[14] S. Rhebergen and G.N. Wells, *Preconditioning of a
hybridized discontinuous Galerkin finite element method for the
Stokes equations*,
2018. [preprint]

[13] S. Rhebergen and G.N. Wells, *A hybridizable
discontinuous Galerkin method for the Navier--Stokes
equations with pointwise divergence-free velocity field*,
J. Sci. Comput. (2018)
[paper]
[view-only]
[preprint]

[12] S. Rhebergen and G.N. Wells, *Analysis of a
hybridized/interface stabilized finite element method for
the Stokes equations*, SIAM J. Numer. Anal., 55/4 (2017),
pp. 1982-2003.
[paper]
[preprint]

[11] L. Alisic, S. Rhebergen, J.F. Rudge, R.F. Katz and
G.N. Wells, *Torsion of a cylinder of partially molten
mantle with a spherical inclusion: theory and
simulation*, Geochem. Geophys. Geosyst., 17 (2016), pp.
143-161.
[paper]
[preprint]

[10] S. Rhebergen, G.N. Wells, A.J. Wathen and R.F. Katz,
*Three-field block-preconditioners for models of coupled
magma/mantle dynamics*, SIAM J. Sci. Comput., 37/5 (2015),
pp. A2270-A2294.
[paper]
[preprint]
[code]
[code]

[9] S. Rhebergen, G.N. Wells, R.F. Katz and A.J. Wathen,
*Analysis of block-preconditioners for models of coupled
magma/mantle dynamics*, SIAM J. Sci. Comput., 36/4 (2014),
pp. A1960-A1977.
[paper]
[preprint]
[code]

[8] L. Alisic, J.F. Rudge, R.F. Katz, G.N. Wells and
S. Rhebergen, *Compaction around a rigid, circular
inclusion in partially molten rock*,
J. Geophys. Res. Solid Earth, 119 (2014),
pp. 5903-5920.
[paper]
[preprint]
[code]

[7] S. Rhebergen, B. Cockburn and J.J.W. van der Vegt, *A
space-time discontinuous Galerkin method for the
incompressible Navier-Stokes equations*,
J. Comput. Phys., 233 (2013), pp. 339-358.
[paper]

[6] J.J.W. van der Vegt and S. Rhebergen, *hp-Multigrid as
smoother algorithm for higher order discontinuous Galerkin
discretizations of advection dominated flows. Part
I. Multilevel analysis*, J. Comput. Phys., 231/22 (2012),
pp. 7537-7563.
[paper]
[preprint]

[5] J.J.W. van der Vegt and S. Rhebergen, *hp-Multigrid as
smoother algorithm for higher order discontinuous Galerkin
discretizations of advection dominated flows. Part
II. Optimization of the Runge-Kutta smoother*,
J. Comput. Phys., 231/22 (2012), pp. 7564-7583.
[paper]
[preprint]

[4] S. Rhebergen and B. Cockburn, *A space-time
hybridizable discontinuous Galerkin method for
incompressible flows on deforming domains*,
J. Comput. Phys., 231/11 (2012), pp. 4185-4204.
[paper]

[3] S. Rhebergen, O. Bokhove and J.J.W. van der Vegt,
*Discontinuous Galerkin finite element method for shallow
two-phase flows*, Comput. Methods Appl. Mech. Engrg., 198
(2009), pp. 819-830.
[paper]
[preprint]

[2] P.A. Tassi, S. Rhebergen, C.A. Vionnet and
O. Bokhove, *A discontinuous Galerkin finite element model
for river bed evolution under shallow flows*,
Comput. Methods Appl. Mech. Engrg., 197 (2008),
pp. 2930-2947.
[paper]
[preprint]

[1] S. Rhebergen, O. Bokhove and J.J.W. van der Vegt,
*Discontinuous Galerkin finite element methods for
hyperbolic nonconservative partial differential
equations*, J. Comput. Phys., 227/3 (2008),
pp. 1887-1922.
[paper]
[preprint]

[2] S. Rhebergen and B. Cockburn, *Space-time hybridizable
discontinuous Galerkin method for the advection-diffusion
equation on moving and deforming meshes*, In C.A. de
Moura and C.S. Kubrusly, editors, The
Courant-Friedrichs-Lewy (CFL) condition, 80 years after its
discovery, pp. 45-63, Birkhauser Science, 2013.
[paper]

[1] S. Rhebergen, J.J.W. van der Vegt and H. van der Ven,
*Multigrid optimization for space-time discontinuous
Galerkin discretizations of advection dominated flows*,
In N. Kroll, H. Bieler, H. Deconinck, V. Couallier, H. Van
der Ven and K. Sorensen, editors, ADIGMA - A European
initiative on the development of adaptive higher-order
variational methods for aerospace applications, Notes on
Numerical Fluid Mechanics and Multidisciplinary Design,
Volume 113, pp. 257-269, 2010.
[paper]
[preprint]

S. Rhebergen, Discontinuous Galerkin finite element
methods for (non)conservative partial differential
equations, Ph.D. Thesis, University of Twente, 2010.
[thesis]

*PhD Thesis was chosen to represent the faculty of
Electrical Engineering, Mathematics and Computer Science
in the Overijssel PhD award 2011.*

[2] S. Rhebergen, Well-balanced r-adaptive and moving mesh
space-time discontinuous Galerkin method for the shallow
water equations, 2013.
[report]

[1] J.J.W. van der Vegt and S. Rhebergen, Discrete Fourier
analysis of multigrid algorithms, Von Karman Institute
lecture notes (2011).
[notes]