PMATH 340 Number Theory, Solutions to the Exercises for Chapter 8

: For each of the following integers n, determine whether n is a sum of two squares, and if so then find the
number of pairs (z,y) € Z? for which n = 22 + y%.

(a) n = 1081

Solution: We have 1081 = 23 - 47, which is not a sum of 2 squares because 23 = 3mod 4 (and 47 = 3mod 4).
(b) n = 3,185,000

Solution: We have 3185000 = 23 - 5% - 72 . 13, which is a sum of 2 squares because 13 = 1mod 4. The number
of pairs (z,y) € Z? for which n = 22 + 32 is equal to 47(5* - 13) =4 -5 -2 = 40.

(¢) n= (11010) = 1%?3&13!

Solution: We have (1)) = 100-99-98.97.96.95.-91.9592.91-90 — 14.97.95.94-93-92:91-15 = 2*.3%.52.13-19-23-31-47-97,

which is not a sum of two squares because 19 = 23 = 31 = 47 = 3mod 4.

: Let n = 99450.

(a) Write n as a product of irreducible elements in Z[7].

Solution: n = 99450 = 2-3%-52-13-17 = (1 +4)(1 —i)(3)2(2 + 1)%(2 — 9)%(3 + 24)(3 — 2i) (4 +4)(4 — 7).
(b) List all of the pairs (z,y) € Z? with 0 < z <y such that n = 22 + y2.

Solution: We have n = z2 4+ y? if and only if n = 2Z where z = x + yi. We can write n = zZ when
z=u(l+i)(3)(2+4)7(2—49)27(3+2)*(3—24)17%(4 +4)*(4 — i)' ¢ where u is a unit and j = 0, 1 or 2 and
k=0or1and ¢ =0or 1l We note that there are 4 -3 -2 -2 = 48 possibilities for z. We list some of the
possible values for z.

(1+3)(3)(2+9)(3+20)(4+i) = (3+3i)(3+44)(10+114) = (=3 +214)(10 + 11i) = —261 + 1774
(1+4)(3)(24+4)%(3424)(4 —i) = (=3 +214)(14 + 5i) = —147 4+ 2794

(1+4)(3)(2414)%(3 —24)(4+i) = (=3 +214)(14 — 5i) = 63 + 3091

(1+4)(3)(2414)%(3 —24)(4 — i) = (=3 +214)(10 — 114) = 201 + 243
(1+3)(3)(2+4)(2—0)(3+2i)(4+1) = (3+34)(5)(10+ 114) = (15 + 154)(10 + 114) = —15 + 3154
(1+9)(3)(2+4)(2—0)(3+2i)(4—i) = (15+154)(14 + 5i) = 135 + 285

At this stage we can stop listing values for z because each of the above 6 values z = z + yi determines 8 of
the 48 possible values, namely 4+ & yi and +y & z4. Thus there are 6 pairs (z,y) € Z? with 0 < 2 < y such
that n = 22 + 42, namely (z,y) = (15,315), (63,309), (135,285), (147,279), (177,261) and (201,243).



3: (a) Solve Pell’s equation x? — 22y? = 1.

Solution: The following table lists the data used to calculate the continued fraction for /22 and the first few
convergents ¢ = Z—: along with the norms Ny = N(pi, + q1v/22) = p? — 22 ¢2.

k T, ar Pk Gk N
0 Va4 416
1 _ V2244
1 A= 1 5 103
2 A5 =¥EE2 2 U 3 -2
3 o =¥2H 4 61 13 3
4 =B 9 136 20 -6
b= Y2 1 19T 42 1
6 6 :\/ﬁ+4 8
V22-4 1

We have v22 = [4,1,2,4,2,1,8] with period ¢ = 6. Writing ur = pr + qxV22 € Z[v22], the smallest unit
in Z[v22] with u > 1is u = up—1 = us = 197 + 424/22, and we have N(u) = 1. The set of all units
is the set of elements of the form +u* = tuy,_; with k& € Z, and all of these units have norm 1. If we
write u¥ = (197 4 42v/22)% = r}, + 5,1/22, then the solutions to Pell’s equation x? — 22y? = 1 are given by
(z,y) = (£rg, £si) where k € Z with k > 0. We also remark that since

(Tha1, Ske1V22) = uP Tt =P o u = (1 + 5,V/22) (197 + 42V/22) = (197r), + 924s3,) + (42, + 19755)V/22,
it follows that the sequences {71} and {s;} are given recursively for k > 0 by

ro=1, 50 =0, rpy1 =197 +924sy , spy1 = 421, + 1975 .

It is also possible to solve the recursion to obtain explicit (but ugly) closed-form formulas for r; and sy.

(b) Solve Pell’s equation x? — 13y* = 1.
Solution: The following table lists the data used to calculate the continued fraction for v/13 and the first few

convergents ¢, = & along with the norms Ny, = N(py + V13) = p? — 13 ¢2.

0 VIS 83 1
1 1343
1 rTJr 1 4 1 3
4 13+1
2 AL 17 2 -3
3 S5 =Y 1113 4
4 S =V 18 5 -
5 4 _ V1343 ¢
V13-3 1

We have /13 = [3,1,1,1, 1, 6] with periosd £ = 5. Writing us, = pr, + qxVv/13 € Z[v/13], the smallest unit u in
Z[V13] withu > 1isu = ug_1 = ug = 184+5+/13, and we have N (u) = —1. The smallest unit v in Z[v/13] with
v>1and N(v) =1lisv =u? = (18+5v13)? = 649+180/13. If we write v* = (649+180v/13)* = r +s5,/13,
then the solutions to Pell’s equation z? — 13y? = 1 are given by (z,y) = (£ry, +sx) where k € Z with k > 0.



4: (a) Let d € Z* be a non-square and let 0 # n € Z. Show that the Diophantine equation x? — dy? = n either
has no solution or infinitely many solutions.

Solution: Suppose that the Diophantine equation x? — dy? = n has at least one solution. Let (z,y) be a
solution. Let a = |x| and b = |y|, and note that (a,b) is another solution with a,b > 0. Let w = a + b\/d
and note that N(w) = a? — db®> = n. Since n # 0 we have (a,b) # (0,0) and so w = a + bv/d > 1. Let u be
the smallest unit in Z[\/ﬁ] with > 1. Since v > 1 and w > 1 we have w < wu < wu? < wu> < ---. Write
wu® = 1y + spV/d for k > 0. For each k > 0 we have 77 — dsi = N(wu*) = N(w)N(u)F =n-1%¥ = n and so
(11, 8k) is a solution to the Diophantine equation z? — dy? = n.

b) For which n € Z with —3 < n < 10 do there exist z,y € Z with 22 — 31y? = n?
(b) Y y
Solution: We calculate the continued fraction for v/31.

koap x= Ikiak = 7’"’”;;/5 Pk P’ - 3lg’
0 5 V31 = 08y8l 5 1 —6
1 _ V3145
1 1 7 = s 6 1 5
6 _ V3l1+1
2 1 o= 12 -3
5  _ /3144
3 3 A= 39 7 2
45 o= 206 37 -3
5 3 e = YiEE 657 118 5
6 1 i = Vil 863 155 -6
701 o = 1520 273 1
6  _ /3145
8 10 Ve R
Note first that the solutions to 2 — 31y? = 1 are given by (z,y) = (px,qx) with &k = 7 mod 8, and there
are no solutions to z2 — 31y?> = —1. When n = —3 a solution to the equation x? — 31y? = n is given by

(x,y) = (p2,q2) = (11,2), when n = 0 a solution is given by (z,y) = (0,0), when n = 2 a solution is given
by (x,y) = (p3,q3) = (39,7), when n = 5 a solution is given by (z,y) = (p1,¢1) = (6,1), and when n = —6 a
solution is given by (z,v) = (po,q) = (5,1).

For z,y € Q, let us write N(x 4+ yv/31) = 22 — 31y? (with no absolute value sign). Let u_g = 5+ /31,
u_3 = 11+ 2v/31, uy = 1520 + 273v/31, uy = 39 + 7v/31 and us = 6 + /31 so that for each n = —6,-3,1,2,5
we have u,, € Z[v/31] with N(u,) = n. Let uy = (u2)?, ug = (u2)?, ug = (u3)® and uyg = usus. Then for
n=4,8,9,10 we have N(u,) = n, and so the equation 2% — 31y? = n does have a solution (indeed if we write
up = x +yv/31 then n = N(u,) = 2% — y/31).

We claim that when n € {—1, —2, 3} there is no solution. Suppose, for a contradiction that 2 —31y? = n
with z,y € Z* and n € {—1,-2,3}. Since |n| < /31, we know that % must be equal to some convergent
= %. Note that ged(z,y) = 1 since if p was prime with p|z and p|y then we would have p?|(z2 —31y2) = n,
but —1, —2 and 3 have no square prime factors. Also note that ged(pg,qr) = 1 because of the identity
Pri1qr — Qra1pk = (—1)F. Tt follows that we must have z = pp and y = q,. But then, from our table, and
from the periodic nature of the values py? — 31¢;2, we must have z2 — 31y? = p;.2 — 31¢q;,% € {—6,-3,1,2,5}.

Finally, we claim that when n € {—1,3,6,7} there can be no solution. To see this we work modulo 8.
Modulo 8, we have 22 € {0,1,4} and so 2% —31y? = 22 +y? € {0,1,2,4,5}, and hence 2® —31y? ¢ {—1,3,6,7}.
To summarize, there is a solution for n € {—3,0,1,2,4,5,8,9,10} but no solution for n € {—2,-1,3,6,7}.

Ck



5: (a) Find the first 2 smallest positive solutions to the Diophantine equation % — 2y* = —1.

Solution: We solve Pell’s equation 22 — 222 = —1 with z = y2. By inspection, the smallest unit u € Z[v/2]
with « > 11is u = 1 ++/2 and we have N(u) = —1. The units v > 1 with N(v) = 1 are the elements u* with
k even and the units v > 1 with N(v) = —1 are the elements u* with k odd. If we write u?**1 = r; + s31/2,
then the positive solutions to Pell’s equation 22 — 222 = —1 are the pairs (z,2) = (r, sx) with k > 0. We have

Pra1 + Spp1V2 = w3 = w2 02 = (1 4+ 51,V/2) (34 2V2) = (3 + 4si) + (21 + 351)V2

and so {ri} and {sx} are given recursively by ro = 1, sg = 1, rp+1 = 3rx + 4sg and sg+1 = 21, + 3sg. The
first few values of 7, and s are listed below:

k TEk Sk
0 1 1
1 7 )
2 41 29
3 237 169

The first 2 values of s; which are perfect squares are s = 1 and s3 = 169. Thus the first 2 positive solutions
to Pell’s equation 22 — 222 = —1 with z equal to a perfect square are (z,2) = (1,1) and (237, 169), and hence
the first 2 positive solutions to the Diophantine equation z? — 2y* = —1 are (x,) = (1,1) and (237,13). We
remark that these might be the only two positive solutions.

(b) Find the first 4 smallest positive solutions to the Diophantine equation z(z + 1) = 2y

Solution: Note that z(z+1) = 2y* < (z+ %)2 —1=2y* < (20+1)?—8y? = 1. We find the continued
fraction for /8.

k ag Tk Pe Gk PR — 8ar®
0 2 8 2 1 —4
11 Ao =2 3 g 1

2 4 A= VAR

We see that the smallest unit v > 1 in Z[\/g] is u = 34 /8. The smallest 4 units v > 1 are
u'=34+v8, u=17+6V8, u® =99 +35V8 , u! =577 + 204V/3.

The positive pairs (x,y) with (22 + 1) — 8y? = 1 correspond to the units (22 + 1) 4+ y/8, so the smallest 4
such pairs (z,y) are (1,1), (8,6), (49,35) and (288,204).



