- 1: (a) For $x, y \in \mathbf{Q}$, let $E(x + y\sqrt{2}) = |x^2 2y^2|$ and recall that E is a Euclidean norm in $\mathbf{Z}[\sqrt{2}]$. Let $a = 17 + 26\sqrt{2} \in \mathbf{Z}[\sqrt{2}]$ and $b = 5 + 3\sqrt{2} \in \mathbf{Z}[\sqrt{2}]$. Find $q, r \in \mathbf{Z}[\sqrt{2}]$ with a = qb + r and E(r) < E(b). (b) Let $a = -20 + 30 i \in \mathbf{Z}[i]$ and b = -5 + 14 i in $\mathbf{Z}[i]$. Use the Euclidean Algorithm to find $d = \gcd(a, b) \in \mathbf{Z}[i]$ then use Back-Substitution to find $s, t \in \mathbf{Z}[i]$ such that as + bt = d.
- **2:** (a) Find the smallest unit u > 1 in $\mathbb{Z}[\sqrt{18}]$.
 - (b) Show that $\mathbf{Z}[\sqrt{10}]$ is not a unique factorization domain.
- **3:** Let $w = e^{i\pi/3} = \frac{1+\sqrt{3}i}{2}$ and let $\mathbf{Z}[w] = \{a + bw \mid a, b \in \mathbf{Z}\}$ and $\mathbf{Q}[w] = \{a + bw \mid a, b \in \mathbf{Q}\}.$
 - (a) Show that $\mathbf{Z}[\sqrt{3}\,i] \subsetneqq \mathbf{Z}[w]$ and $\mathbf{Q}[\sqrt{3}\,i] = \mathbf{Q}[w]$.
 - (b) Find all the units in $\mathbf{Z}[w]$.
 - (c) Show that $\mathbf{Z}[w]$ is a unique factorization domain (indeed a Euclidean domain) but $\mathbf{Z}[\sqrt{3}i]$ is not.
- 4: (a) Find the association classes in \mathbf{Z}_{18} .
 - (b) Find all the units and all the zero divisors in \mathbf{Z}_{18} .
 - (c) Find all the irreducible elements and all the prime elements in \mathbf{Z}_{18} .
- 5: (a) Use the method of the Sieve of Eratosthenes to find all irreducible elements $u \in \mathbb{Z}[\sqrt{2}i]$ with $||u|| \leq 10$ (where ||u|| denotes the complex norm of u). Begin by drawing a grid which shows all the elements $u \in \mathbb{Z}[\sqrt{2}i]$ with $||u|| \leq 10$ and crossing off 0 and ± 1 . At each step, circle the remaining elements of smallest complex norm and cross off their multiples: if you have circled u then cross off the elements uv with $v \in \mathbb{Z}[\sqrt{2}i] \setminus \{\pm 1\}$. To locate the multiples uv on your grid, it helps to make use of the fact that to multiply u and v you must multiply their lengths and add their angles.

(b) Let p be an odd prime in \mathbb{Z}^+ . Show that p is reducible in $\mathbb{Z}[\sqrt{2}i]$ if and only if $p = x^2 + 2y^2$ for some $x, y \in \mathbb{Z}$.