PMATH 340 Number Theory, Solutions to the Exercises for Chapter 6

: (a) For 2,y € Q, let E(z + yv2) = |2% — 2y?| and recall that E is a Euclidean norm in Z[v2]. Let
a=17+26v2 € Z[v2] and b = 5+ 3v/2 € Z[V2]. Find ¢,r € Z[v2] with a = gb+r and E(r) < E(b).

Solution: We have ¢ = 1213%5 = 1;13%5 . g:gg = _68+779‘/§ >~ —10 + 11v/2 (with —10 being the integer

nearest to —% and 11 being the integer nearest to 779), so we take ¢ = —10 4+ 11v/2 and then we take

r=a—qgb=(17+26v2) — (=10 + 11v/2)(5 + 3v/2) = (17 + 261/2) — (16 + 25v/2) = 1 + /2.

(b) Let a = —20+304 € Z[i] and b = —5+144 in Z[i]. Use the Euclidean Algorithm to find d = ged(a, b) € Z]i]
then use Back-Substitution to find s,t € Z[é] such that as + bt = d.

Solution: We have ¢ = =2343% — —20£301 . 5144 — 52041301 — 2048301 o +i, so we take g1 = 24 and
r1=a—q1b=(—20430%)—(241i)(—5+144) = 4+ T7i. Next we have % = _ji;?l = B89L1 o 1 4 50 we take

@2 =1+iand ry =b—qor1 = (=5+144) — (1 +9)(4 + Ti) = =2 + 34. Finally we have 2L = 2L =1 -2
so we take g3 =1 — 24 and 73 = 0. Thus d = ged(a,b) =1y = —2 + 314.

Back-Substitution gives the sequence (sg, s1,52) = (1, —(1+14), (24 i)(1+14)+1 =2+ 3i) so we can
take s =51 = —(1+14) and t = s = 2+ 34 to get as + bt = d.

: (a) Find the smallest unit v > 1 in Z[+/18].

Solution: We use the method described in Example 6.12 of the Lecture Notes. We have

b 1 2 3 4
18y 18 76 162 288

We see that the smallest value of b € Z* for which 18b? differs from a square by +1 is b = 4 and, in this case,
we have 18b? = 288 = a? — 1 for a = 17. Thus the smallest unit u € Z[v/18] with u > 1 is u = 17 + 4/18.

(b) Show that Z[v/10] is not a unique factorization domain.

Solution: In Z[v/10] we have (2 + v/10)(—2 + 1/10) = 6 = 2 - 3. We claim that each of the elements 2, 3 and
+2 4 /10 is irreducible in Z[v/10]. We use the field norm in Q[v/10] given by N(z + y+/10) = 22 — 10y
Note that N(2) =4, N(3) = 9 and N(+2++/10) = —6. If 2 was reducible, it would factor as a product of two
non-units, say 2 = zw. Then we would have N(z)N(w) = N(zw) = N(2) = 4 so that either N(z) =2 = N(w)
or N(z) = —2 = N(w). Similarly, if 3 was reducible it would factor into two elements of norms +3 and
if £2 4+ v/10 were reducible then it would factor into two elements with one of norm +2 and the other of
norm F3. To show that the elements 2, 3 and +2 + /10 are irreducible, it suffices to show that there are no
elements in Z[v/10] of norm 42 or £3. We can see this by working modulo 10. Note that for =,y € Z we have
N(z + yv10) = 22 — 10y? = 22 mod 10. But in Z;o we have

zx 01 2 3 45 6 7 8 9

2 01 49 6 5 6 9 4 1

so there are no elements x € Zyo with 2 = +2,4+3. Thus the elements 2, 3 ad +2 + /10 are all irreducible
in Z[v10].

Finally, note that 2 is not an associate of either of the two elements £24-1/10 because (Working in the field
Q[V10]) we have ﬂ%‘/ﬁ =414 110 ¢ Z[V10] (if they were associates then we would have ﬂ%‘/ﬁ = u for
some unit u € Z[v/10]). Similarly, 3 is not an associate of +2 4 /10 because ﬂ%‘/ﬁ =+2+1V10 ¢ Z[V10].



3: Let w = ¢'™/3 = 153 and let Z[w] = {a +bw|a,b € Z} and Q] = {a + bw|a,b e Q}.
(a) Show that Z[v/31] % Z[w] and Q[v/3i] = Q[w].

Solution: For a,b € Z we have a + bv/3i = (a — b) + 2b(1+T‘/§i) = (a —b) 4 2bw, and so Z[v31i] C Z[w)].
Since w = 1+ 1v/31i ¢ Z[V/31] we have Z[v/31] % Z[w]. We remark that we made use of the fact that elements
in Q[V/31] can be uniquely written in the form z 4 yv/34 with z,y € Q, hence when z,y € Q we have
r+yV3ic Z[V3i] if and only if 2 € Z and y € Z.

For a,b € Q we have a + bv/3i = (a — b) +2b(1+T\/§i) = (a —b) + 2bw € Q[w] and so Q[v31i] C Q[w].
Also, for a,b € Q we have a + bw = a+b(1+T\/§’i) =(a+ %) +2V3ieQ[V3i] so we have Q[w] C Q[V31.

(b) Find all the units in Z[w].

Solution: The field norm in Q[w] = Q[v/31] is given by N(u) = ||lu||? that is by N(a+ bv/3i) = a® + 3b*> when
a,b € Q. For a,b € Q we have

N(a+bw) = N(a+b(HB)) = N((a+ &) + L v3i) = (a+ &) +3(2)" = a® + ab+ 2.
We know that the field norm is multiplicative (meaning that N(uv) = N(u)N (v) and the above formula shows
that when a,b € Z we have N(a+bw) € Z. It follows that the units in Z[w] are the elements of field norm +1
or equivalently, the elements of complex norm 1. It is easy to see from a picture of the set Z[w] (which consists

of the vertices in a grid of equilateral triangles of unit side length) that there are exactly 6 elements in Z[w] of
complex norm 1, namely the 6** roots of unity +1, +w, +w?. To be rigorous, let us verify this algebraically.

Note that || £ 1|| = || & w|| = ||w?|| = 1. We claim that these are the only 6 elements in Z[w)] of complex
norm 1. Note that these 6 elements, represented in the form a + bw with a,b € Z are given by
1=14+0w, -1=—-14+0w, w=04+1w, —w=0- 1w, w2:_1%‘/§i:—1+1w and —w?=1-lw.

Let a,b € Z and suppose that N(a + bw) = |la + bw||?> = 1, that is a® + ab+ b*> = 1. If @ = 0 then we have
1=a?+ab+b* =102 hence b = +1. If a = 1 then we have 1 = a® + ab+b> = 1 + b+ b?, that is b(b+ 1) = 0,
hence b=0or b= —1. If a = —1 then we have 1 = a® + ab+ b* = 1 — b+ b?, that is b(b — 1) = 0, and hence

b=0orb=1. If ||a|| > 2, then since the minimum value of f(z) = x(z — |a|) is equal to —% (occurring
when z = @) we have

2

N(a+bw) = a® +ab+b* > [|a]|® — ||a] 6]l + 1Bl]* = lla]|® + 6] (6] — llal]) = [la||? — Ld= = 2lal

4 =3

Thus the only 6 elements in Z[w] of norm 1 are indeed the 6" roots of unity +1, +w and 4w?.

(c) Show that Z[w] is a unique factorization domain (indeed a Euclidean domain) but Z[/3 ] is not.

Solution: For u € Z[w], let E(u) = N(u) = |lul|*>. Note that E is multiplicative (that is E(uv) = E(u)E(v))
and F satisfies Properties E1-E4 in the definition of a Euclidean norm. We need to show that E satisfies
Property E5, that is the Division Algorithm Property. Let u,v € Z[w] with v # 0. Working in Q[w], say
% =z +yw with 2,y € Q. Choose a,b € Z with |a — 2| < % and |b—y| < % Let ¢ = a + bw € Z[w] and let
r =u — qu so that u = qu + r. Then we have

N(r) = IIrl]? = ffu = qoll® = | % = al [o]> = [|(a — ) + (b — y)e]| o]
< (la = al? + b= ylwl?) ol < (5 + 4 wl?) o]> = § B(v).

Thus Z[w] is a Euclidean domain with Euclidean norm E.

We claim that Z[v/31] is not a unique factorization domain. Note that in Z[v/3i] we have (1 + v/3i)(1 —
V3i) =4 = 2-2. We claim that the elements 14-1/3i and 2 are irreducible. Note tha N(1£+/3i) = N(2) = 4.
It follows that if either 2 or 1 + v/3i was a product of two nonunits, then those two nonunits would each
have field norm equal to 2. But there are no elements in Z[v/3i] with field norm equal to 2 because for
z,y € Z, we have N(z + yv3i) = 22 + 3y so if y = 0 then N(z + yv/3i) = 22 # 2 and if y # 0 then
N(z+yv/3i) = 2% + 3y? > 3y? > 3. Thus the elements 1 ++/3 and 2 are all irreducible, as claimed. Finally
note that 2 is not an associate of either of the elements 1+ /37 because H[T‘/g‘ ¢ Z[\/31i]. Thus Z[/31] is not
a unique factorization domain.



4: (a) Find the association classes in Zs.

Solution: It helps to make a multiplication table for Z;s. Using the fact that (a)(—b) = —(ab) = (—a)(b) and
(—a)(—b) = ab we can save a bit of trouble by displaying only the upper-left quarter of the multiplication
table and writing the elements in Zg as +k with 0 < k£ < 9.

01 2 3 4 5 6 7 8 9

0O 00 0O OO O O O 0O

1 01 2 3 4 5 6 7 8 9

2 0 2 4 6 8 -8-6-4-20

3 03 6 9-6-3 0 3 6 9

4 0 4 8 -6-2 2 6 -8-40

5 0 5-8-3 2 7 -6-1 4 9

6 0 6-6 0 6 -6 0 6 -6 0

7T 0 7-4 3 -8-1 6 -5 2 9

8 0 8-2 6 -4 4 -6 2 -8 20

9 09 0 9 0 9 0 9 0 9
Let use the table to help determine which elements are associates of each other. Recall that for a € Z1g, we
define [a {x € Z18’$ ~ a} and we call the set [a] the association class of a in Zjg. From the table, we can

find all the association classes. For example, to find the associates of 2, we look on row 2 to find all the multiples
of 2, namely 0, +2, +4, +6, +8, then we look along each of the rows 0,2,4,6,8 to see whether £2 occurs as a
multiple, and we find that +2 occurs on rows 2,4, 8 but not on rows 0, 6, so the associates of 2 are £2, +4, £8.
We find that [0] = {0}, [1] = {£1,+5,£7} = {1,5,7,11,13,17}, [2] = {£2,+4,+8} = {2,4,8,10,14, 16},
[3] = {£3} = {3,15}, [6] = {6} = {6,12} and [9] = {9}.

We now redisplay our multiplication table by considering multiplication to act on association classes.

0 [t 2] B [6] [9]
] [o] [o] [o] [o] [o] [0O]
Ay o o 2Bl [l
21 [0l [2] [2] [6] [6] [0]
81 [0l [3] [6] [9 [0 [9]
[6] (0] [6] [6] [0] [0] [O]
(O] (o] o] [o] [9] [o] [9]

We shall use this table for Parts (b) and (c).

(b) Find all the units and all the zero divisors in Zg.

Solution: The units in Z;g are the associates of 1, namely the elements in [1] = {1,5,7,11,13,17}. To find the
zero-divisors, we look for the [0] entries in the multiplication table which do not occur in the first row or column
(as multiples of [0]). We see that [2][9] = [9][2] = [0], [3][6] = [6][3] = [0], [6][6] = [0] and [6][9] = [9][6] = [0]
and so the zero divisors are the elements in [2] U [3] U [6] U [9] = {2, 3,4,6,8,9,10,12,14,15,16} (in this ring,
all of the non-zero non-units are zero divisors).

(c) Find all the irreducible elements and all the prime elements in Zisg.

Solution: The reducible and irreducible elements (by definition) are the nonzero non-units, that is the elements
in 2]U[3]U[6] U[9]. To find the reducible elements we find all the non-zero entries in the table which do
not occur in the first or second row or column (as multiples of [0] or [1]), namely [2], [6] and [9] (for example
[2] = [2]]2], [6] = [2][3] and [9] = [3][3]). Thus the reducible elements are the elements in [2] U [6] U [9] and the
irreducible elements are the elements in [3] = {3,15}.

Finally, let us determine the primes. Since primes are nonzero non-units, the only possible primes are the
elements in [2] U [3]U[6]U[9]. Since [9] = [3][3] but [9] does not divide [3], it follows that the elements in [9] are

not prime. Since [6] = [2][3] but [6] divides neither [2] nor [3], it follows that the elements in [6] are not prime.
If [3] = [a][b] with a,b € Z;g then (from the table) we have ([a], [b]) = ([1],[3]) or ([al,[0]) = (3], [1]) and, in
either case, [3] divides [a] or [3] divides [b], and so the elements in [3] are prime. If [2] = [a][b] with a,b € Z1s

then (from the table) we have ([a], [b]) € {([1], [2]), ([2],[1]). ([2],[2])}, and in all cases [2]|[a] or [2]|[b], and so
the elements in [2] are prime. Thus the primes are the elements in [2] U [3] = {2, 3,4, 8,10, 14,15, 16}.



5: (a) Use the method of the Sieve of Eratosthenes to find all irreducible elements u € Z[v/21i] with |lu < 10
(where ||u]| denotes the complex norm of u). Begin by drawing a grid which shows all the elements u € Z[v/2 ]
with [Ju|| < 10 and crossing off 0 and £1. At each step, circle the remaining elements of smallest complex
norm and cross off their multiples: if you have circled u then cross off the elements uv with v € Z[v/2i]\ {£1}.
To locate the multiples uv on your grid, it helps to make use of the fact that to multiply » and v you must
multiply their lengths and add their angles.

Solution: It helps to draw a picture of the grid. At the first step, circle the elements 4+/2i. The multiples
of v/2i are the elements (\/52)(3 + t\/iz) = —2t + 5v/2i with s,t € Z, or equivalently the elements a + bv/2i
where a,b € Z with a even. Cross these elements off in your picture of the grid. At the second step, circle
the elements +1 #+ /2i. If we write 1 + v/2i = re’? (where r = /3 and § = tan~! v/2) then multiplication of
an element u € Z[v/2i] by 1+ 1/2i is given, geometrically, by scaling the length of u by v/3 and rotating u
counterclockwise about the origin by the angle 6. It follows that the multiples of 1 + v/2i are the points on
the grid obtained by scaling the entire grid Z[\/ﬁ@} by v/3 and rotating it by 6, This geometric interpretation
helps to locate all the multiples of 1 + v/3i and cross them off. You should find that the multiples of 1 + v/2i
which lie in the circle ||u|] < 10, and are in the first quadrant, and have not already been crossed off in Step
1, are the elements 3, 1 4+ 4v/2i, 3+ 3v/2i, 5+ 2v/2i, 7T+ v/2i, 9, 1 + 7/2i, 3 + 6+/2i, 5 + 5v2i, 7+ 4/2i
and 9 + 3v/2i. The multiples of 1 — v/2i should also be crossed off, and you should find that the multiples of
1 — +/2i which lie in the circle |ju| < 10 and in first quadrant and have not already been crossed off in Step
1 are the elements 9, 3, 5+ v/2i, 74 2v/2i, 9+ 3v/2i, 1 4+ 2v/2i, 3+ 3v/2i, 5+ 4v/2i, 7T+ 5v/2i, 1 + 5v/2i and
3+ 6+v/2i. At the third step, we circle the smallest remaining elements +3 4 v/2i. Because N (3 + 1/2i) > 10
we may stop and all the remaining elements inside the circle ||u]| < 10 are irreducible (and prime). Thus the
irreducible elements u in Z[v/2i] with ||u|| < 10 are the elements

+5, +7, £V2i, £1 4+ V24, +3+V2i, 9+ V20, £3+2v2i, +9 + 2v/2i,
+143v2i, £5+3V2i, £7+3v2i, £3+4V2i, £3 +5v/2i, +1 4+ 6V2i, £5 + 621

(b) Let p be an odd prime in Z*. Show that p is reducible in Z[\/ﬁz] if and only if p = x? + 212 for some
z,y € Z.

Solution: Suppose first that p is reducible. Choose non-units u,v € Z[\/i z] such that p = wwv. Since
N(u), N(v) € Z* and we have N(u)N(v) = N(uv) = N(p) = p?, it follows that N(u) = N(v) = p. Write
u = a+ by/2i with a,b € Z and let = |a| and y = |b]. Then we have p = N(u) = a? + 2b> = 22 + 2°.
Finally note that 2 # 0 since p is odd so that p # 2y%, and y # 0 since p is prime so that p # 22, and so we
have z,y € Z+.

Conversely, suppose that p = 22 + 2y? with z,y € Zt. Let u = 2 + yv/2i and v = @ = = — i/2i and
note that u,v € Z[v2i]. Then N(u) = N(v) = 2% 4+ 2y® = p so that u and v are non-units and we have
wv = x2 + 2y% = p so that p is reducible in Z [\/5 z]



