PMATH 340 Number Theory, Exercises for Chapter 8 (Diophantine Equations)

- 1: For each of the following integers n, determine whether n is a sum of two squares, and if so then find the number of pairs $(x, y) \in \mathbb{Z}^2$ for which $n = x^2 + y^2$.
 - (a) n = 1081
 - (b) n = 3,185,000
 - (c) $n = \binom{100}{11} = \frac{100!}{11!\,89!}$
- **2:** Let n = 99450.
 - (a) Write n as a product of irreducible elements in $\mathbf{Z}[i]$.
 - (b) List all of the pairs $(x, y) \in \mathbb{Z}^2$ with $0 \le x \le y$ such that $n = x^2 + y^2$.
- **3:** (a) Solve Pell's equation $x^2 22y^2 = 1$.
 - (b) Solve Pell's equation $x^2 13y^2 = 1$.
- 4: (a) Let $d \in \mathbb{Z}^+$ be a non-square and let $0 \neq n \in \mathbb{Z}$. Show that the Diophantine equation $x^2 dy^2 = n$ either has no solution or infinitely many solutions.
 - (b) For which $n \in \mathbf{Z}$ with $-3 \le n \le 10$ do there exist $x, y \in \mathbf{Z}$ with $x^2 31y^2 = n$?
- 5: (a) Find the first 2 smallest (and possibly only) positive solutions to the Diophantine equation x² 2y⁴ = -1.
 (b) Find the first 4 smallest positive solutions to the Diophantine equation x(x + 1) = 2y².