PMATH 340 Number Theory, Exercises for Chapter 8 (Diophantine Equations)

1: For each of the following integers n, determine whether n is a sum of two squares, and if so then find the number of pairs $(x, y) \in \mathbf{Z}^{2}$ for which $n=x^{2}+y^{2}$.
(a) $n=1081$
(b) $n=3,185,000$
(c) $n=\binom{100}{11}=\frac{100!}{11!89!}$

2: Let $n=99450$.
(a) Write n as a product of irreducible elements in $\mathbf{Z}[i]$.
(b) List all of the pairs $(x, y) \in \mathbf{Z}^{2}$ with $0 \leq x \leq y$ such that $n=x^{2}+y^{2}$.

3: (a) Solve Pell's equation $x^{2}-22 y^{2}=1$.
(b) Solve Pell's equation $x^{2}-13 y^{2}=1$.

4: (a) Let $d \in \mathbf{Z}^{+}$be a non-square and let $0 \neq n \in \mathbf{Z}$. Show that the Diophantine equation $x^{2}-d y^{2}=n$ either has no solution or infinitely many solutions.
(b) For which $n \in \mathbf{Z}$ with $-3 \leq n \leq 10$ do there exist $x, y \in \mathbf{Z}$ with $x^{2}-31 y^{2}=n$?

5: (a) Find the first 2 smallest (and possibly only) positive solutions to the Diophantine equation $x^{2}-2 y^{4}=-1$.
(b) Find the first 4 smallest positive solutions to the Diophantine equation $x(x+1)=2 y^{2}$.

