1: (a) For $x, y \in \mathbf{Q}$, let $E(x + y\sqrt{2}) = |x^2 - 2y^2|$ and recall that E is a Euclidean norm in $\mathbf{Z}[\sqrt{2}]$. Let $a = 17 + 26\sqrt{2} \in \mathbf{Z}[\sqrt{2}]$ and $b = 5 + 3\sqrt{2} \in \mathbf{Z}[\sqrt{2}]$. Find $q, r \in \mathbf{Z}[\sqrt{2}]$ with a = qb + r and E(r) < E(b).

Solution: We have $\frac{a}{b} = \frac{17+26\sqrt{2}}{5+3\sqrt{2}} = \frac{17+26\sqrt{2}}{5+3\sqrt{2}} \cdot \frac{5-3\sqrt{2}}{5-3\sqrt{2}} = \frac{-68+79\sqrt{2}}{7} \cong -10 + 11\sqrt{2}$ (with -10 being the integer nearest to $-\frac{68}{7}$ and 11 being the integer nearest to $\frac{79}{7}$), so we take $q = -10 + 11\sqrt{2}$ and then we take $r = a - qb = (17 + 26\sqrt{2}) - (-10 + 11\sqrt{2})(5 + 3\sqrt{2}) = (17 + 26\sqrt{2}) - (16 + 25\sqrt{2}) = 1 + \sqrt{2}$.

(b) Let $a = -20+30 i \in \mathbb{Z}[i]$ and b = -5+14 i in $\mathbb{Z}[i]$. Use the Euclidean Algorithm to find $d = \gcd(a, b) \in \mathbb{Z}[i]$ then use Back-Substitution to find $s, t \in \mathbb{Z}[i]$ such that as + bt = d.

Solution: We have $\frac{a}{b} = \frac{-20+3i}{-5+14i} = \frac{-20+30i}{-5+14i} \cdot \frac{-5-14i}{-5-14i} = \frac{520+130i}{221} = \frac{520+130i}{221} \approx 2+i$, so we take $q_1 = 2+i$ and $r_1 = a - q_1 b = (-20+30i) - (2+i)(-5+14i) = 4+7i$. Next we have $\frac{b}{r_1} = \frac{-5+14i}{4+7i} = \frac{78+91i}{65} \approx 1+i$ so we take $q_2 = 1+i$ and $r_2 = b - q_2 r_1 = (-5+14i) - (1+i)(4+7i) = -2+3i$. Finally we have $\frac{r_1}{r_2} = \frac{4+7i}{-2+3i} = 1-2i$ so we take $q_3 = 1-2i$ and $r_3 = 0$. Thus $d = \gcd(a, b) = r_2 = -2+3i$.

Back-Substitution gives the sequence $(s_0, s_1, s_2) = (1, -(1+i), (2+i)(1+i) + 1 = 2+3i)$ so we can take $s = s_1 = -(1+i)$ and $t = s_2 = 2+3i$ to get as + bt = d.

2: (a) Find the smallest unit u > 1 in $\mathbb{Z}[\sqrt{18}]$.

Solution: We use the method described in Example 6.12 of the Lecture Notes. We have

We see that the smallest value of $b \in \mathbb{Z}^+$ for which $18b^2$ differs from a square by ± 1 is b = 4 and, in this case, we have $18b^2 = 288 = a^2 - 1$ for a = 17. Thus the smallest unit $u \in \mathbb{Z}[\sqrt{18}]$ with u > 1 is $u = 17 + 4\sqrt{18}$.

(b) Show that $\mathbf{Z}[\sqrt{10}]$ is not a unique factorization domain.

Solution: In $\mathbb{Z}[\sqrt{10}]$ we have $(2 + \sqrt{10})(-2 + \sqrt{10}) = 6 = 2 \cdot 3$. We claim that each of the elements 2, 3 and $\pm 2 + \sqrt{10}$ is irreducible in $\mathbb{Z}[\sqrt{10}]$. We use the field norm in $\mathbb{Q}[\sqrt{10}]$ given by $N(x + y\sqrt{10}) = x^2 - 10y^2$. Note that N(2) = 4, N(3) = 9 and $N(\pm 2 + \sqrt{10}) = -6$. If 2 was reducible, it would factor as a product of two non-units, say 2 = zw. Then we would have N(z)N(w) = N(zw) = N(2) = 4 so that either N(z) = 2 = N(w) or N(z) = -2 = N(w). Similarly, if 3 was reducible it would factor into two elements of norms ± 3 and if $\pm 2 + \sqrt{10}$ were reducible then it would factor into two elements with one of norm ± 2 and the other of norm ± 3 . To show that the elements 2, 3 and $\pm 2 + \sqrt{10}$ are irreducible, it suffices to show that there are no elements in $\mathbb{Z}[\sqrt{10}]$ of norm ± 2 or ± 3 . We can see this by working modulo 10. Note that for $x, y \in \mathbb{Z}$ we have $N(x + y\sqrt{10}) = x^2 - 10y^2 \equiv x^2 \mod 10$. But in \mathbb{Z}_{10} we have

so there are no elements $x \in \mathbf{Z}_{10}$ with $x^2 = \pm 2, \pm 3$. Thus the elements 2, 3 ad $\pm 2 + \sqrt{10}$ are all irreducible in $\mathbf{Z}[\sqrt{10}]$.

Finally, note that 2 is not an associate of either of the two elements $\pm 2 + \sqrt{10}$ because (working in the field $\mathbf{Q}[\sqrt{10}]$) we have $\frac{\pm 2 + \sqrt{10}}{2} = \pm 1 + \frac{1}{2}\sqrt{10} \notin \mathbf{Z}[\sqrt{10}]$ (if they were associates then we would have $\frac{\pm 2 + \sqrt{10}}{2} = u$ for some unit $u \in \mathbf{Z}[\sqrt{10}]$). Similarly, 3 is not an associate of $\pm 2 + \sqrt{10}$ because $\frac{\pm 2 + \sqrt{10}}{3} = \pm \frac{2}{3} + \frac{1}{3}\sqrt{10} \notin \mathbf{Z}[\sqrt{10}]$.

3: Let $w = e^{i\pi/3} = \frac{1+\sqrt{3}i}{2}$ and let $\mathbf{Z}[w] = \{a + bw \mid a, b \in \mathbf{Z}\}$ and $\mathbf{Q}[w] = \{a + bw \mid a, b \in \mathbf{Q}\}.$

(a) Show that $\mathbf{Z}[\sqrt{3}\,i] \subsetneqq \mathbf{Z}[w]$ and $\mathbf{Q}[\sqrt{3}\,i] = \mathbf{Q}[w]$.

Solution: For $a, b \in \mathbb{Z}$ we have $a + b\sqrt{3}i = (a - b) + 2b\left(\frac{1+\sqrt{3}i}{2}\right) = (a - b) + 2bw$, and so $\mathbb{Z}[\sqrt{3}i] \subseteq \mathbb{Z}[w]$. Since $w = \frac{1}{2} + \frac{1}{2}\sqrt{3}i \notin \mathbb{Z}[\sqrt{3}i]$ we have $\mathbb{Z}[\sqrt{3}i] \subsetneqq \mathbb{Z}[w]$. We remark that we made use of the fact that elements in $\mathbb{Q}[\sqrt{3}i]$ can be uniquely written in the form $x + y\sqrt{3}i$ with $x, y \in \mathbb{Q}$, hence when $x, y \in \mathbb{Q}$ we have $x + y\sqrt{3}i \in \mathbb{Z}[\sqrt{3}i]$ if and only if $x \in \mathbb{Z}$ and $y \in \mathbb{Z}$.

For $a, b \in \mathbf{Q}$ we have $a + b\sqrt{3}i = (a-b) + 2b\left(\frac{1+\sqrt{3}i}{2}\right) = (a-b) + 2b w \in \mathbf{Q}[w]$ and so $\mathbf{Q}[\sqrt{3}i] \subseteq \mathbf{Q}[w]$. Also, for $a, b \in \mathbf{Q}$ we have $a + bw = a + b\left(\frac{1+\sqrt{3}i}{2}\right) = \left(a + \frac{b}{2}\right) + \frac{b}{2}\sqrt{3}i \in \mathbf{Q}[\sqrt{3}i]$ so we have $\mathbf{Q}[w] \subseteq \mathbf{Q}[\sqrt{3}i$.

(b) Find all the units in $\mathbf{Z}[w]$.

Solution: The field norm in $\mathbf{Q}[w] = \mathbf{Q}[\sqrt{3}i]$ is given by $N(u) = ||u||^2$ that is by $N(a + b\sqrt{3}i) = a^2 + 3b^2$ when $a, b \in \mathbf{Q}$. For $a, b \in \mathbf{Q}$ we have

$$N(a+bw) = N\left(a+b\left(\frac{1+\sqrt{3}\,i}{2}\right)\right) = N\left(\left(a+\frac{b}{2}\right) + \frac{b}{2}\,\sqrt{3}\,i\right) = \left(a+\frac{b}{2}\right)^2 + 3\left(\frac{b}{2}\right)^2 = a^2 + ab + b^2.$$

We know that the field norm is multiplicative (meaning that N(uv) = N(u)N(v) and the above formula shows that when $a, b \in \mathbb{Z}$ we have $N(a+bw) \in \mathbb{Z}$. It follows that the units in $\mathbb{Z}[w]$ are the elements of field norm ± 1 or equivalently, the elements of complex norm 1. It is easy to see from a picture of the set $\mathbb{Z}[w]$ (which consists of the vertices in a grid of equilateral triangles of unit side length) that there are exactly 6 elements in $\mathbb{Z}[w]$ of complex norm 1, namely the 6th roots of unity $\pm 1, \pm w, \pm w^2$. To be rigorous, let us verify this algebraically.

Note that $\|\pm 1\| = \|\pm w\| = \|w^2\| = 1$. We claim that these are the only 6 elements in $\mathbb{Z}[w]$ of complex norm 1. Note that these 6 elements, represented in the form a + bw with $a, b \in \mathbb{Z}$ are given by

$$1 = 1 + 0w$$
, $-1 = -1 + 0w$, $w = 0 + 1w$, $-w = 0 - 1w$, $w^2 = \frac{-1 + \sqrt{3}i}{2} = -1 + 1w$ and $-w^2 = 1 - 1w$.

Let $a, b \in \mathbb{Z}$ and suppose that $N(a + bw) = ||a + bw||^2 = 1$, that is $a^2 + ab + b^2 = 1$. If a = 0 then we have $1 = a^2 + ab + b^2 = b^2$, hence $b = \pm 1$. If a = 1 then we have $1 = a^2 + ab + b^2 = 1 + b + b^2$, that is b(b+1) = 0, hence b = 0 or b = -1. If a = -1 then we have $1 = a^2 + ab + b^2 = 1 - b + b^2$, that is b(b-1) = 0, and hence b = 0 or b = 1. If $||a|| \ge 2$, then since the minimum value of f(x) = x(x - |a|) is equal to $-\frac{||a||^2}{4}$ (occurring when $x = \frac{||a||}{2}$) we have

$$N(a+bw) = a^{2} + ab + b^{2} \ge ||a||^{2} - ||a|| ||b|| + ||b||^{2} = ||a||^{2} + ||b|| (||b|| - ||a||) \ge ||a||^{2} - \frac{||a||^{2}}{4} = \frac{3||a||^{2}}{4} \ge 3.$$

Thus the only 6 elements in $\mathbb{Z}[w]$ of norm 1 are indeed the 6th roots of unity ± 1 , $\pm w$ and $\pm w^2$.

(c) Show that $\mathbf{Z}[w]$ is a unique factorization domain (indeed a Euclidean domain) but $\mathbf{Z}[\sqrt{3}i]$ is not.

Solution: For $u \in \mathbf{Z}[w]$, let $E(u) = N(u) = ||u||^2$. Note that E is multiplicative (that is E(uv) = E(u)E(v)) and E satisfies Properties E1-E4 in the definition of a Euclidean norm. We need to show that E satisfies Property E5, that is the Division Algorithm Property. Let $u, v \in \mathbf{Z}[w]$ with $v \neq 0$. Working in $\mathbf{Q}[w]$, say $\frac{u}{v} = x + yw$ with $x, y \in \mathbf{Q}$. Choose $a, b \in \mathbf{Z}$ with $|a - x| \leq \frac{1}{2}$ and $|b - y| \leq \frac{1}{2}$. Let $q = a + bw \in \mathbf{Z}[w]$ and let r = u - qv so that u = qv + r. Then we have

$$N(r) = ||r||^{2} = ||u - qv||^{2} = \left\|\frac{u}{v} - q\right| ||v||^{2} = \left||(a - x) + (b - y)w\right| ||v||^{2}$$

$$\leq \left(|a - x|^{2} + |b - y|^{2}||w||^{2}\right) ||v||^{2} \leq \left(\frac{1}{4} + \frac{1}{4}||w||^{2}\right) ||v||^{2} = \frac{1}{2} E(v).$$

Thus $\mathbf{Z}[w]$ is a Euclidean domain with Euclidean norm E.

We claim that $\mathbf{Z}[\sqrt{3}i]$ is not a unique factorization domain. Note that in $\mathbf{Z}[\sqrt{3}i]$ we have $(1 + \sqrt{3}i)(1 - \sqrt{3}i) = 4 = 2 \cdot 2$. We claim that the elements $1 \pm \sqrt{3}i$ and 2 are irreducible. Note tha $N(1 \pm \sqrt{3}i) = N(2) = 4$. It follows that if either 2 or $1 \pm \sqrt{3}i$ was a product of two nonunits, then those two nonunits would each have field norm equal to 2. But there are no elements in $\mathbf{Z}[\sqrt{3}i]$ with field norm equal to 2 because for $x, y \in \mathbf{Z}$, we have $N(x + y\sqrt{3}i) = x^2 + 3y^2$ so if y = 0 then $N(x + y\sqrt{3}i) = x^2 \neq 2$ and if $y \neq 0$ then $N(x + y\sqrt{3}i) = x^2 + 3y^2 \ge 3y^2 \ge 3$. Thus the elements $1 \pm \sqrt{3}i$ and 2 are all irreducible, as claimed. Finally note that 2 is not an associate of either of the elements $1 \pm \sqrt{3}i$ because $\frac{1 \pm \sqrt{3}i}{2} \notin \mathbf{Z}[\sqrt{3}i]$. Thus $\mathbf{Z}[\sqrt{3}i]$ is not a unique factorization domain.

4: (a) Find the association classes in \mathbf{Z}_{18} .

Solution: It helps to make a multiplication table for \mathbf{Z}_{18} . Using the fact that (a)(-b) = -(ab) = (-a)(b) and (-a)(-b) = ab we can save a bit of trouble by displaying only the upper-left quarter of the multiplication table and writing the elements in \mathbf{Z}_{18} as $\pm k$ with $0 \le k \le 9$.

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	-8	-6	-4	-2	0
3	0	3	6	9	-6	-3	0	3	6	9
4	0	4	8	-6	-2	2	6	-8	-4	0
5	0	5	-8	-3	2	7	-6	-1	4	9
6	0	6	-6	0	6	-6	0	6	-6	0
$\overline{7}$	0	7	-4	3	-8	-1	6	-5	2	9
8	0	8	-2	6	-4	4	-6	2	-8	0
9	0	9	0	9	0	9	0	9	0	9

Let use the table to help determine which elements are associates of each other. Recall that for $a \in \mathbb{Z}_{18}$, we define $[a] = \{x \in \mathbb{Z}_{18} | x \sim a\}$, and we call the set [a] the association class of a in \mathbb{Z}_{18} . From the table, we can find all the association classes. For example, to find the associates of 2, we look on row 2 to find all the multiples of 2, namely $0, \pm 2, \pm 4, \pm 6, \pm 8$, then we look along each of the rows 0, 2, 4, 6, 8 to see whether ± 2 occurs as a multiple, and we find that ± 2 occurs on rows 2, 4, 8 but not on rows 0, 6, so the associates of 2 are $\pm 2, \pm 4, \pm 8$. We find that $[0] = \{0\}, [1] = \{\pm 1, \pm 5, \pm 7\} = \{1, 5, 7, 11, 13, 17\}, [2] = \{\pm 2, \pm 4, \pm 8\} = \{2, 4, 8, 10, 14, 16\}, [3] = \{\pm 3\} = \{3, 15\}, [6] = \{\pm 6\} = \{6, 12\}$ and $[9] = \{9\}$.

We now redisplay our multiplication table by considering multiplication to act on association classes.

	[0]	[1]	[2]	[3]	[6]	[9]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[6]	[9]
[2]	[0]	[2]	[2]	[6]	[6]	[0]
[3]	[0]	[3]	[6]	[9]	[0]	[9]
[6]	[0]	[6]	[6]	[0]	[0]	[0]
[9]	[0]	[9]	[0]	[9]	[0]	[9]

We shall use this table for Parts (b) and (c).

(b) Find all the units and all the zero divisors in \mathbf{Z}_{18} .

Solution: The units in \mathbb{Z}_{18} are the associates of 1, namely the elements in $[1] = \{1, 5, 7, 11, 13, 17\}$. To find the zero-divisors, we look for the [0] entries in the multiplication table which do not occur in the first row or column (as multiples of [0]). We see that [2][9] = [9][2] = [0], [3][6] = [6][3] = [0], [6][6] = [0] and [6][9] = [9][6] = [0] and so the zero divisors are the elements in $[2] \cup [3] \cup [6] \cup [9] = \{2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16\}$ (in this ring, all of the non-zero non-units are zero divisors).

(c) Find all the irreducible elements and all the prime elements in \mathbf{Z}_{18} .

Solution: The reducible and irreducible elements (by definition) are the nonzero non-units, that is the elements in $[2] \cup [3] \cup [6] \cup [9]$. To find the reducible elements we find all the non-zero entries in the table which do not occur in the first or second row or column (as multiples of [0] or [1]), namely [2], [6] and [9] (for example [2] = [2][2], [6] = [2][3] and [9] = [3][3]). Thus the reducible elements are the elements in $[2] \cup [6] \cup [9]$ and the irreducible elements are the elements in $[3] = \{3, 15\}$.

Finally, let us determine the primes. Since primes are nonzero non-units, the only possible primes are the elements in $[2] \cup [3] \cup [6] \cup [9]$. Since [9] = [3][3] but [9] does not divide [3], it follows that the elements in [9] are not prime. Since [6] = [2][3] but [6] divides neither [2] nor [3], it follows that the elements in [6] are not prime. If [3] = [a][b] with $a, b \in \mathbb{Z}_{18}$ then (from the table) we have ([a], [b]) = ([1], [3]) or ([a], [b]) = ([3], [1]) and, in either case, [3] divides [a] or [3] divides [b], and so the elements in [3] are prime. If [2] = [a][b] with $a, b \in \mathbb{Z}_{18}$ then (from the table) we have ([a], [b]) = ([1], [3]) or ([a], [b]) = ([3], [1]) and, in either case, [3] divides [a] or [3] divides [b], and so the elements in [3] are prime. If [2] = [a][b] with $a, b \in \mathbb{Z}_{18}$ then (from the table) we have $([a], [b]) \in \{([1], [2]), ([2], [1]), ([2], [2])\}$, and in all cases [2]|[a] or [2]|[b], and so the elements in [2] are prime. Thus the primes are the elements in $[2] \cup [3] = \{2, 3, 4, 8, 10, 14, 15, 16\}$.

5: (a) Use the method of the Sieve of Eratosthenes to find all irreducible elements $u \in \mathbf{Z}[\sqrt{2}i]$ with $||u|| \leq 10$ (where ||u|| denotes the complex norm of u). Begin by drawing a grid which shows all the elements $u \in \mathbf{Z}[\sqrt{2}i]$ with $||u|| \leq 10$ and crossing off 0 and ± 1 . At each step, circle the remaining elements of smallest complex norm and cross off their multiples: if you have circled u then cross off the elements uv with $v \in \mathbf{Z}[\sqrt{2}i] \setminus \{\pm 1\}$. To locate the multiples uv on your grid, it helps to make use of the fact that to multiply u and v you must multiply their lengths and add their angles.

Solution: It helps to draw a picture of the grid. At the first step, circle the elements $\pm \sqrt{2}i$. The multiples of $\sqrt{2}i$ are the elements $(\sqrt{2}i)(s+t\sqrt{2}i) = -2t + s\sqrt{2}i$ with $s,t \in \mathbb{Z}$, or equivalently the elements $a + b\sqrt{2}i$ where $a, b \in \mathbb{Z}$ with a even. Cross these elements off in your picture of the grid. At the second step, circle the elements $\pm 1 \pm \sqrt{2}i$. If we write $1 + \sqrt{2}i = re^{i\theta}$ (where $r = \sqrt{3}$ and $\theta = \tan^{-1}\sqrt{2}$) then multiplication of an element $u \in \mathbf{Z}[\sqrt{2}i]$ by $1 + \sqrt{2}i$ is given, geometrically, by scaling the length of u by $\sqrt{3}$ and rotating u counterclockwise about the origin by the angle θ . It follows that the multiples of $1 + \sqrt{2}i$ are the points on the grid obtained by scaling the entire grid $\mathbf{Z}[\sqrt{2}i]$ by $\sqrt{3}$ and rotating it by θ . This geometric interpretation helps to locate all the multiples of $1 + \sqrt{3i}$ and cross them off. You should find that the multiples of $1 + \sqrt{2i}$ which lie in the circle $||u|| \leq 10$, and are in the first quadrant, and have not already been crossed off in Step 1, are the elements 3, $1 + 4\sqrt{2}i$, $3 + 3\sqrt{2}i$, $5 + 2\sqrt{2}i$, $7 + \sqrt{2}i$, 9, $1 + 7\sqrt{2}i$, $3 + 6\sqrt{2}i$, $5 + 5\sqrt{2}i$, $7 + 4\sqrt{2}i$ and $9 + 3\sqrt{2}i$. The multiples of $1 - \sqrt{2}i$ should also be crossed off, and you should find that the multiples of $1 - \sqrt{2}i$ which lie in the circle $||u|| \le 10$ and in first quadrant and have not already been crossed off in Step 1 are the elements 9, 3, $5 + \sqrt{2i}$, $7 + 2\sqrt{2i}$, $9 + 3\sqrt{2i}$, $1 + 2\sqrt{2i}$, $3 + 3\sqrt{2i}$, $5 + 4\sqrt{2i}$, $7 + 5\sqrt{2i}$, $1 + 5\sqrt{2i}$ and $3 + 6\sqrt{2}i$. At the third step, we circle the smallest remaining elements $\pm 3 \pm \sqrt{2}i$. Because $N(3 + \sqrt{2}i) > 10$ we may stop and all the remaining elements inside the circle $||u|| \leq 10$ are irreducible (and prime). Thus the irreducible elements u in $\mathbb{Z}[\sqrt{2}i]$ with $||u|| \leq 10$ are the elements

$$\pm 5, \pm 7, \pm \sqrt{2}i, \pm 1 \pm \sqrt{2}i, \pm 3 \pm \sqrt{2}i, \pm 9 \pm \sqrt{2}i, \pm 3 \pm 2\sqrt{2}i, \pm 9 \pm 2\sqrt{2}i, \\ \pm 1 \pm 3\sqrt{2}i, \pm 5 \pm 3\sqrt{2}i, \pm 7 \pm 3\sqrt{2}i, \pm 3 \pm 4\sqrt{2}i, \pm 3 \pm 5\sqrt{2}i, \pm 1 \pm 6\sqrt{2}i, \pm 5 \pm 6\sqrt{2}i.$$

(b) Let p be an odd prime in \mathbb{Z}^+ . Show that p is reducible in $\mathbb{Z}[\sqrt{2}i]$ if and only if $p = x^2 + 2y^2$ for some $x, y \in \mathbb{Z}$.

Solution: Suppose first that p is reducible. Choose non-units $u, v \in \mathbb{Z}[\sqrt{2}i]$ such that p = uv. Since $N(u), N(v) \in \mathbb{Z}^+$ and we have $N(u)N(v) = N(uv) = N(p) = p^2$, it follows that N(u) = N(v) = p. Write $u = a + b\sqrt{2}i$ with $a, b \in \mathbb{Z}$ and let x = |a| and y = |b|. Then we have $p = N(u) = a^2 + 2b^2 = x^2 + 2y^2$. Finally note that $x \neq 0$ since p is odd so that $p \neq 2y^2$, and $y \neq 0$ since p is prime so that $p \neq x^2$, and so we have $x, y \in \mathbb{Z}^+$.

Conversely, suppose that $p = x^2 + 2y^2$ with $x, y \in \mathbb{Z}^+$. Let $u = x + y\sqrt{2}i$ and $v = \overline{u} = x - i\sqrt{2}i$ and note that $u, v \in \mathbb{Z}[\sqrt{2}i]$. Then $N(u) = N(v) = x^2 + 2y^2 = p$ so that u and v are non-units and we have $uv = x^2 + 2y^2 = p$ so that p is reducible in $\mathbb{Z}[\sqrt{2}i]$.