PMATH 340 Number Theory, Solutions to the Exercises for Chapter 8

1: For each of the following integers n, determine whether n is a sum of two squares, and if so then find the number of pairs $(x, y) \in \mathbf{Z}^{2}$ for which $n=x^{2}+y^{2}$.
(a) $n=1081$

Solution: We have $1081=23 \cdot 47$, which is not a sum of 2 squares because $23=3 \bmod 4(\operatorname{and} 47=3 \bmod 4)$.
(b) $n=3,185,000$

Solution: We have $3185000=2^{3} \cdot 5^{4} \cdot 7^{2} \cdot 13$, which is a sum of 2 squares because $13=1 \bmod 4$. The number of pairs $(x, y) \in \mathbf{Z}^{2}$ for which $n=x^{2}+y^{2}$ is equal to $4 \tau\left(5^{4} \cdot 13\right)=4 \cdot 5 \cdot 2=40$.
(c) $n=\binom{100}{11}=\frac{100!}{11!89!}$

Solution: We have $\binom{100}{11}=\frac{100 \cdot 99 \cdot 98 \cdot 97 \cdot 96 \cdot 95 \cdot 94 \cdot 93 \cdot 92 \cdot 91 \cdot 90}{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=14 \cdot 97 \cdot 95 \cdot 94 \cdot 93 \cdot 92 \cdot 91 \cdot 15=2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 19 \cdot 23 \cdot 31 \cdot 47 \cdot 97$, which is not a sum of two squares because $19=23=31=47=3 \bmod 4$.

2: Let $n=99450$.
(a) Write n as a product of irreducible elements in $\mathbf{Z}[i]$.

Solution: $n=99450=2 \cdot 3^{2} \cdot 5^{2} \cdot 13 \cdot 17=(1+i)(1-i)(3)^{2}(2+i)^{2}(2-i)^{2}(3+2 i)(3-2 i)(4+i)(4-i)$.
(b) List all of the pairs $(x, y) \in \mathbf{Z}^{2}$ with $0 \leq x \leq y$ such that $n=x^{2}+y^{2}$.

Solution: We have $n=x^{2}+y^{2}$ if and only if $n=z \bar{z}$ where $z=x+y i$. We can write $n=z \bar{z}$ when $z=u(1+i)(3)(2+i)^{j}(2-i)^{2-j}(3+2 i)^{k}(3-2 i)^{1-k}(4+i)^{\ell}(4-i)^{1-\ell}$ where u is a unit and $j=0,1$ or 2 and $k=0$ or 1 and $\ell=0$ or 1 . We note that there are $4 \cdot 3 \cdot 2 \cdot 2=48$ possibilities for z. We list some of the possible values for z.

$$
\begin{aligned}
& (1+i)(3)(2+i)(3+2 i)(4+i)=(3+3 i)(3+4 i)(10+11 i)=(-3+21 i)(10+11 i)=-261+177 i \\
& (1+i)(3)(2+i)^{2}(3+2 i)(4-i)=(-3+21 i)(14+5 i)=-147+279 i \\
& (1+i)(3)(2+i)^{2}(3-2 i)(4+i)=(-3+21 i)(14-5 i)=63+309 i \\
& (1+i)(3)(2+i)^{2}(3-2 i)(4-i)=(-3+21 i)(10-11 i)=201+243 i \\
& (1+i)(3)(2+i)(2-i)(3+2 i)(4+i)=(3+3 i)(5)(10+11 i)=(15+15 i)(10+11 i)=-15+315 i \\
& (1+i)(3)(2+i)(2-i)(3+2 i)(4-i)=(15+15 i)(14+5 i)=135+285 i
\end{aligned}
$$

At this stage we can stop listing values for z because each of the above 6 values $z=x+y i$ determines 8 of the 48 possible values, namely $\pm x \pm y i$ and $\pm y \pm x i$. Thus there are 6 pairs $(x, y) \in \mathbf{Z}^{2}$ with $0 \leq x \leq y$ such that $n=x^{2}+y^{2}$, namely $(x, y)=(15,315),(63,309),(135,285),(147,279),(177,261)$ and $(201,243)$.

3: (a) Solve Pell's equation $x^{2}-22 y^{2}=1$.
Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{22}$ and the first few convergents $c_{k}=\frac{p_{k}}{q_{k}}$ along with the norms $N_{k}=N\left(p_{k}+q_{k} \sqrt{2} 2\right)=p_{k}^{2}-22 q_{k}^{2}$.

k	x_{k}	a_{k}	p_{k}	q_{k}	N_{k}
0	$\sqrt{22}$	4	4	1	-6
1	$\frac{1}{\sqrt{22}-4}=\frac{\sqrt{22}+4}{6}$	1	5	1	3
2	$\frac{6}{\sqrt{22}-2}=\frac{\sqrt{22}+2}{3}$	2	14	3	-2
3	$\frac{3}{\sqrt{22}-4}=\frac{\sqrt{22}+4}{2}$	4	61	13	3
4	$\frac{2}{\sqrt{22}-4}=\frac{\sqrt{22}+4}{3}$	2	136	29	-6
5	$\frac{3}{\sqrt{22}-2}=\frac{\sqrt{22}+2}{6}$	1	197	42	1
6	$\frac{6}{\sqrt{22}-4}=\frac{\sqrt{22}+4}{1}$	8			

We have $\sqrt{22}=[4, \overline{1,2,4,2,1,8}]$ with period $\ell=6$. Writing $u_{k}=p_{k}+q_{k} \sqrt{22} \in \mathbf{Z}[\sqrt{22}]$, the smallest unit in $\mathbf{Z}[\sqrt{22}]$ with $u>1$ is $u=u_{\ell-1}=u_{5}=197+42 \sqrt{22}$, and we have $N(u)=1$. The set of all units is the set of elements of the form $\pm u^{k}= \pm u_{k \ell-1}$ with $k \in \mathbf{Z}$, and all of these units have norm 1. If we write $u^{k}=(197+42 \sqrt{22})^{k}=r_{k}+s_{k} \sqrt{22}$, then the solutions to Pell's equation $x^{2}-22 y^{2}=1$ are given by $(x, y)=\left(\pm r_{k}, \pm s_{k}\right)$ where $k \in \mathbf{Z}$ with $k \geq 0$. We also remark that since

$$
\left(r_{k+1}, s_{k+1} \sqrt{22}\right)=u^{k+1}=u^{k} \cdot u=\left(r_{k}+s_{k} \sqrt{22}\right)(197+42 \sqrt{22})=\left(197 r_{k}+924 s_{k}\right)+\left(42 r_{k}+197 s_{k}\right) \sqrt{22}
$$

it follows that the sequences $\left\{r_{k}\right\}$ and $\left\{s_{k}\right\}$ are given recursively for $k \geq 0$ by

$$
r_{0}=1, s_{0}=0, r_{k+1}=197 r_{k}+924 s_{k}, s_{k+1}=42 r_{k}+197 s_{k}
$$

It is also possible to solve the recursion to obtain explicit (but ugly) closed-form formulas for r_{k} and s_{k}.
(b) Solve Pell's equation $x^{2}-13 y^{2}=1$.

Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{13}$ and the first few convergents $c_{k}=\frac{p_{k}}{q_{k}}$ along with the norms $N_{k}=N\left(p_{k}+q_{k} \sqrt{1} 3\right)=p_{k}^{2}-13 q_{k}^{2}$.

0	$\sqrt{13}$	3	3	1	-4
1	$\frac{1}{\sqrt{13}-3}=\frac{\sqrt{13}+3}{4}$	1	4	1	3
2	$\frac{4}{\sqrt{13}-1}-\frac{\sqrt{13}+1}{3}$	1	7	2	-3
3	$\frac{3}{\sqrt{13}-2}=\frac{\sqrt{13}+2}{3}$	1	11	3	4
4	$\frac{3}{\sqrt{13}-1}=\frac{\sqrt{13}+1}{4}$	1	18	5	-1
5	$\frac{4}{\sqrt{13}-3}=\frac{\sqrt{13}+3}{1}$	6			

We have $\sqrt{13}=[3, \overline{1,1,1,1,6}]$ with periosd $\ell=5$. Writing $u_{k}=p_{k}+q_{k} \sqrt{13} \in \mathbf{Z}[\sqrt{13}]$, the smallest unit u in $\mathbf{Z}[\sqrt{13}]$ with $u>1$ is $u=u_{\ell-1}=u_{4}=18+5 \sqrt{13}$, and we have $N(u)=-1$. The smallest unit v in $\mathbf{Z}[\sqrt{13}]$ with $v>1$ and $N(v)=1$ is $v=u^{2}=(18+5 \sqrt{13})^{2}=649+180 \sqrt{13}$. If we write $v^{k}=(649+180 \sqrt{13})^{k}=r_{k}+s_{k} \sqrt{13}$, then the solutions to Pell's equation $x^{2}-13 y^{2}=1$ are given by $(x, y)=\left(\pm r_{k}, \pm s_{k}\right)$ where $k \in \mathbf{Z}$ with $k \geq 0$.

4: (a) Let $d \in \mathbf{Z}^{+}$be a non-square and let $0 \neq n \in \mathbf{Z}$. Show that the Diophantine equation $x^{2}-d y^{2}=n$ either has no solution or infinitely many solutions.
Solution: Suppose that the Diophantine equation $x^{2}-d y^{2}=n$ has at least one solution. Let (x, y) be a solution. Let $a=|x|$ and $b=|y|$, and note that (a, b) is another solution with $a, b \geq 0$. Let $w=a+b \sqrt{d}$ and note that $N(w)=a^{2}-d b^{2}=n$. Since $n \neq 0$ we have $(a, b) \neq(0,0)$ and so $w=a+b \sqrt{d} \geq 1$. Let u be the smallest unit in $\mathbf{Z}[\sqrt{d}]$ with $u>1$. Since $u>1$ and $w \geq 1$ we have $w<w u<w u^{2}<w u^{3}<\cdots$. Write $w u^{k}=r_{k}+s_{k} \sqrt{d}$ for $k \geq 0$. For each $k \geq 0$ we have $r_{k}^{2}-d s_{k}^{2}=N\left(w u^{k}\right)=N(w) N(u)^{k}=n \cdot 1^{k}=n$ and so $\left(r_{k}, s_{k}\right)$ is a solution to the Diophantine equation $x^{2}-d y^{2}=n$.
(b) For which $n \in \mathbf{Z}$ with $-3 \leq n \leq 10$ do there exist $x, y \in \mathbf{Z}$ with $x^{2}-31 y^{2}=n$?

Solution: We calculate the continued fraction for $\sqrt{31}$.

k	a_{k}	$x_{k}=\frac{1}{x_{k}-a_{k}}=\frac{r_{k}+\sqrt{31}}{s_{k}}$	p_{k}	q_{k}	$p_{k}{ }^{2}-31 q_{k}{ }^{2}$
0	5	$\sqrt{31}=\frac{0+\sqrt{31}}{\frac{1}{2}}$	5	1	-6
1	1	$\frac{1}{\sqrt{31}-5}=\frac{\sqrt{31}+5}{6}$	6	1	5
2	1	$\frac{6}{\sqrt{31}-1}=\frac{\sqrt{31}+1}{5}$	11	2	-3
3	3	$\frac{5}{\sqrt{31}-4}=\frac{\sqrt{31}+4}{3}$	39	7	2
4	5	$\frac{3}{\sqrt{31}-5}=\frac{\sqrt{31}+5}{2}$	206	37	-3
5	3	$\frac{2}{\sqrt{31}-5}=\frac{\sqrt{31}+5}{3}$	657	118	5
6	1	$\frac{3}{\sqrt{31}-4}=\frac{\sqrt{31}+4}{5}$	863	155	-6
7	1	$\frac{5}{\sqrt{31}-1}=\frac{\sqrt{31}+1}{6}$	1520	273	1
8	10	$\frac{6}{\sqrt{31}-5}=\frac{\sqrt{31}+5}{1}$			

Note first that the solutions to $x^{2}-31 y^{2}=1$ are given by $(x, y)=\left(p_{k}, q_{k}\right)$ with $k=7 \bmod 8$, and there are no solutions to $x^{2}-31 y^{2}=-1$. When $n=-3$ a solution to the equation $x^{2}-31 y^{2}=n$ is given by $(x, y)=\left(p_{2}, q_{2}\right)=(11,2)$, when $n=0$ a solution is given by $(x, y)=(0,0)$, when $n=2$ a solution is given by $(x, y)=\left(p_{3}, q_{3}\right)=(39,7)$, when $n=5$ a solution is given by $(x, y)=\left(p_{1}, q_{1}\right)=(6,1)$, and when $n=-6$ a solution is given by $(x, y)=\left(p_{0}, q_{0}\right)=(5,1)$.

For $x, y \in \mathbf{Q}$, let us write $N(x+y \sqrt{31})=x^{2}-31 y^{2}$ (with no absolute value sign). Let $u_{-6}=5+\sqrt{31}$, $u_{-3}=11+2 \sqrt{31}, u_{1}=1520+273 \sqrt{31}, u_{2}=39+7 \sqrt{31}$ and $u_{5}=6+\sqrt{31}$ so that for each $n=-6,-3,1,2,5$ we have $u_{n} \in \mathbf{Z}[\sqrt{31}]$ with $N\left(u_{n}\right)=n$. Let $u_{4}=\left(u_{2}\right)^{2}, u_{8}=\left(u_{2}\right)^{3}, u_{9}=\left(u_{3}\right)^{3}$ and $u_{10}=u_{2} u_{5}$. Then for $n=4,8,9,10$ we have $N\left(u_{n}\right)=n$, and so the equation $x^{2}-31 y^{2}=n$ does have a solution (indeed if we write $u_{n}=x+y \sqrt{31}$ then $\left.n=N\left(u_{n}\right)=x^{2}-y \sqrt{31}\right)$.

We claim that when $n \in\{-1,-2,3\}$ there is no solution. Suppose, for a contradiction that $x^{2}-31 y^{2}=n$ with $x, y \in \mathbf{Z}^{+}$and $n \in\{-1,-2,3\}$. Since $|n|<\sqrt{31}$, we know that $\frac{x}{y}$ must be equal to some convergent $c_{k}=\frac{p_{k}}{q_{k}}$. Note that $\operatorname{gcd}(x, y)=1$ since if p was prime with $p \mid x$ and $p \mid y$ then we would have $p^{2} \mid\left(x^{2}-31 y^{2}\right)=n$, but $-1,-2$ and 3 have no square prime factors. Also note that $\operatorname{gcd}\left(p_{k}, q_{k}\right)=1$ because of the identity $p_{k+1} q_{k}-q_{k+1} p_{k}=(-1)^{k}$. It follows that we must have $x=p_{k}$ and $y=q_{k}$. But then, from our table, and from the periodic nature of the values $p_{k}{ }^{2}-31 q_{k}{ }^{2}$, we must have $x^{2}-31 y^{2}=p_{k}{ }^{2}-31 q_{k}{ }^{2} \in\{-6,-3,1,2,5\}$.

Finally, we claim that when $n \in\{-1,3,6,7\}$ there can be no solution. To see this we work modulo 8 . Modulo 8, we have $x^{2} \in\{0,1,4\}$ and so $x^{2}-31 y^{2}=x^{2}+y^{2} \in\{0,1,2,4,5\}$, and hence $x^{2}-31 y^{2} \notin\{-1,3,6,7\}$. To summarize, there is a solution for $n \in\{-3,0,1,2,4,5,8,9,10\}$ but no solution for $n \in\{-2,-1,3,6,7\}$.

5: (a) Find the first 2 smallest positive solutions to the Diophantine equation $x^{2}-2 y^{4}=-1$.
Solution: We solve Pell's equation $x^{2}-2 z^{2}=-1$ with $z=y^{2}$. By inspection, the smallest unit $u \in \mathbf{Z}[\sqrt{2}]$ with $u>1$ is $u=1+\sqrt{2}$ and we have $N(u)=-1$. The units $v>1$ with $N(v)=1$ are the elements u^{k} with k even and the units $v>1$ with $N(v)=-1$ are the elements u^{k} with k odd. If we write $u^{2 k+1}=r_{k}+s_{k} \sqrt{2}$, then the positive solutions to Pell's equation $x^{2}-2 z^{2}=-1$ are the pairs $(x, z)=\left(r_{k}, s_{k}\right)$ with $k \geq 0$. We have

$$
r_{k+1}+s_{k+1} \sqrt{2}=u^{2 k+3}=u^{2 k+1} \cdot u^{2}=\left(r_{k}+s_{k} \sqrt{2}\right)(3+2 \sqrt{2})=\left(3 r_{k}+4 s_{k}\right)+\left(2 r_{k}+3 s_{k}\right) \sqrt{2}
$$

and so $\left\{r_{k}\right\}$ and $\left\{s_{k}\right\}$ are given recursively by $r_{0}=1, s_{0}=1, r_{k+1}=3 r_{k}+4 s_{k}$ and $s_{k+1}=2 r_{k}+3 s_{k}$. The first few values of r_{k} and s_{k} are listed below:

k	r_{k}	s_{k}
0	1	1
1	7	5
2	41	29
3	237	169

The first 2 values of s_{k} which are perfect squares are $s_{0}=1$ and $s_{3}=169$. Thus the first 2 positive solutions to Pell's equation $x^{2}-2 z^{2}=-1$ with z equal to a perfect square are $(x, z)=(1,1)$ and $(237,169)$, and hence the first 2 positive solutions to the Diophantine equation $x^{2}-2 y^{4}=-1$ are $(x, y)=(1,1)$ and $(237,13)$. We remark that these might be the only two positive solutions.
(b) Find the first 4 smallest positive solutions to the Diophantine equation $x(x+1)=2 y^{2}$.

Solution: Note that $x(x+1)=2 y^{2} \Longleftrightarrow\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}=2 y^{2} \Longleftrightarrow(2 x+1)^{2}-8 y^{2}=1$. We find the continued fraction for $\sqrt{8}$.

k	a_{k}	x_{k}	p_{k}	q_{k}	$p_{k}{ }^{2}-8 q_{k}{ }^{2}$
0	2	$\sqrt{8}$	2	1	-4
1	1	$\frac{1}{\sqrt{8}-2}=\frac{\sqrt{8}+2}{4}$	3	1	1
2	4	$\frac{4}{\sqrt{8}-2}=\frac{\sqrt{8}+2}{1}$			

We see that the smallest unit $u>1$ in $\mathbf{Z}[\sqrt{8}]$ is $u=3+\sqrt{8}$. The smallest 4 units $v>1$ are

$$
u^{1}=3+\sqrt{8}, u^{2}=17+6 \sqrt{8}, u^{3}=99+35 \sqrt{8}, u^{4}=577+204 \sqrt{8}
$$

The positive pairs (x, y) with $(2 x+1)^{2}-8 y^{2}=1$ correspond to the units $(2 x+1)+y \sqrt{8}$, so the smallest 4 such pairs (x, y) are $(1,1),(8,6),(49,35)$ and $(288,204)$.

