
PMATH 340 Number Theory, Solutions to the Exercises for Chapter 8

1: For each of the following integers n, determine whether n is a sum of two squares, and if so then find the
number of pairs (x, y) ∈ Z2 for which n = x2 + y2.

(a) n = 1081

Solution: We have 1081 = 23 · 47, which is not a sum of 2 squares because 23 = 3mod 4 (and 47 = 3mod 4).

(b) n = 3,185,000

Solution: We have 3 185 000 = 23 · 54 · 72 · 13, which is a sum of 2 squares because 13 = 1mod 4. The number
of pairs (x, y) ∈ Z2 for which n = x2 + y2 is equal to 4 τ(54 · 13) = 4 · 5 · 2 = 40.

(c) n =
(
100
11

)
= 100!

11! 89!

Solution: We have
(
100
11

)
= 100·99·98·97·96·95·94·93·92·91·90

11·10·9·8·7·6·5·4·3·2·1 = 14·97·95·94·93·92·91·15 = 24·32·52·13·19·23·31·47·97,
which is not a sum of two squares because 19 = 23 = 31 = 47 = 3mod 4.

2: Let n = 99450.

(a) Write n as a product of irreducible elements in Z[i].

Solution: n = 99450 = 2 · 32 · 52 · 13 · 17 = (1 + i)(1− i)(3)2(2 + i)2(2− i)2(3 + 2i)(3− 2i)(4 + i)(4− i).

(b) List all of the pairs (x, y) ∈ Z2 with 0 ≤ x ≤ y such that n = x2 + y2.

Solution: We have n = x2 + y2 if and only if n = z z where z = x + y i. We can write n = z z when
z = u(1 + i)(3)(2 + i)j(2− i)2−j(3 + 2 i)k(3− 2 i)1−k(4 + i)`(4− i)1−` where u is a unit and j = 0, 1 or 2 and
k = 0 or 1 and ` = 0 or 1. We note that there are 4 · 3 · 2 · 2 = 48 possibilities for z. We list some of the
possible values for z.

(1 + i)(3)(2 + i)(3 + 2 i)(4 + i) = (3 + 3 i)(3 + 4 i)(10 + 11 i) = (−3 + 21 i)(10 + 11 i) = −261 + 177 i

(1 + i)(3)(2 + i)2(3 + 2 i)(4− i) = (−3 + 21 i)(14 + 5 i) = −147 + 279 i

(1 + i)(3)(2 + i)2(3− 2 i)(4 + i) = (−3 + 21 i)(14− 5 i) = 63 + 309 i

(1 + i)(3)(2 + i)2(3− 2 i)(4− i) = (−3 + 21 i)(10− 11 i) = 201 + 243 i

(1 + i)(3)(2 + i)(2− i)(3 + 2 i)(4 + i) = (3 + 3 i)(5)(10 + 11 i) = (15 + 15 i)(10 + 11 i) = −15 + 315 i

(1 + i)(3)(2 + i)(2− i)(3 + 2 i)(4− i) = (15 + 15 i)(14 + 5 i) = 135 + 285 i

At this stage we can stop listing values for z because each of the above 6 values z = x + y i determines 8 of
the 48 possible values, namely ±x± y i and ±y ± x i. Thus there are 6 pairs (x, y) ∈ Z2 with 0 ≤ x ≤ y such
that n = x2 + y2, namely (x, y) = (15, 315), (63, 309), (135, 285), (147, 279), (177, 261) and (201, 243).



3: (a) Solve Pell’s equation x2 − 22y2 = 1.

Solution: The following table lists the data used to calculate the continued fraction for
√

22 and the first few
convergents ck = pk

qk
along with the norms Nk = N(pk + qk

√
22) = p2k − 22 q2k.

k xk ak pk qk Nk

0
√

22 4 4 1 −6
1 1√

22−4 =
√
22+4
6 1 5 1 3

2 6√
22−2 =

√
22+2
3 2 14 3 −2

3 3√
22−4 =

√
22+4
2 4 61 13 3

4 2√
22−4 =

√
22+4
3 2 136 29 −6

5 3√
22−2 =

√
22+2
6 1 197 42 1

6 6√
22−4 =

√
22+4
1 8

We have
√

22 = [4, 1, 2, 4, 2, 1, 8] with period ` = 6. Writing uk = pk + qk
√

22 ∈ Z[
√

22 ], the smallest unit
in Z[

√
22 ] with u > 1 is u = u`−1 = u5 = 197 + 42

√
22, and we have N(u) = 1. The set of all units

is the set of elements of the form ±uk = ±uk`−1 with k ∈ Z, and all of these units have norm 1. If we
write uk = (197 + 42

√
22)k = rk + sk

√
22, then the solutions to Pell’s equation x2 − 22y2 = 1 are given by

(x, y) = (±rk,±sk) where k ∈ Z with k ≥ 0. We also remark that since

(rk+1, sk+1

√
22) = uk+1 = uk · u = (rk + sk

√
22)(197 + 42

√
22) = (197rk + 924sk) + (42rk + 197sk)

√
22,

it follows that the sequences {rk} and {sk} are given recursively for k ≥ 0 by

r0 = 1 , s0 = 0 , rk+1 = 197rk + 924sk , sk+1 = 42rk + 197sk .

It is also possible to solve the recursion to obtain explicit (but ugly) closed-form formulas for rk and sk.

(b) Solve Pell’s equation x2 − 13y2 = 1.

Solution: The following table lists the data used to calculate the continued fraction for
√

13 and the first few
convergents ck = pk

qk
along with the norms Nk = N(pk + qk

√
13) = p2k − 13 q2k.

0
√

13 3 3 1 −4
1 1√

13−3 =
√
13+3
4 1 4 1 3

2 4√
13−1 −

√
13+1
3 1 7 2 −3

3 3√
13−2 =

√
13+2
3 1 11 3 4

4 3√
13−1 =

√
13+1
4 1 18 5 −1

5 4√
13−3 =

√
13+3
1 6

We have
√

13 = [3, 1, 1, 1, 1, 6 ] with periosd ` = 5. Writing uk = pk + qk
√

13 ∈ Z[
√

13 ], the smallest unit u in
Z[
√

13 ] with u > 1 is u = u`−1 = u4 = 18+5
√

13, and we have N(u) = −1. The smallest unit v in Z[
√

13 ] with
v > 1 and N(v) = 1 is v = u2 = (18+5

√
13)2 = 649+180

√
13. If we write vk = (649+180

√
13)k = rk+sk

√
13,

then the solutions to Pell’s equation x2 − 13y2 = 1 are given by (x, y) = (±rk,±sk) where k ∈ Z with k ≥ 0.



4: (a) Let d ∈ Z+ be a non-square and let 0 6= n ∈ Z. Show that the Diophantine equation x2 − dy2 = n either
has no solution or infinitely many solutions.

Solution: Suppose that the Diophantine equation x2 − dy2 = n has at least one solution. Let (x, y) be a
solution. Let a = |x| and b = |y|, and note that (a, b) is another solution with a, b ≥ 0. Let w = a + b

√
d

and note that N(w) = a2 − db2 = n. Since n 6= 0 we have (a, b) 6= (0, 0) and so w = a + b
√
d ≥ 1. Let u be

the smallest unit in Z[
√
d] with u > 1. Since u > 1 and w ≥ 1 we have w < wu < wu2 < wu3 < · · ·. Write

wuk = rk + sk
√
d for k ≥ 0. For each k ≥ 0 we have r2k − ds2k = N(wuk) = N(w)N(u)k = n · 1k = n and so

(rk, sk) is a solution to the Diophantine equation x2 − dy2 = n.

(b) For which n ∈ Z with −3 ≤ n ≤ 10 do there exist x, y ∈ Z with x2 − 31 y2 = n?

Solution: We calculate the continued fraction for
√

31.

k ak xk = 1
xk−ak

= rk+
√
31

sk
pk qk pk

2 − 31qk
2

0 5
√

31 = 0+
√
31

1 5 1 −6

1 1 1√
31−5 =

√
31+5
6 6 1 5

2 1 6√
31−1 =

√
31+1
5 11 2 −3

3 3 5√
31−4 =

√
31+4
3 39 7 2

4 5 3√
31−5 =

√
31+5
2 206 37 −3

5 3 2√
31−5 =

√
31+5
3 657 118 5

6 1 3√
31−4 =

√
31+4
5 863 155 −6

7 1 5√
31−1 =

√
31+1
6 1520 273 1

8 10 6√
31−5 =

√
31+5
1

Note first that the solutions to x2 − 31y2 = 1 are given by (x, y) = (pk, qk) with k = 7 mod 8, and there
are no solutions to x2 − 31y2 = −1. When n = −3 a solution to the equation x2 − 31y2 = n is given by
(x, y) = (p2, q2) = (11, 2), when n = 0 a solution is given by (x, y) = (0, 0), when n = 2 a solution is given
by (x, y) = (p3, q3) = (39, 7), when n = 5 a solution is given by (x, y) = (p1, q1) = (6, 1), and when n = −6 a
solution is given by (x, y) = (p0, q0) = (5, 1).

For x, y ∈ Q, let us write N(x + y
√

31) = x2 − 31y2 (with no absolute value sign). Let u−6 = 5 +
√

31,
u−3 = 11 + 2

√
31, u1 = 1520 + 273

√
31, u2 = 39 + 7

√
31 and u5 = 6 +

√
31 so that for each n = −6,−3, 1, 2, 5

we have un ∈ Z[
√

31] with N(un) = n. Let u4 = (u2)2, u8 = (u2)3, u9 = (u3)3 and u10 = u2u5. Then for
n = 4, 8, 9, 10 we have N(un) = n, and so the equation x2 − 31y2 = n does have a solution (indeed if we write
un = x+ y

√
31 then n = N(un) = x2 − y

√
31).

We claim that when n ∈ {−1,−2, 3} there is no solution. Suppose, for a contradiction that x2−31y2 = n
with x, y ∈ Z+ and n ∈ {−1,−2, 3}. Since |n| <

√
31, we know that x

y must be equal to some convergent

ck = pk

qk
. Note that gcd(x, y) = 1 since if p was prime with p|x and p|y then we would have p2|(x2−31y2) = n,

but −1, −2 and 3 have no square prime factors. Also note that gcd(pk, qk) = 1 because of the identity
pk+1qk − qk+1pk = (−1)k. It follows that we must have x = pk and y = qk. But then, from our table, and
from the periodic nature of the values pk

2 − 31qk
2, we must have x2 − 31y2 = pk

2 − 31qk
2 ∈ {−6,−3, 1, 2, 5}.

Finally, we claim that when n ∈ {−1, 3, 6, 7} there can be no solution. To see this we work modulo 8.
Modulo 8, we have x2 ∈ {0, 1, 4} and so x2−31y2 = x2+y2 ∈ {0, 1, 2, 4, 5}, and hence x2−31y2 /∈ {−1, 3, 6, 7}.
To summarize, there is a solution for n ∈ {−3, 0, 1, 2, 4, 5, 8, 9, 10} but no solution for n ∈ {−2,−1, 3, 6, 7}.



5: (a) Find the first 2 smallest positive solutions to the Diophantine equation x2 − 2y4 = −1.

Solution: We solve Pell’s equation x2 − 2z2 = −1 with z = y2. By inspection, the smallest unit u ∈ Z[
√

2 ]
with u > 1 is u = 1 +

√
2 and we have N(u) = −1. The units v > 1 with N(v) = 1 are the elements uk with

k even and the units v > 1 with N(v) = −1 are the elements uk with k odd. If we write u2k+1 = rk + sk
√

2,
then the positive solutions to Pell’s equation x2−2z2 = −1 are the pairs (x, z) = (rk, sk) with k ≥ 0. We have

rk+1 + sk+1

√
2 = u2k+3 = u2k+1 · u2 = (rk + sk

√
2)(3 + 2

√
2) = (3rk + 4sk) + (2rk + 3sk)

√
2

and so {rk} and {sk} are given recursively by r0 = 1, s0 = 1, rk+1 = 3rk + 4sk and sk+1 = 2rk + 3sk. The
first few values of rk and sk are listed below:

k rk sk
0 1 1
1 7 5
2 41 29
3 237 169

The first 2 values of sk which are perfect squares are s0 = 1 and s3 = 169. Thus the first 2 positive solutions
to Pell’s equation x2 − 2z2 = −1 with z equal to a perfect square are (x, z) = (1, 1) and (237, 169), and hence
the first 2 positive solutions to the Diophantine equation x2 − 2y4 = −1 are (x, y) = (1, 1) and (237, 13). We
remark that these might be the only two positive solutions.

(b) Find the first 4 smallest positive solutions to the Diophantine equation x(x+ 1) = 2y2.

Solution: Note that x(x+1) = 2y2 ⇐⇒
(
x+ 1

2

)2− 1
4 = 2y2 ⇐⇒ (2x+1)2−8y2 = 1. We find the continued

fraction for
√

8.
k ak xk pk qk pk

2 − 8qk
2

0 2
√

8 2 1 −4
1 1 1√

8−2 =
√
8+2
4 3 1 1

2 4 4√
8−2 =

√
8+2
1

We see that the smallest unit u > 1 in Z[
√

8] is u = 3 +
√

8. The smallest 4 units v > 1 are

u1 = 3 +
√

8 , u2 = 17 + 6
√

8 , u3 = 99 + 35
√

8 , u4 = 577 + 204
√

8.

The positive pairs (x, y) with (2x + 1)2 − 8y2 = 1 correspond to the units (2x + 1) + y
√

8, so the smallest 4
such pairs (x, y) are (1, 1), (8, 6), (49, 35) and (288, 204).


