PMATH 340 Number Theory, Exercises for Chapter 6 (Quadratic Rings)

1: (a) For $x, y \in \mathbf{Q}$, let $E(x+y \sqrt{2})=\left|x^{2}-2 y^{2}\right|$ and recall that E is a Euclidean norm in $\mathbf{Z}[\sqrt{2}]$. Let $a=17+26 \sqrt{2} \in \mathbf{Z}[\sqrt{2}]$ and $b=5+3 \sqrt{2} \in \mathbf{Z}[\sqrt{2}]$. Find $q, r \in \mathbf{Z}[\sqrt{2}]$ with $a=q b+r$ and $E(r)<E(b)$.
(b) Let $a=-20+30 i \in \mathbf{Z}[i]$ and $b=-5+14 i$ in $\mathbf{Z}[i]$. Use the Euclidean Algorithm to find $d=\operatorname{gcd}(a, b) \in \mathbf{Z}[i]$ then use Back-Substitution to find $s, t \in \mathbf{Z}[i]$ such that $a s+b t=d$.

2: (a) Find the smallest unit $u>1$ in $\mathbf{Z}[\sqrt{18}]$.
(b) Show that $\mathbf{Z}[\sqrt{10}]$ is not a unique factorization domain.

3: Let $w=e^{i \pi / 3}=\frac{1+\sqrt{3} i}{2}$ and let $\mathbf{Z}[w]=\{a+b w \mid a, b \in \mathbf{Z}\}$ and $\mathbf{Q}[w]=\{a+b w \mid a, b \in \mathbf{Q}\}$.
(a) Show that $\mathbf{Z}[\sqrt{3} i] \varsubsetneqq \mathbf{Z}[w]$ and $\mathbf{Q}[\sqrt{3} i]=\mathbf{Q}[w]$.
(b) Find all the units in $\mathbf{Z}[w]$.
(c) Show that $\mathbf{Z}[w]$ is a unique factorization domain (indeed a Euclidean domain) but $\mathbf{Z}[\sqrt{3} i]$ is not.

4: (a) Find the association classes in \mathbf{Z}_{18}.
(b) Find all the units and all the zero divisors in \mathbf{Z}_{18}.
(c) Find all the irreducible elements and all the prime elements in \mathbf{Z}_{18}.

5: (a) Use the method of the Sieve of Eratosthenes to find all irreducible elements $u \in \mathbf{Z}[\sqrt{2} i]$ with $\|u\| \leq 10$ (where $\|u\|$ denotes the complex norm of u). Begin by drawing a grid which shows all the elements $u \in \mathbf{Z}[\sqrt{2} i]$ with $\|u\| \leq 10$ and crossing off 0 and ± 1. At each step, circle the remaining elements of smallest complex norm and cross off their multiples: if you have circled u then cross off the elements $u v$ with $v \in \mathbf{Z}[\sqrt{2} i] \backslash\{ \pm 1\}$. To locate the multiples $u v$ on your grid, it helps to make use of the fact that to multiply u and v you must multiply their lengths and add their angles.
(b) Let p be an odd prime in \mathbf{Z}^{+}. Show that p is reducible in $\mathbf{Z}[\sqrt{2} i]$ if and only if $p=x^{2}+2 y^{2}$ for some $x, y \in \mathbf{Z}$.

