1: For each of the following integers n, determine whether n is a sum of two squares, and if so then find the number of pairs $(x, y) \in \mathbb{Z}^2$ for which $n = x^2 + y^2$.

(a)
$$n = 1081$$

Solution: We have $1081 = 23 \cdot 47$, which is not a sum of 2 squares because $23 = 3 \mod 4$ (and $47 = 3 \mod 4$).

(b)
$$n = 3,185,000$$

Solution: We have $3\,185\,000 = 2^3 \cdot 5^4 \cdot 7^2 \cdot 13$, which is a sum of 2 squares because $13 = 1 \mod 4$. The number of pairs $(x, y) \in \mathbb{Z}^2$ for which $n = x^2 + y^2$ is equal to $4\,\tau(5^4 \cdot 13) = 4 \cdot 5 \cdot 2 = 40$.

(c)
$$n = \binom{100}{11} = \frac{100!}{11!\,89!}$$

Solution: We have $\binom{100}{11} = \frac{100 \cdot 99 \cdot 98 \cdot 97 \cdot 96 \cdot 95 \cdot 94 \cdot 93 \cdot 92 \cdot 91 \cdot 90}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 14 \cdot 97 \cdot 95 \cdot 94 \cdot 93 \cdot 92 \cdot 91 \cdot 15 = 2^4 \cdot 3^2 \cdot 5^2 \cdot 13 \cdot 19 \cdot 23 \cdot 31 \cdot 47 \cdot 97$, which is not a sum of two squares because $19 = 23 = 31 = 47 = 3 \mod 4$.

2: Let n = 99450.

(a) Write n as a product of irreducible elements in $\mathbf{Z}[i]$.

Solution:
$$n = 99450 = 2 \cdot 3^2 \cdot 5^2 \cdot 13 \cdot 17 = (1+i)(1-i)(3)^2(2+i)^2(2-i)^2(3+2i)(3-2i)(4+i)(4-i)$$

(b) List all of the pairs $(x, y) \in \mathbb{Z}^2$ with $0 \le x \le y$ such that $n = x^2 + y^2$.

Solution: We have $n = x^2 + y^2$ if and only if $n = z\overline{z}$ where z = x + yi. We can write $n = z\overline{z}$ when $z = u(1+i)(3)(2+i)^j(2-i)^{2-j}(3+2i)^k(3-2i)^{1-k}(4+i)^\ell(4-i)^{1-\ell}$ where u is a unit and j = 0, 1 or 2 and k = 0 or 1 and $\ell = 0$ or 1. We note that there are $4 \cdot 3 \cdot 2 \cdot 2 = 48$ possibilities for z. We list some of the possible values for z.

$$\begin{aligned} (1+i)(3)(2+i)(3+2i)(4+i) &= (3+3i)(3+4i)(10+11i) = (-3+21i)(10+11i) = -261+177i \\ (1+i)(3)(2+i)^2(3+2i)(4-i) &= (-3+21i)(14+5i) = -147+279i \\ (1+i)(3)(2+i)^2(3-2i)(4+i) &= (-3+21i)(14-5i) = 63+309i \\ (1+i)(3)(2+i)^2(3-2i)(4-i) &= (-3+21i)(10-11i) = 201+243i \\ (1+i)(3)(2+i)(2-i)(3+2i)(4+i) &= (3+3i)(5)(10+11i) = (15+15i)(10+11i) = -15+315i \\ (1+i)(3)(2+i)(2-i)(3+2i)(4-i) &= (15+15i)(14+5i) = 135+285i \end{aligned}$$

At this stage we can stop listing values for z because each of the above 6 values z = x + yi determines 8 of the 48 possible values, namely $\pm x \pm yi$ and $\pm y \pm xi$. Thus there are 6 pairs $(x, y) \in \mathbb{Z}^2$ with $0 \le x \le y$ such that $n = x^2 + y^2$, namely (x, y) = (15, 315), (63, 309), (135, 285), (147, 279), (177, 261) and (201, 243).

3: (a) Solve Pell's equation $x^2 - 22y^2 = 1$.

Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{22}$ and the first few convergents $c_k = \frac{p_k}{q_k}$ along with the norms $N_k = N(p_k + q_k\sqrt{22}) = p_k^2 - 22 q_k^2$.

$$k \qquad x_k \qquad a_k \qquad p_k \qquad q_k \qquad N_k$$

$$0 \qquad \sqrt{22} \qquad 4 \qquad 4 \qquad 1 \qquad -6$$

$$1 \qquad \frac{1}{\sqrt{22}-4} = \frac{\sqrt{22}+4}{6} \qquad 1 \qquad 5 \qquad 1 \qquad 3$$

$$2 \qquad \frac{6}{\sqrt{22}-2} = \frac{\sqrt{22}+2}{3} \qquad 2 \qquad 14 \qquad 3 \qquad -2$$

$$3 \qquad \frac{3}{\sqrt{22}-4} = \frac{\sqrt{22}+4}{2} \qquad 4 \qquad 61 \qquad 13 \qquad 3$$

$$4 \qquad \frac{2}{\sqrt{22}-4} = \frac{\sqrt{22}+4}{3} \qquad 2 \qquad 136 \qquad 29 \qquad -6$$

$$5 \qquad \frac{3}{\sqrt{22}-2} = \frac{\sqrt{22}+2}{6} \qquad 1 \qquad 197 \quad 42 \qquad 1$$

$$6 \qquad \frac{6}{\sqrt{22}-4} = \frac{\sqrt{22}+4}{1} \qquad 8$$

We have $\sqrt{22} = [4, \overline{1, 2, 4, 2, 1, 8}]$ with period $\ell = 6$. Writing $u_k = p_k + q_k \sqrt{22} \in \mathbb{Z}[\sqrt{22}]$, the smallest unit in $\mathbb{Z}[\sqrt{22}]$ with u > 1 is $u = u_{\ell-1} = u_5 = 197 + 42\sqrt{22}$, and we have N(u) = 1. The set of all units is the set of elements of the form $\pm u^k = \pm u_{k\ell-1}$ with $k \in \mathbb{Z}$, and all of these units have norm 1. If we write $u^k = (197 + 42\sqrt{22})^k = r_k + s_k\sqrt{22}$, then the solutions to Pell's equation $x^2 - 22y^2 = 1$ are given by $(x, y) = (\pm r_k, \pm s_k)$ where $k \in \mathbb{Z}$ with $k \ge 0$. We also remark that since

$$(r_{k+1}, s_{k+1}\sqrt{22}) = u^{k+1} = u^k \cdot u = (r_k + s_k\sqrt{22})(197 + 42\sqrt{22}) = (197r_k + 924s_k) + (42r_k + 197s_k)\sqrt{22},$$

it follows that the sequences $\{r_k\}$ and $\{s_k\}$ are given recursively for $k \ge 0$ by

$$r_0 = 1$$
, $s_0 = 0$, $r_{k+1} = 197r_k + 924s_k$, $s_{k+1} = 42r_k + 197s_k$

It is also possible to solve the recursion to obtain explicit (but ugly) closed-form formulas for r_k and s_k .

(b) Solve Pell's equation $x^2 - 13y^2 = 1$.

Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{13}$ and the first few convergents $c_k = \frac{p_k}{q_k}$ along with the norms $N_k = N(p_k + q_k\sqrt{13}) = p_k^2 - 13 q_k^2$.

We have $\sqrt{13} = [3, \overline{1, 1, 1, 1, 6}]$ with periods $\ell = 5$. Writing $u_k = p_k + q_k \sqrt{13} \in \mathbb{Z}[\sqrt{13}]$, the smallest unit u in $\mathbb{Z}[\sqrt{13}]$ with u > 1 is $u = u_{\ell-1} = u_4 = 18 \pm 5\sqrt{13}$, and we have N(u) = -1. The smallest unit v in $\mathbb{Z}[\sqrt{13}]$ with v > 1 and N(v) = 1 is $v = u^2 = (18 \pm 5\sqrt{13})^2 = 649 \pm 180\sqrt{13}$. If we write $v^k = (649 \pm 180\sqrt{13})^k = r_k \pm s_k\sqrt{13}$, then the solutions to Pell's equation $x^2 - 13y^2 = 1$ are given by $(x, y) = (\pm r_k, \pm s_k)$ where $k \in \mathbb{Z}$ with $k \ge 0$.

4: (a) Let $d \in \mathbb{Z}^+$ be a non-square and let $0 \neq n \in \mathbb{Z}$. Show that the Diophantine equation $x^2 - dy^2 = n$ either has no solution or infinitely many solutions.

Solution: Suppose that the Diophantine equation $x^2 - dy^2 = n$ has at least one solution. Let (x, y) be a solution. Let a = |x| and b = |y|, and note that (a, b) is another solution with $a, b \ge 0$. Let $w = a + b\sqrt{d}$ and note that $N(w) = a^2 - db^2 = n$. Since $n \ne 0$ we have $(a, b) \ne (0, 0)$ and so $w = a + b\sqrt{d} \ge 1$. Let u be the smallest unit in $\mathbb{Z}[\sqrt{d}]$ with u > 1. Since u > 1 and $w \ge 1$ we have $w < wu < wu^2 < wu^3 < \cdots$. Write $wu^k = r_k + s_k\sqrt{d}$ for $k \ge 0$. For each $k \ge 0$ we have $r_k^2 - ds_k^2 = N(wu^k) = N(w)N(u)^k = n \cdot 1^k = n$ and so (r_k, s_k) is a solution to the Diophantine equation $x^2 - dy^2 = n$.

(b) For which $n \in \mathbb{Z}$ with $-3 \le n \le 10$ do there exist $x, y \in \mathbb{Z}$ with $x^2 - 31y^2 = n$?

Solution: We calculate the continued fraction for $\sqrt{31}$.

Note first that the solutions to $x^2 - 31y^2 = 1$ are given by $(x, y) = (p_k, q_k)$ with $k = 7 \mod 8$, and there are no solutions to $x^2 - 31y^2 = -1$. When n = -3 a solution to the equation $x^2 - 31y^2 = n$ is given by $(x, y) = (p_2, q_2) = (11, 2)$, when n = 0 a solution is given by (x, y) = (0, 0), when n = 2 a solution is given by $(x, y) = (p_3, q_3) = (39, 7)$, when n = 5 a solution is given by $(x, y) = (p_1, q_1) = (6, 1)$, and when n = -6 a solution is given by $(x, y) = (p_0, q_0) = (5, 1)$.

For $x, y \in \mathbf{Q}$, let us write $N(x + y\sqrt{31}) = x^2 - 31y^2$ (with no absolute value sign). Let $u_{-6} = 5 + \sqrt{31}$, $u_{-3} = 11 + 2\sqrt{31}$, $u_1 = 1520 + 273\sqrt{31}$, $u_2 = 39 + 7\sqrt{31}$ and $u_5 = 6 + \sqrt{31}$ so that for each n = -6, -3, 1, 2, 5 we have $u_n \in \mathbf{Z}[\sqrt{31}]$ with $N(u_n) = n$. Let $u_4 = (u_2)^2$, $u_8 = (u_2)^3$, $u_9 = (u_3)^3$ and $u_{10} = u_2u_5$. Then for n = 4, 8, 9, 10 we have $N(u_n) = n$, and so the equation $x^2 - 31y^2 = n$ does have a solution (indeed if we write $u_n = x + y\sqrt{31}$ then $n = N(u_n) = x^2 - y\sqrt{31}$).

We claim that when $n \in \{-1, -2, 3\}$ there is no solution. Suppose, for a contradiction that $x^2 - 31y^2 = n$ with $x, y \in \mathbb{Z}^+$ and $n \in \{-1, -2, 3\}$. Since $|n| < \sqrt{31}$, we know that $\frac{x}{y}$ must be equal to some convergent $c_k = \frac{p_k}{q_k}$. Note that gcd(x, y) = 1 since if p was prime with p|x and p|y then we would have $p^2|(x^2 - 31y^2) = n$, but -1, -2 and 3 have no square prime factors. Also note that $gcd(p_k, q_k) = 1$ because of the identity $p_{k+1}q_k - q_{k+1}p_k = (-1)^k$. It follows that we must have $x = p_k$ and $y = q_k$. But then, from our table, and from the periodic nature of the values $p_k^2 - 31q_k^2$, we must have $x^2 - 31y^2 = p_k^2 - 31q_k^2 \in \{-6, -3, 1, 2, 5\}$. Finally, we claim that when $n \in \{-1, 3, 6, 7\}$ there can be no solution. To see this we work modulo 8.

Finally, we claim that when $n \in \{-1, 3, 6, 7\}$ there can be no solution. To see this we work modulo 8. Modulo 8, we have $x^2 \in \{0, 1, 4\}$ and so $x^2 - 31y^2 = x^2 + y^2 \in \{0, 1, 2, 4, 5\}$, and hence $x^2 - 31y^2 \notin \{-1, 3, 6, 7\}$. To summarize, there is a solution for $n \in \{-3, 0, 1, 2, 4, 5, 8, 9, 10\}$ but no solution for $n \in \{-2, -1, 3, 6, 7\}$.

5: (a) Find the first 2 smallest positive solutions to the Diophantine equation $x^2 - 2y^4 = -1$.

Solution: We solve Pell's equation $x^2 - 2z^2 = -1$ with $z = y^2$. By inspection, the smallest unit $u \in \mathbb{Z}[\sqrt{2}]$ with u > 1 is $u = 1 + \sqrt{2}$ and we have N(u) = -1. The units v > 1 with N(v) = 1 are the elements u^k with k even and the units v > 1 with N(v) = -1 are the elements u^k with k odd. If we write $u^{2k+1} = r_k + s_k\sqrt{2}$, then the positive solutions to Pell's equation $x^2 - 2z^2 = -1$ are the pairs $(x, z) = (r_k, s_k)$ with $k \ge 0$. We have

$$r_{k+1} + s_{k+1}\sqrt{2} = u^{2k+3} = u^{2k+1} \cdot u^2 = (r_k + s_k\sqrt{2})(3 + 2\sqrt{2}) = (3r_k + 4s_k) + (2r_k + 3s_k)\sqrt{2}$$

and so $\{r_k\}$ and $\{s_k\}$ are given recursively by $r_0 = 1$, $s_0 = 1$, $r_{k+1} = 3r_k + 4s_k$ and $s_{k+1} = 2r_k + 3s_k$. The first few values of r_k and s_k are listed below:

k	r_k	s_k
0	1	1
1	7	5
2	41	29
3	237	169

The first 2 values of s_k which are perfect squares are $s_0 = 1$ and $s_3 = 169$. Thus the first 2 positive solutions to Pell's equation $x^2 - 2z^2 = -1$ with z equal to a perfect square are (x, z) = (1, 1) and (237, 169), and hence the first 2 positive solutions to the Diophantine equation $x^2 - 2y^4 = -1$ are (x, y) = (1, 1) and (237, 13). We remark that these might be the *only* two positive solutions.

(b) Find the first 4 smallest positive solutions to the Diophantine equation $x(x+1) = 2y^2$.

Solution: Note that $x(x+1) = 2y^2 \iff (x+\frac{1}{2})^2 - \frac{1}{4} = 2y^2 \iff (2x+1)^2 - 8y^2 = 1$. We find the continued fraction for $\sqrt{8}$. $k \quad a_k \qquad x_k \qquad p_k \quad q_k \quad p_k^2 - 8q_k^2$

We see that the smallest unit u > 1 in $\mathbb{Z}[\sqrt{8}]$ is $u = 3 + \sqrt{8}$. The smallest 4 units v > 1 are

$$u^1 = 3 + \sqrt{8}$$
, $u^2 = 17 + 6\sqrt{8}$, $u^3 = 99 + 35\sqrt{8}$, $u^4 = 577 + 204\sqrt{8}$.

The positive pairs (x, y) with $(2x + 1)^2 - 8y^2 = 1$ correspond to the units $(2x + 1) + y\sqrt{8}$, so the smallest 4 such pairs (x, y) are (1, 1), (8, 6), (49, 35) and (288, 204).