- 1: (a) Express the (finite) continued fraction [2, 1, 3, 1, 2] as a rational number, in reduced form. (b) Express that rational number $\frac{64}{47}$ as a (finite) continued fraction.
- **2:** (a) Express the (periodic) continued fraction $[1, \overline{1, 3} \cdots]$ as a quadratic irrational.
 - (b) Express the quadratic irrational $\frac{3+\sqrt{7}}{2}$ as a (periodic) continued fraction.
- **3:** (a) Express $\sqrt{7}$ as a continued fraction and find the the k^{th} convergents $c_k = \frac{p_k}{q_k}$ for $0 \le k \le 7$. Let (a) Express $\sqrt{2}$ as a continued fraction then show that the k^{th} convergent is given by $c_k = \frac{p_k}{q_k}$ with

$$p_k = \frac{1}{2} \left((1+\sqrt{2})^{k+1} + (1-\sqrt{2})^{k+1} \right)$$
 and $q_k = \frac{1}{2\sqrt{2}} \left((1+\sqrt{2})^{k+1} - (1-\sqrt{2})^{k+1} \right).$

- 4: (a) Express $\sqrt{57}$ as a continued fraction and find the smallest unit u > 1 in $\mathbb{Z}\left[\sqrt{57}\right]$.
 - (b) Determine whether 5 is irreducible in the ring $\mathbf{Z}[\sqrt{57}]$.
- **5:** (a) Let $x = [a_0, a_1, a_2, \cdots]$ with $a_0 \in \mathbb{Z}$ and $a_i \in \mathbb{Z}^+$ for $i \ge 2$. Show that

$$-x = \begin{cases} \left[-a_0 - 1, a_2 + 1, a_3, a_4, a_5, \cdots \right] &, \text{ if } a_1 = 1 \\ \left[-a_0 - 1, 1, a_1 - 1, a_2, a_3, a_4, \cdots \right] &, \text{ if } a_1 > 1. \end{cases}$$

(b) Let $x = \sqrt{d}$, where $d \in \mathbb{Z}^+$ is a non-square, so we have $x = \left[a_0, \overline{a_1, a_2, \cdots, a_{\ell-1}, 2a_0}\right]$ where ℓ is the minimum period of the sequence $\{a_k\}$. Show that $\{a_k\}$ is symmetric in the sense that $a_k = a_{\ell-k}$ for $0 < k < \ell$.