
PMATH 340 Number Theory, Solutions to the Exercises for Chapter 7

1: (a) Express the (finite) continued fraction [2, 1, 3, 1, 2] as a rational number, in reduced form.

Solution: We have

[2, 1, 3, 1, 2] = 2 +
1

1 + 1
3+ 1

1+ 1
2

= 2 +
1

1 + 1
3+ 2

3

= 2 +
1

1 + 3
11

= 2 + 11
14 = 39

14 .

(b) Express that rational number 64
47 as a (finite) continued fraction.

Solution: Applying the Euclidean Algorithm gives

64 = 1 · 47 + 17 , 47 = 2 · 17 + 13 , 17 = 1 · 13 + 4 , 13 = 3 · 4 + 1 , 4 = 4 · 1 + 0

so, using the quotients as in Theorem 7.2, we have 64
47 = [1, 2, 1, 3, 4].

2: (a) Express the (periodic) continued fraction [1, 1, 3 · · ·] as a quadratic irrational.

Solution: Let x = [1, 1, 3] and u = [1, 3]. Then u = 1 + 1
3+ 1

1+ 1
3+···

= 1 + 1
3+ 1

u

and x = 1 + 1
1+ 1

3+···
= 1 + 1

u .

Since u = 1 + 1
3+ 1

u

= 1 + u
3u+1 = 4u+1

3u+1 we have u(3u + 1) = 4u + 1, that is 3u2 − 3u − 1 = 0, and hence

u = 3±
√
21

6 . Since u > 1 we must have u = 3+
√
21

6 and hence x = 1 + 1
u = 1 + 6√

21+3
= 1 + 6(

√
21−3)
12 =

√
21−1
2 .

(b) Express the quadratic irrational 3+
√
7

2 as a (periodic) continued fraction.

Solution: Using the recursion x0 = 3+
√
7

2 , ak = bakc and xk+1 = 1
xk−ak

we have

k xk ak

0
√
7+3
2 2

1 2√
7−1 =

√
7+1
3 1

2 3√
7−2 =

√
7+2
1 4

3 1√
7−2 =

√
7+2
3 1

4 3√
7−1 =

√
7+1
2 1

5 2√
7−1 =

√
7+1
3

Since x5 = x1 the sequences xk and ak become periodic and we have 3+
√
7

2 = [a0, a1, a2, · · ·] = [2, 1, 4, 1, 1].



3: (a) Express
√

7 as a continued fraction and find the the kth convergents ck = pk

qk
for 0 ≤ k ≤ 7. Let

uk = pk + qk
√

7 ∈ Z[
√

7 ] for 0 ≤ k ≤ 7 and calculate u3uk ∈ Z[
√

7 ] for 0 ≤ k ≤ 3. What do you notice?

Solution: The following table lists the data used to calculate the continued fraction for
√

7 and the convergents
ck = pk

qk
for 0 ≤ k ≤ 7. The values of xk ak, pk and qk are given recursively by x0 =

√
7, ak = bxkc,

xk+1 = 1
xk−ak

, p0 = a0, p1 = a1a0 + 1, pk = akpk−1 + pk−2, q0 = 1, q1 = a1 and qk = akqk−1 + qk−2.

k xk ak pk qk

0
√

7 2 2 1
1 1√

7−2 =
√
7+2
3 1 3 1

2 3√
7−1 =

√
7+1
2 1 5 2

3 2√
7−1 =

√
7+1
3 1 8 3

4 3√
7−2 =

√
7+2
1 4 37 14

5 1√
7−2 =

√
7+2
3 1 45 17

6 3√
7−1 =

√
7+1
2 1 82 31

7 2√
7−1 =

√
7+1
3 1 127 48

From the table, we see that
√

7 = [2, 1, 1, 1, 4] and the first few convergents are

(c0, c1, · · · , c7) =
(

2
1 ,

3
1 ,

5
2 ,

8
3 ,

37
14 ,

45
17 ,

82
31 ,

127
48

)
.

The first few values of uk = pk + qk
√

7 ∈ Z[
√

7 ] are

(u0, u1, · · · , u7) =
(

2+
√

7 , 3+
√

7 , 5+2
√

7 , 8+3
√

7 , 37+14
√

7 , 45+17
√

7 , 82+31
√

7 , 127+48
√

7
)

and we have
u3u0 = (8 + 3

√
7)(2 +

√
7) = 37 + 14

√
7 = u0,

u3u1 = (8 + 3
√

7)(3 +
√

7) = 45 + 17
√

7 = u5,

u3u2 = (8 + 3
√

7)(5 + 2
√

7) = 82 + 31
√

7 = u6 and

u3u3 = (8 + 3
√

7)(8 + 3
√

7) = 127 + 48
√

7.

We notice that u3uk = uk+3 for 0 ≤ k ≤ 3.



(b) Express
√

2 as a continued fraction, then show that the kth convergent is given by ck = pk

qk
with

pk = 1
2

(
(1 +

√
2)k+1 + (1−

√
2)k+1

)
and qk = 1

2
√
2

(
(1 +

√
2)k+1 − (1−

√
2)k+1

)
.

Solution: The following table lists the data used to obtain the continued fraction for
√

2 and the convergents
ck = pk

qk
.

k xk ak pk qk

0
√

2 1 1 1
1 1√

2−1 =
√
2+1
1 2 3 2

2 1√
2−1 =

√
2+1
1 2 7 5

We see that
√

2 = [1, 2] and that pk and qk are given recursively by p0 = 1, p1 = 3, pk+1 = 2pk + pk−1,
q0 = 1, q1 = 2 and qk+1 = 2qk + qk−1.

Recall (or prove by induction) that when a sequence xk is given by the linear recursion xk+1 = axk+bxk−1
(where a, b ∈ C) the solution is of the form xk = Auk+Bvk for some A,B ∈ C, where u and v are the (complex)
roots of the polynomial g(x) = x2 − ax− b, provided that the roots are distinct. The values of A and B can
be determined from two initial values of the sequence, say x0 and x1.

The sequence pk is given by p0 = 2, p1 = 3 and pk = 2pk + pk−1. The polynomial g(x) = x2 − 2x− 1 has
roots 1±

√
2 and so the sequence pk is given by pk = A(1 +

√
2) +B(1−

√
2) for some constants A,B. To get

p0 = 2 we need A + B = 2 and to get p1 = 3 we need A(1 +
√

2) + B(1 −
√

2) = 3 Solving these two linear
equations gives A = 1

2 (1 +
√

2) and B = 1
2 (1 −

√
2) and so we have pk = 1

2 (1 +
√

2)k+1 + 1
2 (1 −

√
2)k+1, as

required.
The sequence qk is given by the same recursion formula so it is given by qk = D(1 +

√
2) + E(1 −

√
2)

for some constants D,E, but it has different initial values. To get q0 = 1 we need D + E = 1 and to get
q1 = 2 we need D(1 +

√
2) + E(1−

√
2) = 2. Solving these two linear equations gives D = 1

2
√
2
(1 +

√
2) and

E = − 1√
2
(1−

√
2) and so we obtain qk = 1

2
√
2
(1 +

√
2)k+1 − 1

2
√
2
(1−

√
2)k+1, as required.



4: (a) Express
√

57 as a continued fraction and find the smallest unit u > 1 in Z
[√

57
]
.

Solution: The following table lists the data used to obtain the continued fraction for
√

57.

k 0 1 2 3 4 5 6

ak 7 1 1 4 1 1 14

xk

√
57+0
1

√
57+7
8

√
57+1
7

√
57+6
3

√
57+6
7

√
57+1
8

√
57+7
1

pk 7 8 15 68 83 151
qk 1 1 2 9 11 20

pk
2 − 57 qk

2 −8 7 −3 7 −8 1

From the table we see that
√

57 = [7, 1, 1, 4, 1, 1, 14] and the smallest unit is u > 1 in Z[
√

57 ] is u = 151+20
√

57.

(b) Determine whether 5 is irreducible in the ring Z[
√

57
]
.

Solution: We use the field norm defined in Q(
√

57) by N(x + y
√

57) = x2 − 57 y2. We know that this norm
is multiplicative. Note that N(5) = 25. It follows that if 5 was reducible, then it would have to factor
into two elements of norm ±5. We claim that there are no elements of norm ±5 in Z[

√
57 ]. Suppose, for

a contradiction, that x, y ∈ Z+ and x2 − 57 y2 = ±5. Since 5 <
√

57 it follows, from Corollary 7.11 in the
Lecture Notes, that we can choose k ∈ Z+ so that x

y = pk

qk
. Since gcd(pk, qk) = 1 we must have x = tpk and

y = tqk for some t ∈ Z+. This implies that ±5 = x2 − 57 y2 = t2(pk
2 − 57qk

2) and so we must have t = 1
and pk

2 − 57qk
2 = ±5. But from the above table (whose final row repeats), we see that there is no value of

k ∈ Z+ for which pk
2− 57qk

2 = ±5. Thus there are no elements of norm ±5 in Z[
√

57], as claimed, and hence
5 is irreducible.

We remark that it is also possible (but it requires a fair amount of trial and error) to show that there are
no elements of norm ±5 by working in Zn for various values of n. For example, you can verify that there are
no solutions to the equation x2 − 57y2 = +5 in Z3 and no solutions to x2 − 57y2 = −5 in Z19. Alternatively,
you can verify that there are no solutions to x2 − 57y2 = ±5 in Z25.



5: (a) Let x = [a0, a1, a2, · · · ] with a0 ∈ Z and ai ∈ Z+ for i ≥ 2. Show that

−x =

{ [
− a0 − 1, a2 + 1, a3, a4, a5, · · ·

]
, if a1 = 1[

− a0 − 1 , 1 , a1 − 1, a2, a3, a4, · · ·
]

, if a1 > 1.

Solution: Suppose first that a1 = 1. Let n ≥ 3 and let u = [a3, a4, a5, · · · , an]. Then

[a0, a1, a2, · · · , an] + [−a0 − 1, a2 + 1, a3, a4, · · · , an] = a0 +
1

1 + 1
a2+

1
u

− a0 − 1 +
1

(a2 + 1) + 1
u

=
1

1 + u
a2u+1

− 1 +
u

a2u + u + 1
=

a2u + 1

a2u + u + 1
− a2u + u + 1

a2u + u + 1
+

u

a2u + u + 1
= 0

and so we have −[a0, a1, · · · , an] = [−a0 −1, a2+1, a3, a4 · · · , n]. Taking the limit as n→∞ gives

−x = [−a0 −1, a2+1, a3, a4, a5, · · · ].
Now suppose that a1 > 1. For n ≥ 2 let v = [a2, a3, · · · , an]. Then

[a0, a1, a2, · · · , an] + [−a0 −1, 1, a1−1, a2, a3, · · · , an] = a0 +
1

a1 + 1
v

− a0 − 1 +
1

1 + 1
(a1−1)+ 1

v

=
v

a1v + 1
− 1 +

1

1 + v
a1v−v+1

=
v

a1v + 1
− a1v + 1

a1v + 1
+

a1v − v + 1

a1v + 1
= 0

and so we have −[a0, a1, a2, · · · , an] = [−a0 −1, 1, a1−1, a2, a3, · · · , an]. Taking the limit as n→∞ gives

−x = [−a0 −1, 1, a1−1, a2, a3, a4, · · · ].

(b) Let x =
√
d, where d ∈ Z+ is a non-square, so we have x =

[
a0, a1, a2, · · · , a`−1, 2a0

]
where ` is the

minimum period of the sequence {ak}. Show that {ak} is symmetric in the sense that ak = a`−k for 0 < k < `.

Solution: Let y = b
√
dc+
√
d = a0+x = [ 2a0, a1, a2, · · · , a`−1 ]. By Theorem 7.20, − 1

y = [ a`−1, · · · , a2, a1, 2a0 ]

and so −y = [0, a`−1, · · · , a2, a1, 2a0 ]. On the other hand, −y = −
(
b
√
dc −

√
d
)

=
√
d − b

√
dc = x − a0 =

[0, a1, a2, · · · , a`−1, 2a0 ]. Since

−y = [0, a1, a2, · · · , a`−1, 2a0 ] = [0, a`−1, · · · , a1, 2a0 ]

we see that ak = a`−k for 0 < k < `.


