
PMATH 340 Number Theory, Solutions to the Exercises for Chapter 6

1: (a) For x, y ∈ Q, let E(x + y
√

2) =
∣∣x2 − 2y2

∣∣ and recall that E is a Euclidean norm in Z[
√

2 ]. Let

a = 17 + 26
√

2 ∈ Z[
√

2 ] and b = 5 + 3
√

2 ∈ Z[
√

2 ]. Find q, r ∈ Z[
√

2 ] with a = qb+ r and E(r) < E(b).

Solution: We have a
b = 17+26

√
2

5+3
√
2

= 17+26
√
2

5+3
√
2
· 5−3

√
2

5−3
√
2

= −68+79
√
2

7
∼= −10 + 11

√
2
(
with −10 being the integer

nearest to − 68
7 and 11 being the integer nearest to 79

7

)
, so we take q = −10 + 11

√
2 and then we take

r = a− qb = (17 + 26
√

2)− (−10 + 11
√

2)(5 + 3
√

2) = (17 + 26
√

2)− (16 + 25
√

2) = 1 +
√

2.

(b) Let a = −20+30 i ∈ Z[i] and b = −5+14 i in Z[i]. Use the Euclidean Algorithm to find d = gcd(a, b) ∈ Z[i]
then use Back-Substitution to find s, t ∈ Z[i] such that as+ bt = d.

Solution: We have a
b = −20+3 i

−5+14 i = −20+30 i
−5+14 i ·

−5−14 i
−5−14 i = 520+130 i

221 = 520+130 i
221

∼= 2 + i, so we take q1 = 2 + i and

r1 = a−q1b = (−20+30 i)−(2+ i)(−5+14 i) = 4+7 i. Next we have b
r1

= −5+14 i
4+7 i = 78+91 i

65
∼= 1+ i so we take

q2 = 1 + i and r2 = b− q2r1 = (−5 + 14 i)− (1 + i)(4 + 7 i) = −2 + 3 i. Finally we have r1
r2

= 4+7 i
−2+3 i = 1− 2 i

so we take q3 = 1− 2 i and r3 = 0. Thus d = gcd(a, b) = r2 = −2 + 3 i.

Back-Substitution gives the sequence (s0, s1, s2) =
(
1 , −(1 + i) , (2 + i)(1 + i) + 1 = 2 + 3i

)
so we can

take s = s1 = −(1 + i) and t = s2 = 2 + 3 i to get as+ bt = d.

2: (a) Find the smallest unit u > 1 in Z[
√

18 ].

Solution: We use the method described in Example 6.12 of the Lecture Notes. We have

b 1 2 3 4
18b2 18 76 162 288

We see that the smallest value of b ∈ Z+ for which 18b2 differs from a square by ±1 is b = 4 and, in this case,
we have 18b2 = 288 = a2 − 1 for a = 17. Thus the smallest unit u ∈ Z[

√
18 ] with u > 1 is u = 17 + 4

√
18.

(b) Show that Z[
√

10 ] is not a unique factorization domain.

Solution: In Z[
√

10 ] we have (2 +
√

10)(−2 +
√

10) = 6 = 2 · 3. We claim that each of the elements 2, 3 and
±2 +

√
10 is irreducible in Z[

√
10 ]. We use the field norm in Q[

√
10 ] given by N(x + y

√
10) = x2 − 10y2.

Note that N(2) = 4, N(3) = 9 and N(±2 +
√

10) = −6. If 2 was reducible, it would factor as a product of two
non-units, say 2 = zw. Then we would have N(z)N(w) = N(zw) = N(2) = 4 so that either N(z) = 2 = N(w)
or N(z) = −2 = N(w). Similarly, if 3 was reducible it would factor into two elements of norms ±3 and
if ±2 +

√
10 were reducible then it would factor into two elements with one of norm ±2 and the other of

norm ∓3. To show that the elements 2, 3 and ±2 +
√

10 are irreducible, it suffices to show that there are no
elements in Z[

√
10 ] of norm ±2 or ±3. We can see this by working modulo 10. Note that for x, y ∈ Z we have

N(x+ y
√

10) = x2 − 10y2 ≡ x2 mod 10. But in Z10 we have

x 0 1 2 3 4 5 6 7 8 9
x2 0 1 4 9 6 5 6 9 4 1

so there are no elements x ∈ Z10 with x2 = ±2,±3. Thus the elements 2, 3 ad ±2 +
√

10 are all irreducible
in Z[

√
10 ].

Finally, note that 2 is not an associate of either of the two elements ±2+
√

10 because
(
working in the field

Q[
√

10 ]
)

we have ±2+
√
10

2 = ±1+ 1
2

√
10 /∈ Z[

√
10 ]

(
if they were associates then we would have ±2+

√
10

2 = u for

some unit u ∈ Z[
√

10 ]
)
. Similarly, 3 is not an associate of ±2+

√
10 because ±2+

√
10

3 = ± 2
3 + 1

3

√
10 /∈ Z[

√
10 ].



3: Let w = ei π/3 = 1+
√
3 i

2 and let Z[w] =
{
a+ bw

∣∣ a, b ∈ Z
}

and Q[w] =
{
a+ bw

∣∣ a, b ∈ Q
}

.

(a) Show that Z[
√

3 i]⊂6=Z[w] and Q[
√

3 i] = Q[w].

Solution: For a, b ∈ Z we have a + b
√

3 i = (a − b) + 2b
(
1+
√
3 i

2

)
= (a − b) + 2bw, and so Z[

√
3 i] ⊆ Z[w].

Since w = 1
2 + 1

2

√
3 i /∈ Z[

√
3 i] we have Z[

√
3 i]⊂6=Z[w]. We remark that we made use of the fact that elements

in Q[
√

3 i] can be uniquely written in the form x + y
√

3 i with x, y ∈ Q, hence when x, y ∈ Q we have
x+ y

√
3 i ∈ Z[

√
3 i] if and only if x ∈ Z and y ∈ Z.

For a, b ∈ Q we have a + b
√

3 i = (a − b) + 2b
(
1+
√
3 i

2

)
= (a − b) + 2bw ∈ Q[w] and so Q[

√
3 i] ⊆ Q[w].

Also, for a, b ∈ Q we have a+ bw = a+ b
(
1+
√
3 i

2

)
=

(
a+ b

2

)
+ b

2

√
3 i ∈ Q[

√
3 i] so we have Q[w] ⊆ Q[

√
3 i.

(b) Find all the units in Z[w].

Solution: The field norm in Q[w] = Q[
√

3 i] is given by N(u) = ‖u‖2 that is by N(a+ b
√

3 i) = a2 + 3b2 when
a, b ∈ Q. For a, b ∈ Q we have

N(a+ bw) = N
(
a+ b

(
1+
√
3 i

2

))
= N

((
a+ b

2

)
+ b

2

√
3 i

)
=

(
a+ b

2

)2
+ 3

(
b
2

)2
= a2 + ab+ b2.

We know that the field norm is multiplicative (meaning that N(uv) = N(u)N(v) and the above formula shows
that when a, b ∈ Z we have N(a+ bw) ∈ Z. It follows that the units in Z[w] are the elements of field norm ±1
or equivalently, the elements of complex norm 1. It is easy to see from a picture of the set Z[w] (which consists
of the vertices in a grid of equilateral triangles of unit side length) that there are exactly 6 elements in Z[w] of
complex norm 1, namely the 6th roots of unity ±1,±w,±w2. To be rigorous, let us verify this algebraically.

Note that ‖ ± 1‖ = ‖ ± w‖ = ‖w2‖ = 1. We claim that these are the only 6 elements in Z[w] of complex
norm 1. Note that these 6 elements, represented in the form a+ bw with a, b ∈ Z are given by

1 = 1 + 0w , −1 = −1 + 0w , w = 0 + 1w , −w = 0− 1w , w2 = −1+
√
3 i

2 = −1 + 1w and − w2 = 1− 1w.

Let a, b ∈ Z and suppose that N(a + bw) = ‖a + bw‖2 = 1, that is a2 + ab + b2 = 1. If a = 0 then we have
1 = a2 + ab+ b2 = b2, hence b = ±1. If a = 1 then we have 1 = a2 + ab+ b2 = 1 + b+ b2, that is b(b+ 1) = 0,
hence b = 0 or b = −1. If a = −1 then we have 1 = a2 + ab+ b2 = 1− b+ b2, that is b(b− 1) = 0, and hence

b = 0 or b = 1. If ‖a‖ ≥ 2, then since the minimum value of f(x) = x(x − |a|) is equal to −‖a‖
2

4

(
occurring

when x = ‖a‖
2

)
we have

N(a+ bw) = a2 + ab+ b2 ≥ ‖a‖2 − ‖a‖ ‖b‖+ ‖b‖2 = ‖a‖2 + ‖b‖
(
‖b‖ − ‖a‖

)
≥ ‖a‖2 − ‖a‖

2

4 = 3‖a‖2
4 ≥ 3.

Thus the only 6 elements in Z[w] of norm 1 are indeed the 6th roots of unity ±1, ±w and ±w2.

(c) Show that Z[w] is a unique factorization domain (indeed a Euclidean domain) but Z[
√

3 i] is not.

Solution: For u ∈ Z[w], let E(u) = N(u) = ‖u‖2. Note that E is multiplicative (that is E(uv) = E(u)E(v)
)

and E satisfies Properties E1-E4 in the definition of a Euclidean norm. We need to show that E satisfies
Property E5, that is the Division Algorithm Property. Let u, v ∈ Z[w] with v 6= 0. Working in Q[w], say
u
v = x+ yw with x, y ∈ Q. Choose a, b ∈ Z with |a− x| ≤ 1

2 and |b− y| ≤ 1
2 . Let q = a+ bw ∈ Z[w] and let

r = u− qv so that u = qv + r. Then we have

N(r) = ‖r‖2 = ‖u− qv‖2 =
∣∣∣∣u
v − q

∣∣∣∣ ‖v‖2 =
∣∣∣∣(a− x) + (b− y)w

∣∣∣∣ ‖v‖2
≤

(
|a− x|2 + |b− y|2‖w‖2

)
‖v‖2 ≤

(
1
4 + 1

4 ‖w‖
2
)
‖v‖2 = 1

2 E(v).

Thus Z[w] is a Euclidean domain with Euclidean norm E.

We claim that Z[
√

3 i] is not a unique factorization domain. Note that in Z[
√

3 i] we have (1 +
√

3 i)(1−√
3 i) = 4 = 2 ·2. We claim that the elements 1±

√
3 i and 2 are irreducible. Note tha N(1±

√
3 i) = N(2) = 4.

It follows that if either 2 or 1 ±
√

3 i was a product of two nonunits, then those two nonunits would each
have field norm equal to 2. But there are no elements in Z[

√
3 i] with field norm equal to 2 because for

x, y ∈ Z, we have N(x + y
√

3 i) = x2 + 3y2 so if y = 0 then N(x + y
√

3 i) = x2 6= 2 and if y 6= 0 then
N(x+ y

√
3 i) = x2 + 3y2 ≥ 3y2 ≥ 3. Thus the elements 1±

√
3 i and 2 are all irreducible, as claimed. Finally

note that 2 is not an associate of either of the elements 1±
√

3 i because 1±
√
3 i

2 /∈ Z[
√

3 i]. Thus Z[
√

3 i] is not
a unique factorization domain.



4: (a) Find the association classes in Z18.

Solution: It helps to make a multiplication table for Z18. Using the fact that (a)(−b) = −(ab) = (−a)(b) and
(−a)(−b) = ab we can save a bit of trouble by displaying only the upper-left quarter of the multiplication
table and writing the elements in Z18 as ±k with 0 ≤ k ≤ 9.

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7 8 9
2 0 2 4 6 8 −8 −6 −4 −2 0
3 0 3 6 9 −6 −3 0 3 6 9
4 0 4 8 −6 −2 2 6 −8 −4 0
5 0 5 −8 −3 2 7 −6 −1 4 9
6 0 6 −6 0 6 −6 0 6 −6 0
7 0 7 −4 3 −8 −1 6 −5 2 9
8 0 8 −2 6 −4 4 −6 2 −8 0
9 0 9 0 9 0 9 0 9 0 9

Let use the table to help determine which elements are associates of each other. Recall that for a ∈ Z18, we
define [a] =

{
x ∈ Z18

∣∣x ∼ a}, and we call the set [a] the association class of a in Z18. From the table, we can
find all the association classes. For example, to find the associates of 2, we look on row 2 to find all the multiples
of 2, namely 0,±2,±4,±6,±8, then we look along each of the rows 0, 2, 4, 6, 8 to see whether ±2 occurs as a
multiple, and we find that ±2 occurs on rows 2, 4, 8 but not on rows 0, 6, so the associates of 2 are ±2,±4,±8.
We find that [0] = {0}, [1] = {±1,±5,±7} = {1, 5, 7, 11, 13, 17}, [2] = {±2,±4,±8} = {2, 4, 8, 10, 14, 16},
[3] = {±3} = {3, 15}, [6] = {±6} = {6, 12} and [9] = {9}.

We now redisplay our multiplication table by considering multiplication to act on association classes.

[0] [1] [2] [3] [6] [9]

[0] [0] [0] [0] [0] [0] [0]

[1] [0] [1] [2] [3] [6] [9]

[2] [0] [2] [2] [6] [6] [0]

[3] [0] [3] [6] [9] [0] [9]

[6] [0] [6] [6] [0] [0] [0]

[9] [0] [9] [0] [9] [0] [9]

We shall use this table for Parts (b) and (c).

(b) Find all the units and all the zero divisors in Z18.

Solution: The units in Z18 are the associates of 1, namely the elements in [1] = {1, 5, 7, 11, 13, 17}. To find the
zero-divisors, we look for the [0] entries in the multiplication table which do not occur in the first row or column
(as multiples of [0]). We see that [2][9] = [9][2] = [0], [3][6] = [6][3] = [0], [6][6] = [0] and [6][9] = [9][6] = [0]
and so the zero divisors are the elements in [2] ∪ [3] ∪ [6] ∪ [9] = {2, 3, 4, 6, 8, 9, 10, 12, 14, 15, 16} (in this ring,
all of the non-zero non-units are zero divisors).

(c) Find all the irreducible elements and all the prime elements in Z18.

Solution: The reducible and irreducible elements (by definition) are the nonzero non-units, that is the elements
in [2] ∪ [3] ∪ [6] ∪ [9]. To find the reducible elements we find all the non-zero entries in the table which do
not occur in the first or second row or column (as multiples of [0] or [1]), namely [2], [6] and [9] (for example
[2] = [2][2], [6] = [2][3] and [9] = [3][3]). Thus the reducible elements are the elements in [2] ∪ [6] ∪ [9] and the
irreducible elements are the elements in [3] = {3, 15}.

Finally, let us determine the primes. Since primes are nonzero non-units, the only possible primes are the
elements in [2]∪ [3]∪ [6]∪ [9]. Since [9] = [3][3] but [9] does not divide [3], it follows that the elements in [9] are
not prime. Since [6] = [2][3] but [6] divides neither [2] nor [3], it follows that the elements in [6] are not prime.
If [3] = [a][b] with a, b ∈ Z18 then (from the table) we have ([a], [b]) = ([1], [3]) or ([a], [b]) = ([3], [1]) and, in
either case, [3] divides [a] or [3] divides [b], and so the elements in [3] are prime. If [2] = [a][b] with a, b ∈ Z18

then (from the table) we have ([a], [b]) ∈
{

([1], [2]), ([2], [1]), ([2], [2])
}

, and in all cases [2]
∣∣[a] or [2]

∣∣[b], and so
the elements in [2] are prime. Thus the primes are the elements in [2] ∪ [3] = {2, 3, 4, 8, 10, 14, 15, 16}.



5: (a) Use the method of the Sieve of Eratosthenes to find all irreducible elements u ∈ Z[
√

2 i] with ‖u‖ ≤ 10
(where ‖u‖ denotes the complex norm of u). Begin by drawing a grid which shows all the elements u ∈ Z[

√
2 i

]
with ‖u‖ ≤ 10 and crossing off 0 and ±1. At each step, circle the remaining elements of smallest complex
norm and cross off their multiples: if you have circled u then cross off the elements uv with v ∈ Z[

√
2 i]\{±1}.

To locate the multiples uv on your grid, it helps to make use of the fact that to multiply u and v you must
multiply their lengths and add their angles.

Solution: It helps to draw a picture of the grid. At the first step, circle the elements ±
√

2i. The multiples
of
√

2i are the elements (
√

2i)(s + t
√

2i) = −2t + s
√

2i with s, t ∈ Z, or equivalently the elements a + b
√

2i
where a, b ∈ Z with a even. Cross these elements off in your picture of the grid. At the second step, circle
the elements ±1±

√
2i. If we write 1 +

√
2i = reiθ (where r =

√
3 and θ = tan−1

√
2) then multiplication of

an element u ∈ Z[
√

2i] by 1 +
√

2i is given, geometrically, by scaling the length of u by
√

3 and rotating u
counterclockwise about the origin by the angle θ. It follows that the multiples of 1 +

√
2i are the points on

the grid obtained by scaling the entire grid Z[
√

2i] by
√

3 and rotating it by θ, This geometric interpretation
helps to locate all the multiples of 1 +

√
3i and cross them off. You should find that the multiples of 1 +

√
2i

which lie in the circle ‖u‖ ≤ 10, and are in the first quadrant, and have not already been crossed off in Step
1, are the elements 3, 1 + 4

√
2i, 3 + 3

√
2i, 5 + 2

√
2i, 7 +

√
2i, 9, 1 + 7

√
2i, 3 + 6

√
2i, 5 + 5

√
2i, 7 + 4

√
2i

and 9 + 3
√

2i. The multiples of 1−
√

2i should also be crossed off, and you should find that the multiples of
1 −
√

2i which lie in the circle ‖u‖ ≤ 10 and in first quadrant and have not already been crossed off in Step
1 are the elements 9, 3, 5 +

√
2i, 7 + 2

√
2i, 9 + 3

√
2i, 1 + 2

√
2i, 3 + 3

√
2i, 5 + 4

√
2i, 7 + 5

√
2i, 1 + 5

√
2i and

3 + 6
√

2i. At the third step, we circle the smallest remaining elements ±3 ±
√

2i. Because N(3 +
√

2i) > 10
we may stop and all the remaining elements inside the circle ‖u‖ ≤ 10 are irreducible (and prime). Thus the
irreducible elements u in Z[

√
2i] with ‖u‖ ≤ 10 are the elements

±5 , ±7 , ±
√

2 i , ±1±
√

2 i , ±3±
√

2i , ±9±
√

2i , ±3± 2
√

2i , ±9± 2
√

2i ,

±1± 3
√

2i , ±5± 3
√

2i , ±7± 3
√

2i , ±3± 4
√

2i , ±3± 5
√

2i , ±1± 6
√

2i , ±5± 6
√

2 i .

(b) Let p be an odd prime in Z+. Show that p is reducible in Z
[√

2 i
]

if and only if p = x2 + 2y2 for some
x, y ∈ Z.

Solution: Suppose first that p is reducible. Choose non-units u, v ∈ Z
[√

2 i
]

such that p = uv. Since
N(u), N(v) ∈ Z+ and we have N(u)N(v) = N(uv) = N(p) = p2, it follows that N(u) = N(v) = p. Write
u = a + b

√
2 i with a, b ∈ Z and let x = |a| and y = |b|. Then we have p = N(u) = a2 + 2b2 = x2 + 2y2.

Finally note that x 6= 0 since p is odd so that p 6= 2y2, and y 6= 0 since p is prime so that p 6= x2, and so we
have x, y ∈ Z+.

Conversely, suppose that p = x2 + 2y2 with x, y ∈ Z+. Let u = x + y
√

2 i and v = u = x − i
√

2 i and
note that u, v ∈ Z

[√
2 i

]
. Then N(u) = N(v) = x2 + 2y2 = p so that u and v are non-units and we have

uv = x2 + 2y2 = p so that p is reducible in Z
[√

2 i
]
.


