PMATH 340 Number Theory, Solutions to the Exercises for Chapter 6

1: (a) For $x, y \in \mathbf{Q}$, let $E(x+y \sqrt{2})=\left|x^{2}-2 y^{2}\right|$ and recall that E is a Euclidean norm in $\mathbf{Z}[\sqrt{2}]$. Let $a=17+26 \sqrt{2} \in \mathbf{Z}[\sqrt{2}]$ and $b=5+3 \sqrt{2} \in \mathbf{Z}[\sqrt{2}]$. Find $q, r \in \mathbf{Z}[\sqrt{2}]$ with $a=q b+r$ and $E(r)<E(b)$.
Solution: We have $\frac{a}{b}=\frac{17+26 \sqrt{2}}{5+3 \sqrt{2}}=\frac{17+26 \sqrt{2}}{5+3 \sqrt{2}} \cdot \frac{5-3 \sqrt{2}}{5-3 \sqrt{2}}=\frac{-68+79 \sqrt{2}}{7} \cong-10+11 \sqrt{2}$ (with -10 being the integer nearest to $-\frac{68}{7}$ and 11 being the integer nearest to $\frac{79}{7}$), so we take $q=-10+11 \sqrt{2}$ and then we take $r=a-q b=(17+26 \sqrt{2})-(-10+11 \sqrt{2})(5+3 \sqrt{2})=(17+26 \sqrt{2})-(16+25 \sqrt{2})=1+\sqrt{2}$.
(b) Let $a=-20+30 i \in \mathbf{Z}[i]$ and $b=-5+14 i$ in $\mathbf{Z}[i]$. Use the Euclidean Algorithm to find $d=\operatorname{gcd}(a, b) \in \mathbf{Z}[i]$ then use Back-Substitution to find $s, t \in \mathbf{Z}[i]$ such that $a s+b t=d$.
Solution: We have $\frac{a}{b}=\frac{-20+3 i}{-5+14 i}=\frac{-20+30 i}{-5+14 i} \cdot \frac{-5-14 i}{-5-14 i}=\frac{520+130 i}{221}=\frac{520+130 i}{221} \cong 2+i$, so we take $q_{1}=2+i$ and $r_{1}=a-q_{1} b=(-20+30 i)-(2+i)(-5+14 i)=4+7 i$. Next we have $\frac{b}{r_{1}}=\frac{-5+14 i}{4+7 i}=\frac{78+91 i}{65} \cong 1+i$ so we take $q_{2}=1+i$ and $r_{2}=b-q_{2} r_{1}=(-5+14 i)-(1+i)(4+7 i)=-2+3 i$. Finally we have $\frac{r_{1}}{r_{2}}=\frac{4+7 i}{-2+3 i}=1-2 i$ so we take $q_{3}=1-2 i$ and $r_{3}=0$. Thus $d=\operatorname{gcd}(a, b)=r_{2}=-2+3 i$.

Back-Substitution gives the sequence $\left(s_{0}, s_{1}, s_{2}\right)=(1,-(1+i),(2+i)(1+i)+1=2+3 i)$ so we can take $s=s_{1}=-(1+i)$ and $t=s_{2}=2+3 i$ to get $a s+b t=d$.

2: (a) Find the smallest unit $u>1$ in $\mathbf{Z}[\sqrt{18}]$.
Solution: We use the method described in Example 6.12 of the Lecture Notes. We have

b	1	2	3	4
$18 b^{2}$	18	76	162	288

We see that the smallest value of $b \in \mathbf{Z}^{+}$for which $18 b^{2}$ differs from a square by ± 1 is $b=4$ and, in this case, we have $18 b^{2}=288=a^{2}-1$ for $a=17$. Thus the smallest unit $u \in \mathbf{Z}[\sqrt{18}]$ with $u>1$ is $u=17+4 \sqrt{18}$.
(b) Show that $\mathbf{Z}[\sqrt{10}]$ is not a unique factorization domain.

Solution: In $\mathbf{Z}[\sqrt{10}]$ we have $(2+\sqrt{10})(-2+\sqrt{10})=6=2 \cdot 3$. We claim that each of the elements 2,3 and $\pm 2+\sqrt{10}$ is irreducible in $\mathbf{Z}[\sqrt{10}]$. We use the field norm in $\mathbf{Q}[\sqrt{10}]$ given by $N(x+y \sqrt{10})=x^{2}-10 y^{2}$. Note that $N(2)=4, N(3)=9$ and $N(\pm 2+\sqrt{10})=-6$. If 2 was reducible, it would factor as a product of two non-units, say $2=z w$. Then we would have $N(z) N(w)=N(z w)=N(2)=4$ so that either $N(z)=2=N(w)$ or $N(z)=-2=N(w)$. Similarly, if 3 was reducible it would factor into two elements of norms ± 3 and if $\pm 2+\sqrt{10}$ were reducible then it would factor into two elements with one of norm ± 2 and the other of norm ∓ 3. To show that the elements 2,3 and $\pm 2+\sqrt{10}$ are irreducible, it suffices to show that there are no elements in $\mathbf{Z}[\sqrt{10}]$ of norm ± 2 or ± 3. We can see this by working modulo 10 . Note that for $x, y \in \mathbf{Z}$ we have $N(x+y \sqrt{10})=x^{2}-10 y^{2} \equiv x^{2} \bmod 10$. But in \mathbf{Z}_{10} we have

$$
\begin{array}{ccccccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
x^{2} & 0 & 1 & 4 & 9 & 6 & 5 & 6 & 9 & 4 & 1
\end{array}
$$

so there are no elements $x \in \mathbf{Z}_{10}$ with $x^{2}= \pm 2, \pm 3$. Thus the elements 2,3 ad $\pm 2+\sqrt{10}$ are all irreducible in $\mathbf{Z}[\sqrt{10}]$.

Finally, note that 2 is not an associate of either of the two elements $\pm 2+\sqrt{10}$ because (working in the field $\mathbf{Q}[\sqrt{10}]$) we have $\frac{ \pm 2+\sqrt{10}}{2}= \pm 1+\frac{1}{2} \sqrt{10} \notin \mathbf{Z}[\sqrt{10}]$ (if they were associates then we would have $\frac{ \pm 2+\sqrt{10}}{2}=u$ for some unit $u \in \mathbf{Z}[\sqrt{10}])$. Similarly, 3 is not an associate of $\pm 2+\sqrt{10}$ because $\frac{ \pm 2+\sqrt{10}}{3}= \pm \frac{2}{3}+\frac{1}{3} \sqrt{10} \notin \mathbf{Z}[\sqrt{10}]$.

3: Let $w=e^{i \pi / 3}=\frac{1+\sqrt{3} i}{2}$ and let $\mathbf{Z}[w]=\{a+b w \mid a, b \in \mathbf{Z}\}$ and $\mathbf{Q}[w]=\{a+b w \mid a, b \in \mathbf{Q}\}$.
(a) Show that $\mathbf{Z}[\sqrt{3} i] \varsubsetneqq \mathbf{Z}[w]$ and $\mathbf{Q}[\sqrt{3} i]=\mathbf{Q}[w]$.

Solution: For $a, b \in \mathbf{Z}$ we have $a+b \sqrt{3} i=(a-b)+2 b\left(\frac{1+\sqrt{3} i}{2}\right)=(a-b)+2 b w$, and so $\mathbf{Z}[\sqrt{3} i] \subseteq \mathbf{Z}[w]$. Since $w=\frac{1}{2}+\frac{1}{2} \sqrt{3} i \notin \mathbf{Z}[\sqrt{3} i]$ we have $\mathbf{Z}[\sqrt{3} i] \varsubsetneqq \mathbf{Z}[w]$. We remark that we made use of the fact that elements in $\mathbf{Q}[\sqrt{3} i]$ can be uniquely written in the form $x+y \sqrt{3} i$ with $x, y \in \mathbf{Q}$, hence when $x, y \in \mathbf{Q}$ we have $x+y \sqrt{3} i \in \mathbf{Z}[\sqrt{3} i]$ if and only if $x \in \mathbf{Z}$ and $y \in \mathbf{Z}$.

For $a, b \in \mathbf{Q}$ we have $a+b \sqrt{3} i=(a-b)+2 b\left(\frac{1+\sqrt{3} i}{2}\right)=(a-b)+2 b w \in \mathbf{Q}[w]$ and so $\mathbf{Q}[\sqrt{3} i] \subseteq \mathbf{Q}[w]$. Also, for $a, b \in \mathbf{Q}$ we have $a+b w=a+b\left(\frac{1+\sqrt{3} i}{2}\right)=\left(a+\frac{b}{2}\right)+\frac{b}{2} \sqrt{3} i \in \mathbf{Q}[\sqrt{3} i]$ so we have $\mathbf{Q}[w] \subseteq \mathbf{Q}[\sqrt{3} i$.
(b) Find all the units in $\mathbf{Z}[w]$.

Solution: The field norm in $\mathbf{Q}[w]=\mathbf{Q}[\sqrt{3} i]$ is given by $N(u)=\|u\|^{2}$ that is by $N(a+b \sqrt{3} i)=a^{2}+3 b^{2}$ when $a, b \in \mathbf{Q}$. For $a, b \in \mathbf{Q}$ we have

$$
N(a+b w)=N\left(a+b\left(\frac{1+\sqrt{3} i}{2}\right)\right)=N\left(\left(a+\frac{b}{2}\right)+\frac{b}{2} \sqrt{3} i\right)=\left(a+\frac{b}{2}\right)^{2}+3\left(\frac{b}{2}\right)^{2}=a^{2}+a b+b^{2} .
$$

We know that the field norm is multiplicative (meaning that $N(u v)=N(u) N(v)$ and the above formula shows that when $a, b \in \mathbf{Z}$ we have $N(a+b w) \in \mathbf{Z}$. It follows that the units in $\mathbf{Z}[w]$ are the elements of field norm ± 1 or equivalently, the elements of complex norm 1. It is easy to see from a picture of the set $\mathbf{Z}[w]$ (which consists of the vertices in a grid of equilateral triangles of unit side length) that there are exactly 6 elements in $\mathbf{Z}[w]$ of complex norm 1 , namely the $6^{\text {th }}$ roots of unity $\pm 1, \pm w, \pm w^{2}$. To be rigorous, let us verify this algebraically.

Note that $\| \pm 1\|=\| \pm w\|=\left\|w^{2}\right\|=1$. We claim that these are the only 6 elements in $\mathbf{Z}[w]$ of complex norm 1. Note that these 6 elements, represented in the form $a+b w$ with $a, b \in \mathbf{Z}$ are given by

$$
1=1+0 w,-1=-1+0 w, w=0+1 w,-w=0-1 w, w^{2}=\frac{-1+\sqrt{3} i}{2}=-1+1 w \text { and }-w^{2}=1-1 w
$$

Let $a, b \in \mathbf{Z}$ and suppose that $N(a+b w)=\|a+b w\|^{2}=1$, that is $a^{2}+a b+b^{2}=1$. If $a=0$ then we have $1=a^{2}+a b+b^{2}=b^{2}$, hence $b= \pm 1$. If $a=1$ then we have $1=a^{2}+a b+b^{2}=1+b+b^{2}$, that is $b(b+1)=0$, hence $b=0$ or $b=-1$. If $a=-1$ then we have $1=a^{2}+a b+b^{2}=1-b+b^{2}$, that is $b(b-1)=0$, and hence $b=0$ or $b=1$. If $\|a\| \geq 2$, then since the minimum value of $f(x)=x(x-|a|)$ is equal to $-\frac{\|a\|^{2}}{4}$ (occurring when $x=\frac{\|a\|}{2}$) we have

$$
N(a+b w)=a^{2}+a b+b^{2} \geq\|a\|^{2}-\|a\|\|b\|+\|b\|^{2}=\|a\|^{2}+\|b\|(\|b\|-\|a\|) \geq\|a\|^{2}-\frac{\|a\|^{2}}{4}=\frac{3\|a\|^{2}}{4} \geq 3
$$

Thus the only 6 elements in $\mathbf{Z}[w]$ of norm 1 are indeed the $6^{\text {th }}$ roots of unity $\pm 1, \pm w$ and $\pm w^{2}$.
(c) Show that $\mathbf{Z}[w]$ is a unique factorization domain (indeed a Euclidean domain) but $\mathbf{Z}[\sqrt{3} i]$ is not.

Solution: For $u \in \mathbf{Z}[w]$, let $E(u)=N(u)=\|u\|^{2}$. Note that E is multiplicative (that is $E(u v)=E(u) E(v)$) and E satisfies Properties E1-E4 in the definition of a Euclidean norm. We need to show that E satisfies Property E5, that is the Division Algorithm Property. Let $u, v \in \mathbf{Z}[w]$ with $v \neq 0$. Working in $\mathbf{Q}[w]$, say $\frac{u}{v}=x+y w$ with $x, y \in \mathbf{Q}$. Choose $a, b \in \mathbf{Z}$ with $|a-x| \leq \frac{1}{2}$ and $|b-y| \leq \frac{1}{2}$. Let $q=a+b w \in \mathbf{Z}[w]$ and let $r=u-q v$ so that $u=q v+r$. Then we have

$$
\begin{aligned}
N(r)=\|r\|^{2} & =\|u-q v\|^{2}=\left\|\frac{u}{v}-q\right\|\|v\|^{2}=\|(a-x)+(b-y) w\|\|v\|^{2} \\
& \leq\left(|a-x|^{2}+|b-y|^{2}\|w\|^{2}\right)\|v\|^{2} \leq\left(\frac{1}{4}+\frac{1}{4}\|w\|^{2}\right)\|v\|^{2}=\frac{1}{2} E(v) .
\end{aligned}
$$

Thus $\mathbf{Z}[w]$ is a Euclidean domain with Euclidean norm E.
We claim that $\mathbf{Z}[\sqrt{3} i]$ is not a unique factorization domain. Note that in $\mathbf{Z}[\sqrt{3} i]$ we have $(1+\sqrt{3} i)(1-$ $\sqrt{3} i)=4=2 \cdot 2$. We claim that the elements $1 \pm \sqrt{3} i$ and 2 are irreducible. Note tha $N(1 \pm \sqrt{3} i)=N(2)=4$. It follows that if either 2 or $1 \pm \sqrt{3} i$ was a product of two nonunits, then those two nonunits would each have field norm equal to 2 . But there are no elements in $\mathbf{Z}[\sqrt{3} i]$ with field norm equal to 2 because for $x, y \in \mathbf{Z}$, we have $N(x+y \sqrt{3} i)=x^{2}+3 y^{2}$ so if $y=0$ then $N(x+y \sqrt{3} i)=x^{2} \neq 2$ and if $y \neq 0$ then $N(x+y \sqrt{3} i)=x^{2}+3 y^{2} \geq 3 y^{2} \geq 3$. Thus the elements $1 \pm \sqrt{3} i$ and 2 are all irreducible, as claimed. Finally note that 2 is not an associate of either of the elements $1 \pm \sqrt{3} i$ because $\frac{1 \pm \sqrt{3} i}{2} \notin \mathbf{Z}[\sqrt{3} i]$. Thus $\mathbf{Z}[\sqrt{3} i]$ is not a unique factorization domain.

4: (a) Find the association classes in \mathbf{Z}_{18}.
Solution: It helps to make a multiplication table for \mathbf{Z}_{18}. Using the fact that $(a)(-b)=-(a b)=(-a)(b)$ and $(-a)(-b)=a b$ we can save a bit of trouble by displaying only the upper-left quarter of the multiplication table and writing the elements in \mathbf{Z}_{18} as $\pm k$ with $0 \leq k \leq 9$.

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	-8	-6	-4	-2	0
3	0	3	6	9	-6	-3	0	3	6	9
4	0	4	8	-6	-2	2	6	-8	-4	0
5	0	5	-8	-3	2	7	-6	-1	4	9
6	0	6	-6	0	6	-6	0	6	-6	0
7	0	7	-4	3	-8	-1	6	-5	2	9
8	0	8	-2	6	-4	4	-6	2	-8	0
9	0	9	0	9	0	9	0	9	0	9

Let use the table to help determine which elements are associates of each other. Recall that for $a \in \mathbf{Z}_{18}$, we define $[a]=\left\{x \in \mathbf{Z}_{18} \mid x \sim a\right\}$, and we call the set $[a]$ the association class of a in \mathbf{Z}_{18}. From the table, we can find all the association classes. For example, to find the associates of 2 , we look on row 2 to find all the multiples of 2 , namely $0, \pm 2, \pm 4, \pm 6, \pm 8$, then we look along each of the rows $0,2,4,6,8$ to see whether ± 2 occurs as a multiple, and we find that ± 2 occurs on rows $2,4,8$ but not on rows 0,6 , so the associates of 2 are $\pm 2, \pm 4, \pm 8$. We find that $[0]=\{0\},[1]=\{ \pm 1, \pm 5, \pm 7\}=\{1,5,7,11,13,17\},[2]=\{ \pm 2, \pm 4, \pm 8\}=\{2,4,8,10,14,16\}$, $[3]=\{ \pm 3\}=\{3,15\},[6]=\{ \pm 6\}=\{6,12\}$ and $[9]=\{9\}$.

We now redisplay our multiplication table by considering multiplication to act on association classes.

	$[0]$	$[1]$	$[2]$	$[3]$	$[6]$	$[9]$
$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$	$[0]$
$[1]$	$[0]$	$[1]$	$[2]$	$[3]$	$[6]$	$[9]$
$[2]$	$[0]$	$[2]$	$[2]$	$[6]$	$[6]$	$[0]$
$[3]$	$[0]$	$[3]$	$[6]$	$[9]$	$[0]$	$[9]$
$[6]$	$[0]$	$[6]$	$[6]$	$[0]$	$[0]$	$[0]$
$[9]$	$[0]$	$[9]$	$[0]$	$[9]$	$[0]$	$[9]$

We shall use this table for Parts (b) and (c).
(b) Find all the units and all the zero divisors in \mathbf{Z}_{18}.

Solution: The units in \mathbf{Z}_{18} are the associates of 1 , namely the elements in $[1]=\{1,5,7,11,13,17\}$. To find the zero-divisors, we look for the [0] entries in the multiplication table which do not occur in the first row or column (as multiples of $[0]$). We see that $[2][9]=[9][2]=[0],[3][6]=[6][3]=[0],[6][6]=[0]$ and $[6][9]=[9][6]=[0]$ and so the zero divisors are the elements in $[2] \cup[3] \cup[6] \cup[9]=\{2,3,4,6,8,9,10,12,14,15,16\}$ (in this ring, all of the non-zero non-units are zero divisors).
(c) Find all the irreducible elements and all the prime elements in \mathbf{Z}_{18}.

Solution: The reducible and irreducible elements (by definition) are the nonzero non-units, that is the elements in $[2] \cup[3] \cup[6] \cup[9]$. To find the reducible elements we find all the non-zero entries in the table which do not occur in the first or second row or column (as multiples of [0] or [1]), namely [2], [6] and [9] (for example $[2]=[2][2],[6]=[2][3]$ and $[9]=[3][3])$. Thus the reducible elements are the elements in $[2] \cup[6] \cup[9]$ and the irreducible elements are the elements in $[3]=\{3,15\}$.

Finally, let us determine the primes. Since primes are nonzero non-units, the only possible primes are the elements in $[2] \cup[3] \cup[6] \cup[9]$. Since $[9]=[3][3]$ but [9] does not divide [3], it follows that the elements in [9] are not prime. Since $[6]=[2][3]$ but [6] divides neither [2] nor [3], it follows that the elements in [6] are not prime. If $[3]=[a][b]$ with $a, b \in \mathbf{Z}_{18}$ then (from the table) we have $([a],[b])=([1],[3])$ or $([a],[b])=([3],[1])$ and, in either case, $[3]$ divides $[a]$ or $[3]$ divides $[b]$, and so the elements in [3] are prime. If $[2]=[a][b]$ with $a, b \in \mathbf{Z}_{18}$ then (from the table) we have $([a],[b]) \in\{([1],[2]),([2],[1]),([2],[2])\}$, and in all cases $[2] \mid[a]$ or $[2] \mid[b]$, and so the elements in [2] are prime. Thus the primes are the elements in $[2] \cup[3]=\{2,3,4,8,10,14,15,16\}$.

5: (a) Use the method of the Sieve of Eratosthenes to find all irreducible elements $u \in \mathbf{Z}[\sqrt{2} i]$ with $\|u\| \leq 10$ (where $\|u\|$ denotes the complex norm of u). Begin by drawing a grid which shows all the elements $u \in \mathbf{Z}[\sqrt{2} i]$ with $\|u\| \leq 10$ and crossing off 0 and ± 1. At each step, circle the remaining elements of smallest complex norm and cross off their multiples: if you have circled u then cross off the elements $u v$ with $v \in \mathbf{Z}[\sqrt{2} i] \backslash\{ \pm 1\}$. To locate the multiples $u v$ on your grid, it helps to make use of the fact that to multiply u and v you must multiply their lengths and add their angles.
Solution: It helps to draw a picture of the grid. At the first step, circle the elements $\pm \sqrt{2} i$. The multiples of $\sqrt{2} i$ are the elements $(\sqrt{2} i)(s+t \sqrt{2} i)=-2 t+s \sqrt{2} i$ with $s, t \in \mathbf{Z}$, or equivalently the elements $a+b \sqrt{2} i$ where $a, b \in \mathbf{Z}$ with a even. Cross these elements off in your picture of the grid. At the second step, circle the elements $\pm 1 \pm \sqrt{2} i$. If we write $1+\sqrt{2} i=r e^{i \theta}$ (where $r=\sqrt{3}$ and $\theta=\tan ^{-1} \sqrt{2}$) then multiplication of an element $u \in \mathbf{Z}[\sqrt{2} i]$ by $1+\sqrt{2} i$ is given, geometrically, by scaling the length of u by $\sqrt{3}$ and rotating u counterclockwise about the origin by the angle θ. It follows that the multiples of $1+\sqrt{2} i$ are the points on the grid obtained by scaling the entire grid $\mathbf{Z}[\sqrt{2} i]$ by $\sqrt{3}$ and rotating it by θ, This geometric interpretation helps to locate all the multiples of $1+\sqrt{3} i$ and cross them off. You should find that the multiples of $1+\sqrt{2} i$ which lie in the circle $\|u\| \leq 10$, and are in the first quadrant, and have not already been crossed off in Step 1 , are the elements $3,1+4 \sqrt{2} i, 3+3 \sqrt{2} i, 5+2 \sqrt{2} i, 7+\sqrt{2} i, 9,1+7 \sqrt{2} i, 3+6 \sqrt{2} i, 5+5 \sqrt{2} i, 7+4 \sqrt{2} i$ and $9+3 \sqrt{2} i$. The multiples of $1-\sqrt{2} i$ should also be crossed off, and you should find that the multiples of $1-\sqrt{2} i$ which lie in the circle $\|u\| \leq 10$ and in first quadrant and have not already been crossed off in Step 1 are the elements $9,3,5+\sqrt{2} i, 7+2 \sqrt{2} i, 9+3 \sqrt{2} i, 1+2 \sqrt{2} i, 3+3 \sqrt{2} i, 5+4 \sqrt{2} i, 7+5 \sqrt{2} i, 1+5 \sqrt{2} i$ and $3+6 \sqrt{2} i$. At the third step, we circle the smallest remaining elements $\pm 3 \pm \sqrt{2} i$. Because $N(3+\sqrt{2} i)>10$ we may stop and all the remaining elements inside the circle $\|u\| \leq 10$ are irreducible (and prime). Thus the irreducible elements u in $\mathbf{Z}[\sqrt{2} i]$ with $\|u\| \leq 10$ are the elements

$$
\begin{gathered}
\pm 5, \pm 7, \pm \sqrt{2} i, \pm 1 \pm \sqrt{2} i, \pm 3 \pm \sqrt{2} i, \pm 9 \pm \sqrt{2} i, \pm 3 \pm 2 \sqrt{2} i, \pm 9 \pm 2 \sqrt{2} i \\
\pm 1 \pm 3 \sqrt{2} i, \pm 5 \pm 3 \sqrt{2} i, \pm 7 \pm 3 \sqrt{2} i, \pm 3 \pm 4 \sqrt{2} i, \pm 3 \pm 5 \sqrt{2} i, \pm 1 \pm 6 \sqrt{2} i, \pm 5 \pm 6 \sqrt{2} i
\end{gathered}
$$

(b) Let p be an odd prime in \mathbf{Z}^{+}. Show that p is reducible in $\mathbf{Z}[\sqrt{2} i]$ if and only if $p=x^{2}+2 y^{2}$ for some $x, y \in \mathbf{Z}$.
Solution: Suppose first that p is reducible. Choose non-units $u, v \in \mathbf{Z}[\sqrt{2} i]$ such that $p=u v$. Since $N(u), N(v) \in \mathbf{Z}^{+}$and we have $N(u) N(v)=N(u v)=N(p)=p^{2}$, it follows that $N(u)=N(v)=p$. Write $u=a+b \sqrt{2} i$ with $a, b \in \mathbf{Z}$ and let $x=|a|$ and $y=|b|$. Then we have $p=N(u)=a^{2}+2 b^{2}=x^{2}+2 y^{2}$. Finally note that $x \neq 0$ since p is odd so that $p \neq 2 y^{2}$, and $y \neq 0$ since p is prime so that $p \neq x^{2}$, and so we have $x, y \in \mathbf{Z}^{+}$.

Conversely, suppose that $p=x^{2}+2 y^{2}$ with $x, y \in \mathbf{Z}^{+}$. Let $u=x+y \sqrt{2} i$ and $v=\bar{u}=x-i \sqrt{2} i$ and note that $u, v \in \mathbf{Z}[\sqrt{2} i]$. Then $N(u)=N(v)=x^{2}+2 y^{2}=p$ so that u and v are non-units and we have $u v=x^{2}+2 y^{2}=p$ so that p is reducible in $\mathbf{Z}[\sqrt{2} i]$.

