PMATH 340 Elementary Number Theory, Solutions to the midterm test, Winter 2024
[10] 1: (a) Find all pairs of integers x and y such that $72 x-51 y=24$.
Solution: The Euclidean Algorithm gives

$$
72=1 \cdot 51+21, \quad 51=2 \cdot 21+9, \quad 21=2 \cdot 9+3, \quad 3=3 \cdot 3+0
$$

so we have $\operatorname{gcd}(72,51)=3$, then Back-Substitution gives

$$
1, \quad-2, \quad 5,-7
$$

so we have $(72)(5)-(51)(7)=3$. Multiply both sides by $\frac{24}{3}=8$ to get $(72)(40)-(51)(56)=24$. Thus one solution is $(x, y)=(40,56)$. Note that $\frac{72}{3}=24$ and $\frac{51}{3}=17$ and so by the Linear Diophantine Equation Theorem, the general solution is

$$
(x, y)=(40,56)+k(17,24), \quad k \in \mathbb{Z}
$$

(b) Find all integers c with $0 \leq c \leq 30$ for which there exist integers x and y such that $35 x+56 y=c$.

Solution: By the Linear Diophantine Equation Theorem, there exist integers x and y such that $35 x+56 y=c$ if and only if $\operatorname{gcd}(35,56) \mid c$. By inspection, $\operatorname{gcd}(35,56)=7$, so the possible values of c are $0,7,14,21$ and 28 .
(c) Find the number of pairs of positive integers x and y such that $12 x+18 y=300$.

Solution: Divide both sides of the equation $12 x+18 y=300$ by 6 to get $2 x+3 y=50$. By inspection, $(x, y)=(25,0)$ is one solution, and by the Linear Diophantine Equation Theorem, the general solution is

$$
(x, y)=(25,0)+k(3,-2), \quad k \in \mathbb{Z}
$$

We have $x>0 \Longrightarrow 25+3 k>0 \Longrightarrow 3 k>-25 \Longrightarrow k>-\frac{25}{3} \Longrightarrow k \geq-8$ and $y>0 \Longrightarrow-2 k>0 \Longrightarrow k \leq-1$. Thus we need $-8 \leq k \leq-1$, so there are exactly 8 positive solutions.
[10] 2: (a) Find $\tau((22)!)$ and $\sigma(20520)$.
Solution: We have $(22)!=2^{11+5+2+1} \cdot 3^{7+2} \cdot 5^{4} \cdot 7^{3} \cdot 11^{2} \cdot 13^{1} \cdot 17^{1} \cdot 19$ so that $\tau((22)!)=20 \cdot 10 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 2 \cdot 2=96000$. We have $20520=2^{3} \cdot 3^{3} \cdot 5 \cdot 19$ so that $\sigma(20520)=(1+2+4+8)(1+3+9+27)(1+5)(1+19)=15 \cdot 40 \cdot 6 \cdot 20=72000$.
(b) Determine the number of positive integers n such that $n \mid 36000$ and $36000 \mid n^{2}$.

Solution: Note that $36000=2^{5} \cdot 3^{2} \cdot 5^{3}$. In order to have $n \mid 36000$ we must have $n=2^{i} \cdot 3^{j} \cdot 5^{k}$ for some i, j, k with $0 \leq i \leq 5,0 \leq j \leq 2$ and $0 \leq k \leq 3$. Then we have $n^{2}=2^{2 i} \cdot 3^{2 j} \cdot 5^{2 k}$, and so in order to have $36000 \mid n^{2}$ we need $5 \leq 2 i, 2 \leq 2 j$ and $3 \leq 2 k$, that is $i \geq 3, j \geq 1$ and $k \geq 2$. Thus $i \in\{3,4,5\}, j \in\{1,2\}$, and $k \in\{2,3\}$. Since there are 3 choices for $i, 2$ choices for j and 2 choices for k, there are $3 \cdot 2 \cdot 2=12$ such integers n.
(c) Prove that for all positive integers a and b, if $a^{3} \mid b^{2}$ then $a \mid b$.

Solution: Let a and b be positive integers. Write $a=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdots p_{m}{ }^{k_{m}}$ and $b=p_{1}{ }^{l_{1}} p_{2}{ }^{l_{2}} \cdots p_{m}{ }^{l_{m}}$ where the p_{i} are distinct primes and $k_{i}, l_{i} \geq 0$ for all i. Suppose that $a^{3} \mid b^{2}$. Note that $a^{3}=p_{1}{ }^{3 k_{1}} p_{2}{ }^{3 k_{2}} \cdots p_{m}{ }^{3 k_{m}}$ and $b^{2}=p_{1}{ }^{2 l_{1}} p_{2}{ }^{2 l_{2}} \cdots p_{m}{ }^{2 l_{m}}$, so we must have $3 k_{i} \leq 2 l_{i}$ for all i, and hence $k_{i} \leq \frac{2}{3} l_{i} \leq l_{i}$ for all i. Thus $a \mid b$.
(d) Prove that $\operatorname{gcd}\left(5^{98}+3,5^{99}+1\right)=14$.

Solution: Recall that if $a=q b+r$ then $\operatorname{gcd}(b, a)=\operatorname{gcd}(b, r)$. Since $\left(2^{99}+1\right)=(5)\left(2^{98}+3\right)-14$, we have

$$
\operatorname{gcd}\left(5^{98}+3,5^{99}+1\right)=\operatorname{gcd}\left(5^{98}+3,-14\right)=\operatorname{gcd}\left(5^{98}+3,14\right)
$$

Note that $2 \mid\left(5^{98}+3\right)$ since 5^{98} is odd and 3 is odd. Also, by Fermat's Little Theorem the list of powers of 5 repeats every 6 terms modulo 7 , and we have $98=2 \bmod 6$, so $5^{98}+3=5^{2}+3=28=0 \bmod 7$, that is $7 \mid\left(5^{98}+3\right)$. Since $2 \mid\left(5^{98}+3\right)$ and $7 \mid\left(5^{98}+3\right)$, we have $14 \mid\left(5^{98}+3\right)$, and hence gcd $\left(5^{98}+3,14\right)=14$.
[10] 3: (a) Find every element $x \in \mathbb{Z}_{175}$ such that $77 x=84$.
Solution: To solve the related congruence $77 x=84(\bmod 175)$ for $x \in \mathbb{Z}$, we consider the diophantine equation $77 x+175 y=84$. The Euclidean Algorithm gives

$$
175=2 \cdot 77+21, \quad 77=3 \cdot 21+14, \quad 21=1 \cdot 14+7, \quad 14=2 \cdot 7+0
$$

so we have $\operatorname{gcd}(77,175)=7$. Then Back-Substitution gives

$$
1, \quad-1,4, \quad-9
$$

so we have $(77)(-9)+(175)(4)=7$. Multiply both sides by $\frac{84}{7}=12$ to get $(77)(-108)+(175)(48)=84$. Thus one solution to the congruence is $x=-108$. Note that $\frac{175}{7} \stackrel{7}{=} 25$, so by the Linear Congruence Theorem, the general solution to the congruence is $x=-108=17 \bmod 25$. Thus for $x \in \mathbb{Z}_{175}$ we have $77 x=84$ when

$$
x=17,42,67,92,117,142 \text { or } 167
$$

(b) Solve the pair of congruences $x=5 \bmod 9$ and $10 x=6 \bmod 28$.

Solution: By dividing all terms by 2 then multiplying both sides by 3 , we see that

$$
10 x=6 \bmod 28 \Longleftrightarrow 5 x=3 \bmod 14 \Longleftrightarrow x=9 \bmod 14
$$

To get $x=5 \bmod 9$ and $x=9 \bmod 14$ we must have $x=5+9 r$ and $x=9+14 s$ for some integers r and s, so we need $5+9 r=9+14 s$, that is $9 r-14 s=4$. By inspection, one solution to this equation is $(r, s)=(2,1)$, and so one solution for the pair of congruences is $x=5+9 r=5+9 \cdot 2=23$. Note that $9 \cdot 14=126$, so by the Chinese Remainder Theorem, the general solution is

$$
x=23 \bmod 126
$$

(c) Prove that for all $n \in \mathbb{Z}$, if $n=4 \bmod 7$ then n is not equal to the sum of two cubes.

Solution: We make a table of powers modulo 7 .

x	0	1	2	3	4	5	6
x^{2}	0	1	4	2	2	4	1
x^{3}	0	1	1	6	1	6	6

Thus for all $x, y \in \mathbb{Z}_{7}$ we have $x \in\{0, \pm 1\}$ and similarly $y \in\{0, \pm 1\}$, and hence

$$
x^{3}+y^{3} \in\{0+0,0 \pm 1, \pm 1+0, \pm 1 \pm 1\}=\{0, \pm 1, \pm 2\}=\{0,1,2,5,6\} \text { in } \mathbb{Z}_{7}
$$

It follows that for every $x, y \in \mathbb{Z}$ we have $x^{3}+y^{3} \neq 4 \bmod 7\left(\right.$ and also $\left.x^{3}+y^{3} \neq 3 \bmod 7\right)$.
[10] 4: (a) Let $n=16,000$. Find the smallest $k \in \mathbb{Z}^{+}$such that $a^{k}=1$ for every $a \in U_{n}$.
Solution: Note that $16000=2^{7} \cdot 5^{3}$ and so the smallest such $k \in \mathbb{Z}^{+}$is

$$
k=\lambda(n)=\operatorname{lcm}\left(\lambda\left(2^{7}\right), \lambda\left(5^{3}\right)\right)=\operatorname{lcm}\left(2^{5}, 5^{3}-5^{2}\right)=\operatorname{lcm}(32,100)=800
$$

(b) Find the remainder when $50^{50^{50}}$ is divided by 13.

Solution: We have $50=11=-2 \bmod 13$, so $50^{50^{50}}=(-2)^{50^{50}} \bmod 13$. By Fermat's Little Theorem, the list of powers of (-2) modulo 13 repeats every 12 terms, so we wish to find $50^{50} \bmod 12$. We have $50=2 \bmod 12$, so $50^{50}=2^{50} \bmod 12$. We make a list of powers of 2 modulo 12 .

$$
\begin{array}{cccccc}
k & 0 & 1 & 2 & 3 & 4 \\
2^{k} & 1 & 2 & 4 & 8 & 4
\end{array}
$$

We see that the list repeats every two terms beginning with 2^{2}. We have $50=0=2 \bmod 2$ and so $2^{50}=2^{2}=4 \bmod 12$. Thus

$$
50^{50^{50}}=(-2)^{50^{50}}=(-2)^{2^{50}}=(-2)^{4}=16=3 \bmod 13
$$

(c) With the help of the following list of powers of $5 \bmod 23$, solve $11 x^{18}=15 \bmod 23$.

$$
\begin{array}{lrrrrrrrrrrrrrrrrrrrrrrrr}
k & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 \\
5^{k} & 1 & 5 & 2 & 10 & 4 & 20 & 8 & 17 & 16 & 11 & 9 & 22 & 18 & 21 & 13 & 19 & 3 & 15 & 6 & 7 & 12 & 14 & 1
\end{array}
$$

Solution: Note that $x=0$ is not a solution. For $x \neq 0$ we can write $x=5^{k}$. Then

$$
\begin{aligned}
11 x^{18}=15 \bmod 23 & \Longleftrightarrow 5^{9} 5^{18 k}=5^{17} \bmod 23 \\
& \Longleftrightarrow 5^{18 k}=5^{8} \bmod 23 \\
& \Longleftrightarrow 18 k=8 \bmod 22 \\
& \Longleftrightarrow 9 k=4 \bmod 11 \\
& \Longleftrightarrow k=9 \bmod 11 \\
& \Longleftrightarrow k=9 \text { or } 20 \bmod 22 \\
& \Longleftrightarrow x=5^{k}=11 \operatorname{or} 12 \bmod 23
\end{aligned}
$$

