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1:

PMATH 340 Elementary Number Theory, Solutions to the midterm test, Winter 2024

(a) Find all pairs of integers = and y such that 72z — 51y = 24.
Solution: The Euclidean Algorithm gives
72=1-51+21, 51=2-21+9, 21=2-9+3, 3=3-3+0
so we have ged(72,51) = 3, then Back-Substitution gives
1, =2, 5, -7

so we have (72)(5) — (51)(7) = 3. Multiply both sides by 2! = 8 to get (72)(40) — (51)(56) = 24. Thus one
solution is (x,y) = (40,56). Note that % = 24 and % = 17 and so by the Linear Diophantine Equation
Theorem, the general solution is

(x,y) = (40,56) + k(17,24) , ke Z.

(b) Find all integers ¢ with 0 < ¢ < 30 for which there exist integers x and y such that 35z + 56y = c.
Solution: By the Linear Diophantine Equation Theorem, there exist integers x and y such that 35z +56y = ¢
if and only if ged(35, 56)|c. By inspection, ged(35,56) = 7, so the possible values of ¢ are 0, 7, 14, 21 and 28.
(¢) Find the number of pairs of positive integers « and y such that 12z + 18y = 300.

Solution: Divide both sides of the equation 12z + 18y = 300 by 6 to get 2x + 3y = 50. By inspection,
(z,y) = (25,0) is one solution, and by the Linear Diophantine Equation Theorem, the general solution is

(z,y) = (25,0) + k(3,-2) , keZ.

Wehave z > 0= 25+3k>0=3k> 25— k> -2 —= k> 8andy >0= —2k>0=k < -1
Thus we need —8 < k < —1, so there are exactly 8 positive solutions.
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2: (a) Find 7((22)!) and ¢(20520).

Solution: We have (22)! = 211+5+2+1.37+2.54.78.112.131.171.19 s0 that 7((22)!) = 20-10-5-4-3-2-2-2 = 96000.
We have 20520 = 23-33.5.19 50 that 0(20520) = (1+2+4-+8)(1+3-+9+27)(14+5)(1+19) = 15-40-6-20 = 72000.

(b) Determine the number of positive integers n such that n|36000 and 36000|n2.

Solution: Note that 36000 = 2° - 32 .53, In order to have n|36000 we must have n = 2¢- 37 - 5% for some
i,j,k with 0 <i<5,0<j<2and 0 <k <3. Then we have n? = 2% . 3% . 52% and so in order to have
36000’712 we need 5 < 2i, 2 < 2j and 3 < 2k, that is 4 > 3, j > 1 and k > 2. Thus i € {3,4,5}, j € {1,2},
and k € {2,3}. Since there are 3 choices for ¢, 2 choices for j and 2 choices for k, there are 3-2-2 = 12 such
integers n.

(c) Prove that for all positive integers a and b, if a®|b* then alb.

Solution: Let a and b be positive integers. Write a = p1*1po*2 - - - p,,m and b = pyl1pyl2 - - p,,'m where the
p; are distinct primes and k;,l; > 0 for all . Suppose that a3’b2. Note that a® = p;2F1py3k2 ... p,. 3% and

b2 = pi2hipy?e oo p, 2 so we must have 3k; < 21; for all 4, and hence k; < %li < ; for all 4. Thus al|b.

(d) Prove that ged (5% +3,5% + 1) = 14.
Solution: Recall that if a = gb + r then ged(b, a) = ged(b, r). Since (299 + 1) = (5)(2% + 3) — 14, we have
ged (5% +3,5% + 1) = ged (5% + 3, -14) = ged (5% + 3,14) .

Note that 2’(598 + 3) since 5% is odd and 3 is odd. Also, by Fermat’s Little Theorem the list of powers of 5
repeats every 6 terms modulo 7, and we have 98 = 2 mod 6, so 5 +3 =52 4+3 =28 =0 mod 7, that is
7|(5% 4+ 3). Since 2|(5% + 3) and 7|(5% + 3), we have 14|(5% + 3), and hence ged (5% + 3,14) = 14.
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3: (a) Find every element x € Zi75 such that 77z = 84.

Solution: To solve the related congruence 77z = 84 ( mod 175) for x € Z, we consider the diophantine
equation 77x + 175y = 84. The Euclidean Algorithm gives

175=2-77+21, T7T=3-21+14, 21=1-14+7, 14=2-740
so we have ged(77,175) = 7. Then Back-Substitution gives
1, -1, 4, -9

so we have (77)(—9)+(175)(4) = 7. Multiply both sides by & = 12 to get (77)(—108)+(175)(48) = 84. Thus
one solution to the congruence is x = —108. Note that % = 25, so by the Linear Congruence Theorem, the
general solution to the congruence is x = —108 = 17 mod 25. Thus for x € Zi75 we have 77z = 84 when

x = 17,42,67,92, 117,142 or 167

7 )

(b) Solve the pair of congruences z =5 mod 9 and 10z = 6 mod 28.
Solution: By dividing all terms by 2 then multiplying both sides by 3, we see that
10z =6 mod 28 <= 5r =3 mod 14 < x =9 mod 14.

To get x =5 mod 9 and z = 9 mod 14 we must have x = 5 + 9r and z = 9 4 14s for some integers r
and s, so we need 5 + 9r = 9 + 14s, that is 9r — 14s = 4. By inspection, one solution to this equation is
(r,s) = (2,1), and so one solution for the pair of congruences is x = 5+ 9r = 5+ 9 -2 = 23. Note that
9-14 = 126, so by the Chinese Remainder Theorem, the general solution is

z =23 mod 126.

(c) Prove that for all n € Z, if n =4 mod 7 then n is not equal to the sum of two cubes.

Solution: We make a table of powers modulo 7.

z 01 2 3 4 5 6
22 0 1 4 2 2 4 1
¥ 0 1 1 6 1 6 6

Thus for all x,y € Z; we have x € {0, £1} and similarly y € {0, £1}, and hence
2+ 4% € {040, 041, 140, 141} = {0,+1,+2} = {0,1,2,5,6} in Z;.
It follows that for every z,y € Z we have z° + 3® # 4 mod 7 (and also 22 + y3 # 3 mod 7).



[10]  4: (a) Let n = 16,000. Find the smallest k € Z* such that a* = 1 for every a € U,,.
Solution: Note that 16000 = 27 - 5% and so the smallest such k € Z* is
k= A(n) =lem(A(27),A(5%)) = lem(2°, 5° — 5?) = lem(32, 100) = 800.

50
(b) Find the remainder when 50°% " is divided by 13.

Solution: We have 50 = 11 = —2 mod 13, so 5050% = (72)5050 mod 13. By Fermat’s Little Theorem,
the list of powers of (—2) modulo 13 repeats every 12 terms, so we wish to find 50°° mod 12. We have
50 = 2 mod 12, so 50°° = 25° mod 12. We make a list of powers of 2 modulo 12.

E 01 2 3 4
2 1 2 4 8 4

We see that the list repeats every two terms beginning with 22. We have 50 = 0 = 2 mod 2 and so
250 = 22 = 4 mod 12. Thus
250

5070 = (—=2)%°” = (=2)?" = (=2)* = 16 = 3 mod 13.
(c) With the help of the following list of powers of 5 mod 23, solve 11 218 = 15 mod 23.

k 01 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22
51 5 210 4 20 8 17 16 11 9 22 18 21 13 19 3 15 6 7 12 14 1

Solution: Note that z = 0 is not a solution. For 2 # 0 we can write x = 5. Then
112" =15 mod 23 += 5°5'"8% =57 mod 23

5% = 58 mod 23

18k = 8 mod 22

9k =4 mod 11

k=9 mod 11

k=9 or 20 mod 22

xz=>5=11or 12 mod 23.

rerreny



