PMATH 340 Number Theory, Solutions to the Exercises for Chapter 7

: (a) Express the (finite) continued fraction [2,1,3,1,2] as a rational number, in reduced form.

Solution: We have

1 1 1 11 39
11

(b) Express that rational number 51 as a (finite) continued fraction.
Solution: Applying the Euclidean Algorithm gives
64=1-47+17,47=2-17T+13,17=1-13+4,13=3-4+1,4=4-1+0

so, using the quotients as in Theorem 7.2, we have =[1,2,1,3,4].
: (a) Express the (periodic) continued fraction [1,1,3--] as a quadratic irrational.
Solution: Let # = [1,1,3] and u = [1,3]. Then u =1+ 3 =1+3 1and:z:fqul *1+%
+ﬁ + 5 3+
Since u = 1 + 3+1 =145 = ggi} we have u(3u + 1) = 4u + 1, that is 3u? — 3u — 1 = 0, and hence

3+\ﬁ (\ﬁ 3) _ V21-1
o=

_ 3+V21 _ 1_
u = == Since u > 1 we must have u = andhencea:—1+ 1+W+3_1+

(b) Express the quadratic irrational 3"'2[ as a (periodic) continued fraction.

Solution: Using the recursion zg = 3+T\ﬁ, ar = |ax] and 41 = -
k Tk ak
0 VAES 2
L \/72—1 =B
2 f73—2 - ﬁljL2 4
3 \/?1—2 =521
4 \/73—1 - \/?2+1 1
> \/?2—1 - \/?3+1

Since x5 = x1 the sequences x; and aj become periodic and we have 3+f



3: (a) Express /7 as a continued fraction and find the the k" convergents ¢, = Z—: for 0 < k < 7. Let
up = pr + VT € Z[\ﬁ] for 0 < k < 7 and calculate usuy, € Z[\ﬁ] for 0 < k < 3. What do you notice?

Solution: The following table lists the data used to calculate the continued fraction for /7 and the convergents
cr = % for 0 < k < 7. The values of x; ax, pr and g are given recursively by zg = VT, a, = |k,

Thi1 = 3o=s Po = @0, P1 = a1a0 + 1, pp = appr—1 +Pr—2, o = 1, @1 = a1 and g = apqr—1 + gr—2-

k Tk ar Pk Gk
0 V7 2 2 1
1 A5=Y12 1 3 1
2 A=Y 2
3 A5=YF 1 8 3
4 A= 4 37 1
oA =YE2 1 45 a7
6 2r=YF 1 82 31
T 2o =YEE 1 127 48

From the table, we see that /7 = [2,1,1,1,4] and the first few convergents are

_ (2 3 5 8 37 45 82 127
(00,01»"',07)—( )

are

The first few values of uy = pi, + qpV/7 € Z[\ﬁ
(wo, u, - - - u7) = (2+ﬁ, 34T, 54+2V7, 843V7, 37T+14V7, 454177, 824317, 127+48\ﬁ)

and we have

usug = (8 + 3V7)(2 4+ V7) = 37 + 14V7 = uy,

= (8+3VT)(3+V7) =45+ 17V7 = us,
usus = (8 4+ 3V7)(5 + 2v/7) = 82 + 31v/7 = ug and
usus = (8 + 3V7)(8 + 3V7) = 127 + 48V/7.

We notice that ugup = ugys for 0 < k < 3.

Usuy



(b) Express V/2 as a continued fraction, then show that the k*" convergent is given by ¢; = 2—: with

=3+ V2RH 4 (1= V2P and g = o (14 VR — (1- VB,

Solution: The following table lists the data used to obtain the continued fraction for v/2 and the convergents

cr = %:'
k Tk ak Pk Gk
0 2 11 1
1 Ao =3 2 3 2
2 A= 2 7 5

We see that v/2 = [1,2] and that pj and g are given recursively by po = 1, p1 = 3, pr+1 = 2Pk + Pr—1,
qo=1,q1 =2 and g1 = 2g5 + Gr—1-

Recall (or prove by induction) that when a sequence x, is given by the linear recursion a1 = axg+brk_1
(where a,b € C) the solution is of the form x), = Au*+Bv* for some A, B € C, where u and v are the (complex)
roots of the polynomial g(x) = 22 — ax — b, provided that the roots are distinct. The values of A and B can
be determined from two initial values of the sequence, say x¢ and .

The sequence py, is given by pg = 2, p1 = 3 and py = 2pi, + pr—1. The polynomial g(z) = 2% — 2z — 1 has
roots 14 +/2 and so the sequence py, is given by pr, = A(1 +v/2) + B(1 — v/2) for some constants A, B. To get
po =2 we need A+ B =2 and to get p; = 3 we need A(1 4+ v/2) + B(1 — v/2) = 3 Solving these two linear
equations gives A = 2(1+v/2) and B = 1(1 — v/2) and so we have p; = (1 + v2)*1 4+ 1(1 — /2)*1 as
required.

The sequence g is given by the same recursion formula so it is given by ¢ = D(1 4+ v/2) + E(1 — V/2)
for some constants D, E, but it has different initial values. To get ¢qg = 1 we need D + E = 1 and to get
q1 = 2 we need D(1+ +/2) 4+ E(1 — v/2) = 2. Solving these two linear equations gives D = ﬁ(l +1/2) and

E = —%(1 —+/2) and so we obtain g, = ﬁﬁ(l +V/2)k+ — ﬁ(l —V/2)F*+1 ] as required.



4: (a) Express v/57 as a continued fraction and find the smallest unit u > 1in Z [\/ 57].
Solution: The following table lists the data used to obtain the continued fraction for v/57.

k 0 1 2 3 4 5 6
ak 7 1 1 4 1 1 14
x VET+0  VBT47 /5741 V5746 V5746 VBTH1 VBTHT
k 1 8 7 3 7 8 1
Pk 7 8 15 68 83 151
qr 1 1 2 9 11 20
pr2 — 57 g2 -8 7 -3 7 -8 1

From the table we see that v/57 = [7,1,1,4, 1,1, 14] and the smallest unit is u > 1in Z[v/57] is u = 1514+-20+/57.
(b) Determine whether 5 is irreducible in the ring Z[v/57].

Solution: We use the field norm defined in Q(v/57) by N(z + yv/57) = 22 — 57y>?. We know that this norm
is multiplicative. Note that N(5) = 25. It follows that if 5 was reducible, then it would have to factor
into two elements of norm +5. We claim that there are no elements of norm 45 in Z[v/57]. Suppose, for
a contradiction, that z,y € ZT and 2> — 57y? = £5. Since 5 < /57 it follows, from Corollary 7.11 in the

Lecture Notes, that we can choose k € ZT so that % = %. Since ged(pg, qrx) = 1 we must have z = tp;, and

y = tqy for some t € ZT. This implies that +5 = 22 — 57y? = t2(py? — 57qx2) and so we must have t = 1
and py? — 57q,? = 5. But from the above table (whose final row repeats), we see that there is no value of
k € Z+ for which p? — 57¢,2 = 5. Thus there are no elements of norm £5 in Z[v/57], as claimed, and hence
5 is irreducible.

We remark that it is also possible (but it requires a fair amount of trial and error) to show that there are
no elements of norm +5 by working in Z,, for various values of n. For example, you can verify that there are
no solutions to the equation 22 — 57y = +5 in Z3 and no solutions to x? — 57y% = —5 in Z9. Alternatively,
you can verify that there are no solutions to z? — 57y? = £5 in Zgs.



5: (a) Let = [ag, a1,az,---| with ag € Z and a; € Z™ for i > 2. Show that
{ [_a/O_17a2+1aa3aa4aa5a"'} aifa/lzl
P [

—a0—171,a1—1,a2,a3,a4,-~-] yifag > 1.

Solution: Suppose first that a; = 1. Let n > 3 and let u = [a3, a4, a5, -, ay,]. Then
1
[ag,a1,az,---,an] +[—ao — 1,a2 + 1,a3,a4,---,an] = a0 + ———— —ap — 1 + —————7
n n 1+a2-1i-% ((L2+1)+%
1 u asu + 1 asu+u+1 U
- — 1+ — 2 = + -0
1+a2u+1 asu +u—+1 asu+u+1 aud+u+1l autu-+1
and so we have —[ag,a1, -+, a,] = [—ao —1,a2+1,a3,a4 ---,n]. Taking the limit as n — oo gives
—x = [—ao _1;a2+1aa37a47a5a t ]
Now suppose that a; > 1. For n > 2 let v = [ag, a3, -, a,]. Then
lag, a1, a2, -+, an] + [—ap —1,1,a1—1,az,a3, -, a,] = ap + T —a— 1+ —g—
0,1“!‘5 1+m
v 1 v av+1 av—v+1
= —1+ - = — 1 —+ L :0
a1v+1 1+ T av+1 av+1 a1v+1
and so we have —[ag,a1,a2, -, a,] = [—ap —1,1,a1—1, a9, a3, - -, a,]. Taking the limit as n — oo gives
—x = [-ao —1,1,a1—1,a2,a3,a4,---].
(b) Let = = Vd, where d € Z% is a non-square, so we have z = [ao,al,ag, - -,ag_1,2a0] where /£ is the

minimum period of the sequence {ax}. Show that {ax} is symmetric in the sense that ar = ag—; for 0 < k < £.

Solution: Let y = [Vd|+Vd = ap+z = [2ag, a1, a2, -, ar—1 |. By Theorem 7.20, —% =[ap_1, -+,az2,a1,2a0]
and so -y = [0,ap—1,- -+, a2,a1,2a9]. On the other hand, -7 = f(L\/EJ — \/ﬁ) =Vd—|Vd] =z —ag =
[0,a1,a9,--,ap—_1,2a0]. Since

_y: [Oaalaa27"'aa€7172a0] = [07a€717' "7a1;2a0]

we see that ap = ap—; for 0 < k < £.



