 96 78 71512

bips98 1450 31 31 19959

EAT SR 264 8 132

cond mat-2003 113 40 3063

onetone2 51 20 14671

Results in Table 3 indicate that the constant structure idea is an effective way to
reduce the cost for the sparse Jacobian/Hessian matrix evaluation, especially when the
Jacobian/Hessian matrix has to be evaluated many times. The overhead of detecting
constants is about O(nnz), where nnz is the number of nonzeros in the detected
matrix. It needs to go through all nonzero entries and separate them into sets. If the
Jacobian/Hessian matrix is computed for only one or two times, it is not economic
to employ this detecting idea. However, significant savings will result when these
derivative matrices are evaluated many times, such as in the Newton method for
nonlinear problems.

8. Concluding remarks. The accurate and efficient determination of deriva-
tives, especially gradients and Jacobian and Hessian matrices, is a fundamental com-
putational task in scientific computing. Efficiencies gained here can affect countless
computing tasks in scientific modeling and engineering. The field of automatic dif-
ferentiation (AD) is generally making it easier and faster to compute these derivative
quantities, and with great accuracy.

Significant work has been done (and subsequent methods are now used in appli-
cations) with respect to tailoring AD techniques to exploit (and determine) sparsity
in Jacobian and Hessian matrices. Indeed, in some cases the resulting savings in
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computing time can be several orders of magnitude.
In this paper the observation is made that additional structure/intelligence may

be available, and this information can further increase AD efficiency in a significant
way. Specifically, duplication in the matrix entries—and the special case of constant
values—can be determined (in a randomized manner), and this intelligence can be
used to further increase the efficiency of AD. In this paper, graph-coloring techniques,
used to solve the sparsity problem, are adapted to the case of duplicate matrix values
(and constants). The experimental results illustrate that there can be a significant
decrease in computing time if such structure is detected in this fashion.

In addition, the observation is made that in some numerical approaches to sci-
entific computing problems, only a partial Jacobian (or, sometimes, partial Hessian)
matrix is required. We show how to adapt the graph-based sparsity techniques to this
case, with subsequent additional gains in efficiency.

Further extensions of this work are possible. For example, while effective tech-
niques have been developed in this paper, there certainly is no optimality proof, and
there is scope for the development of alternative techniques. In addition we have
focused on the case where there are duplicate entries in the Jacobian (and Hessian)
matrix. Duplicate entries may be known at the outset, or determined by an initial
randomized process. However, a generalization of this idea is to determine “almost
equivalent” sets, that is, sets such that if one, or several, members are determined,
then all members of the set are easily determined.

A simple example of this is when all the members of the set satisfy a simple linear
relationship. Such a generalization could potentially lead to significant increases in
efficiencies, but there are many algorithmic questions to be explored.

9. Appendix: Bipartite graph interpretation. A graph Gb = ([V1 V2], E)
is bipartite if the vertex set V is partitioned into two disjoint sets V1 and V2 such
that every edge in E connects a vertex from V1 to a vertex from V2. Given a matrix
A ∈ Rm×n, we can construct a bipartite graph Gb(A) = ([V1, V2], E), where V1 =
[r1, r2, . . . , rm], V2 = [c1, c2, . . . , cn], and cj represents the jth column of A, and ri
represents the ith row of A. Then if aij is nonzero, there is an edge between ri and
cj , i.e., (ri, cj) ∈ E.

For the 1-sided AD computation, i.e., compute the product JV via forward-mode
AD, define the partial bipartite path p-coloring of Gb on V2, where V2 = [c1, c2, . . . , cn]
and ci is the ith column of J , as follows.

Definition 9.1. Let GFb = ([V1, V2], E) be a bipartite graph where F ⊆ E. A
mapping φ : V2 → {0, 1, 2, . . . , p} is a partial bipartite path p-coloring of GFb on V2

restricted to F if the following conditions hold:
1. If i ∈ V1, j ∈ V2, and (i, j) ∈ F , then φ(j) �= 0.
2. If i ∈ V1, j ∈ V2, k ∈ V2, (i, k) ∈ E, and (i, j) ∈ F , then φ(j) �= φ(k).

The following theorem establishes when a bipartition is consistent with direct
determination with a portion of matrix J , given the nonzero subset Y .

Theorem 9.1. Let A be an m × n matrix with corresponding partial bipartite
graph GYb (A) = ([V1, V2], E). The mapping φ : [V1, V2] → {0, 1, . . . , p} induces a
bipartition [GR, GC ] with |GR|+ |GC | = p, consistent with direct determination if and
only if φ is a partial bipartite path p-coloring of GYb (A).

Proof. (⇐) Assume φ is a partial bipartite path p-coloring of GFb (A) on V2 re-
stricted to F . According to Definition 9.1, we have, for aij ∈ Y, φ(j) = α �= 0. That
is, column j belongs to the group Gφ(j) = {cj | φ(j) = α}. Assume there exists an
element in Y that cannot be determined directly, that is, aij ∈ Y, aik ∈ NZ, and
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φ(j) = φ(k). This contradicts condition 2 in Definition 9.1.
(⇒) Assume that φ induces a partial bipartite path p-coloring of Gb on V2 re-

stricted to F . It is obvious that condition 1 in Definition 9.1 is satisfied. We will
construct condition 2. Assume that there are indices i ∈ V1, j ∈ V2, k ∈ V2, (i, j) ∈
F, (i, k) ∈ E. According to condition 1, φ(j) and φ(k) are positive. If φ(j) = φ(k),
then the element aij ∈ F cannot be determined directly, which contradicts the as-
sumption. Thus, we have φ(j) �= φ(k).

A path p-coloring of a graph can be defined to be a vertex coloring using p colors
with the property that every path of at least three edges uses at least three colors [3, 4].
Here, we give a new definition of a partial bipartite path p-coloring of a graph with
the modification in [5], that is, we assign a color “0” to some vertices, i.e., φ(x) = 0,
which means that vertex i is not assigned a color.

Definition 9.2. Assume we are given a subset Y of E and a bipartite graph
GYb = ([V1, V2], E). A mapping φ : [V1, V2] → {0, 1, 2, . . . , p} is a bipartite path
p-coloring of GYb if the following conditions hold:

1. Adjacent vertices have different assignments, that is, for i ∈ V1, j ∈ V2, if
(i, j) ∈ Y , then φ(i) �= φ(j); or if (i, j) /∈ Y and there exists k ∈ V2 such that
(i, k) ∈ Y , then φ(i) �= φ(j); or if (i, j) /∈ Y and there exists k ∈ V1 such that
(k, j) ∈ Y , then φ(i) �= φ(j).

2. The set of positive colors used by vertices in V1 is disjoint from the set of
positive colors used by vertices in V2, i.e., i ∈ V1, j ∈ V2 ⇒ {φ(i) �=
φ(j) or φ(i) = φ(j) = 0}.

3. Vertices i and j are adjacent to vertex k, with φ(k) = 0. If i, j ∈ V2 and
(k, i) ∈ Y or (k, j) ∈ Y , then φ(i) �= φ(j); if i, j ∈ V1 and (i, k) ∈ Y or
(j, k) ∈ Y , then φ(i) �= φ(j).

4. For a path with three edges, say ri − cj − rk − cl if (k, j) ∈ Y , then at least
three colors are used for this edge.

The following theorem establishes that a valid p-coloring of GYb (J) yields an n×p
matrix V such that the product JV will lead to direct determination of the required
nonzero elements Y ⊆ NZ.

Theorem 9.2. Given a subset Y of all nonzeros NZ of an m × n matrix A,
let A have a corresponding partial graph GFb (A) = ([V1, V2], E), where if aij ∈ Y ,
then (ri, cj) ∈ F . The mapping φ : V2 → {0, 1, . . . , p} consistent with the direct
determination of Y if and only if φ is a partial bipartite path p-coloring of GFb (A) on
V2 restricted to F .

Proof. The proof is similar to that for Theorem 3.1 in [5].
(⇐) Assume that φ is a partial bipartite path p-coloring of Gb(A), including a

partial bipartite (GR, GC) of rows and columns of A. If this partial bipartition is
not consistent with direct determination, there exists a nonzero entry ai,j of A that
does not satisfy the conditions in Definition 9.2. This can happen only if one of the
following situations holds.

1. φ(i) = 0, φ(j) �= 0, aij ∈ Y , and there exists a column q with aiq �= 0, such
that φ(j) = φ(q), which leads to a contradiction of condition 3 of Defini-
tion 9.2.

2. φ(i) = 0, φ(j) �= 0, aij /∈ Y , and there exists a column q such that aiq ∈ Y
with aiq �= 0 such that φ(j) = φ(q). This contradicts with condition 3 of
Definition 9.2.

3. φ(i) �= 0, φ(j) = 0, aij ∈ Y , and there exists a row q with aqj �= 0 such that
φ(i) = φ(q), which contradicts condition 3.

4. φ(i) �= 0, φ(j) = 0, aij /∈ Y , and there exits a row q such that aqj ∈ Y with
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aqj �= 0 such that φ(i) = φ(q), which contradicts condition 3.
5. φ(i) �= 0, φ(j) �= 0, aij ∈ Y , and there exists a column q and a row p such

that columns j and q are in the same group with aiq �= 0 and rows i and p
are in the same group with apj �= 0. This implies that φ is a 2-coloring of the
path (rp − cj − ri − cq), which contradicts condition 4.

6. φ(i) �= 0, φ(j) �= 0, aij /∈ Y , and there exists a column p and a row q such that
rows i and p are in the same group with apj �= 0 and apj ∈ Y , and columns
j and q are in the same group with aiq �= 0. Then it implies that the path
(ri − cj − rp − cq) is colored by two colors, which contradicts condition 4.

(⇒) Assume that φ induces a partial bipartite consistent with direct determi-
nation of A. It is obvious that condition 1–3 are satisfied. It remains to establish
condition 4. Assume there is a bicolored path ri − cj − rk − cl, where (rk, cj) ∈ Y ,
φ(i) = φ(k), and φ(j) = φ(l). It is clear from condition 3 that two colors are positive.
If (rk, cj) ∈ Y , then the element akj cannot be determined directly since φ(i) = φ(k)
and φ(j) = φ(l).
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