PMATH 340 Number Theory, Exercises for Chapter 7 (Continued Fractions)

1: (a) Express the (finite) continued fraction $[2,1,3,1,2]$ as a rational number, in reduced form.
(b) Express that rational number $\frac{64}{47}$ as a (finite) continued fraction.

2: (a) Express the (periodic) continued fraction $[1, \overline{1,3} \cdots]$ as a quadratic irrational.
(b) Express the quadratic irrational $\frac{3+\sqrt{7}}{2}$ as a (periodic) continued fraction.

3: (a) Express $\sqrt{7}$ as a continued fraction and find the the $k^{\text {th }}$ convergents $c_{k}=\frac{p_{k}}{q_{k}}$ for $0 \leq k \leq 7$. Let $u_{k}=p_{k}+q_{k} \sqrt{7} \in \mathbf{Z}[\sqrt{7}]$ for $0 \leq k \leq 7$ and calculate $u_{3} u_{k} \in \mathbf{Z}[\sqrt{7}]$ for $0 \leq k \leq 3$. What do you notice?
(b) Express $\sqrt{2}$ as a continued fraction then show that the $k^{\text {th }}$ convergent is given by $c_{k}=\frac{p_{k}}{q_{k}}$ with

$$
p_{k}=\frac{1}{2}\left((1+\sqrt{2})^{k+1}+(1-\sqrt{2})^{k+1}\right) \text { and } q_{k}=\frac{1}{2 \sqrt{2}}\left((1+\sqrt{2})^{k+1}-(1-\sqrt{2})^{k+1}\right)
$$

4: (a) Express $\sqrt{57}$ as a continued fraction and find the smallest unit $u>1$ in $\mathbf{Z}[\sqrt{57}]$.
(b) Determine whether 5 is irreducible in the ring $\mathbf{Z}[\sqrt{57}]$.

5: (a) Let $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbf{Z}$ and $a_{i} \in \mathbf{Z}^{+}$for $i \geq 2$. Show that

$$
-x=\left\{\begin{array}{cc}
{\left[-a_{0}-1, a_{2}+1, a_{3}, a_{4}, a_{5}, \cdots\right]} & , \text { if } a_{1}=1 \\
{\left[-a_{0}-1,1, a_{1}-1, a_{2}, a_{3}, a_{4}, \cdots\right],} & \text { if } a_{1}>1
\end{array}\right.
$$

(b) Let $x=\sqrt{d}$, where $d \in \mathbf{Z}^{+}$is a non-square, so we have $x=\left[a_{0}, \overline{a_{1}, a_{2}, \cdots, a_{\ell-1}, 2 a_{0}}\right]$ where ℓ is the minimum period of the sequence $\left\{a_{k}\right\}$. Show that $\left\{a_{k}\right\}$ is symmetric in the sense that $a_{k}=a_{\ell-k}$ for $0<k<\ell$.

