PMATH 340 Number Theory, Solutions to the Exercises for Chapter 5

1: (a) Let $p=47, q=61, e=43$ and $n=p q$. Encrypt the 2-letter message GO using the RSA public key (e, n) (first replace GO by the number $m=0715$ because G and O are the $7^{\text {th }}$ and $15^{\text {th }}$ letters of the alphabet).

Solution: Note that $n=p q=47 \cdot 61=2867$. We must find $c \equiv m^{e}(\bmod n)$, that is $c \equiv 715^{43}(\bmod 2867)$. We make a list of powers of 715 modulo 2867.

k	715^{k}
1	715
2	899
4	2574
8	2706
16	118
32	2456

Since $43=32+8+2+1$ we have

$$
c \equiv 715^{43} \equiv 715^{32} \cdot 715^{8} \cdot 715^{2} \cdot 715^{1} \equiv(2456 \cdot 2706)(899 \cdot 715) \equiv 230 \cdot 577 \equiv 828(\bmod 2867)
$$

Thus the cyphertext is 828 .
(b) Let $p=41, q=67, e=217$ and $n=p q$. Decrypt the cyphertext $c=811$ which was encoded from a 2-letter message using the RSA public key (e, n).

Solution: We have $n=p q=41 \cdot 67=2747$, and we have $\varphi(n)=\varphi(41) \varphi(67)=40 \cdot 66=2640$. To decypher c we can use $d=e^{-1}(\bmod \varphi(n))$, that is $d=217^{-1}(\bmod 2640)$. We consider the equation $217 x+2640 y=1$. The Euclidean Algorithm gives $2640=12 \cdot 217+36$ and $217=6 \cdot 36+1$ so we have $\operatorname{gcd}(217,2640)=1$, and then Back-Substitution gives the sequence $1,-6,73$ so we have $(217)(73)+(2640)(-6)=1$. Thus we have $217^{-1} \equiv 73(\bmod 2640)$ and we can take $d=73$. (Alternatively, we could use $d=e^{-1}(\bmod \lambda(n))$ where $\lambda(n)=\operatorname{lcm}(\varphi(41), \varphi(67))=\operatorname{lcm}(40,66)=1320$, but as it happens, this gives the same value $d=73)$. We must find $m \equiv c^{d}(\bmod n)$, that is $m \equiv 811^{73}(\bmod 2747)$. We make a list of powers of 811 modulo 2747.
k 811^{k}
1811
21188
42133
$8 \quad 657$
16370
$\begin{array}{ll}32 & 2297\end{array}$
641969
Since $73=64+8+1$ we have

$$
w \equiv 811^{73} \equiv 811^{64} \cdot 811^{8} \cdot 811^{1} \equiv 1969 \cdot 657 \cdot 811 \equiv 2123(\bmod 2747)
$$

Thus the message is $m=2123$ which corresponds to the 2-letter message UW.

2: (a) Let $n=459061$. Given that $n=p q$ for some primes $p<q$ and that $\varphi(n)=457612$, find the prime factorization of n.

Solution: Using $n=p q$ we have

$$
\begin{gathered}
(p-1)(q-1)=\varphi(n) \\
p q-p-q+1=\varphi(n) \\
n-p-q+1=\varphi(n) \\
q+p=n-\varphi(n)+1 .
\end{gathered}
$$

Also, we have

$$
\begin{gathered}
(q-p)^{2}=(q+p)^{2}-4 p q \\
q-p=\sqrt{(q+p)^{2}-4 n}
\end{gathered}
$$

Using the given values of n and $\varphi(n)$ we have

$$
q+p=(n-\varphi(n)+1)=1450 \text { and } q-p=\sqrt{(q+p)^{2}-4 n}=\sqrt{(1450)^{2}-4(459061)}=516
$$

Thus $p=\frac{(q+p)-(q-p)}{2}=\frac{1450-516}{2}=467$ and $q=516+p=516+467=983$.
(b) Let $n=806437$. Given that $n=p q$ for some primes $p<q$ with $q-p \leq 100$, find the prime factorization of n.

Solution: We have

$$
(q-p)^{2}=(q+p)^{2}-4 p q=(q+p)^{2}-4 n
$$

Since the left side is positive, we must have $(q+p)^{2}>4 n$, so $(q+p) \geq\lceil\sqrt{4 n}\rceil=\lceil\sqrt{4(806437)}\rceil=1797$. We have $1797^{2}-4 n=3461$, which is not a square, and $1798^{2}-4 n=7056=84^{2}$, and $1799^{2}-4 n=10653>100^{2}$, so we must have $q+p=1798$ and $q-p=84$. Thus $p=\frac{(q+p)-(q-p)}{2}=\frac{1798-84}{2}=857$ and $q=84+p=941$. (We remark that part (a) illustrates that in the RSA Scheme, the value of $\varphi=\varphi(n)$ must be kept secret, and part (b) illustrates that the two primes p and q must not be chosen too close together).

3: (a) Show that 91 is a pseudo-prime to the base 3 .
Solution: Note that $91=7 \cdot 13$, so 91 is composite and we have $\lambda(91)=\psi(91)=\operatorname{lcm}(6,12)=12$. Since $91=7 \bmod 12$, we have $3^{91}=3^{7}=2187=3 \bmod 91$, so 91 passes the base 3 test.
(b) Find a prime p such that $n=5 \cdot 29 \cdot p$ is a Carmichael number.

Solution: For $n=5 \cdot 29 \cdot p$ to be a Carmichael number, we need to have $4|(n-1), 28|(n-1)$ and $(p-1) \mid(n-1)$. Note that

$$
\begin{aligned}
& 4 \mid(n-1) \Longrightarrow n=1 \bmod 4 \Longrightarrow 5 \cdot 29 \cdot p=1 \bmod 4 \Longrightarrow p=1 \bmod 4, \text { and } \\
& 28 \mid(n-1) \Longrightarrow n=1 \bmod 28 \Longrightarrow 5 \cdot 29 \cdot p=1 \bmod 28 \Longrightarrow 5 p=1 \bmod 28 \Longrightarrow p=17 \bmod 28
\end{aligned}
$$

so we need to have $p=17 \bmod 28$, that is $p=17,45,73,101,129, \cdots$. By trying some of the primes in this list we find that $p=17$ and $p=73$ both satisfy $(p-1) \mid(n-1)$, so they both yield Carmichael numbers. The corresponding Carmichael numbers are $n=5 \cdot 29 \cdot 17=7395$ and $n=5 \cdot 29 \cdot 73=10585$.

Alternatively, rather than simply trying some of the (infinitely many) primes in the list, we can be more selective as follows. Note that $n-1=5 \cdot 29 \cdot p-1=145 p-1=145(p-1)+144$ and so

$$
(p-1)|(n-1) \Longleftrightarrow(p-1)|(145(p-1)+144) \Longleftrightarrow(p-1) \mid 144
$$

Thus it is enough to test each of the (finitely many) primes $p=17 \bmod 28$ with $p \leq 145=5 \cdot 29$ to see whether $(p-1) \mid$ 144. In particular, this shows that $p=17$ and $p=73$ are the only two primes for which $n=5 \cdot 29 \cdot p$ is a Carmichael number.
(c) Show that 217 is a strong pseudoprime for the base 6 .

Solution: Note that $217=7 \cdot 31$, so 217 is composite and we have $\operatorname{gcd}(6,217)=1$. We need to show that either $6^{216}=-1 \bmod 217$ or $6^{108}=-1 \bmod 217$ or $6^{54}=-1 \bmod 217$ or $6^{27}= \pm 1 \bmod 217$. Modulo 7 we have $6^{27}=(-1)^{217}=-1$. Modulo 31 we have

k	0	1	2	3	4	5	6
6^{k}	1	6	5	-1	-6	-5	1

so the powers of 6 modulo 31 repeat every 6 terms beginning with 6^{0} and so $6^{27}=6^{3}=-1$. Since $6^{27}=$ $-1 \bmod 7$ and $6^{27}=-1 \bmod 31$ we have $6^{27}=-1 \bmod 217$ by the CRT. Thus 217 is a strong pseudoprime for the base 6 .

4: (a) Show that there are infinitely many primes of the form $6 k+5$, where k is an integer.
Solution: Every odd integer is of one of the forms $6 k+1,6 k+3$ or $6 k+5$. Since $3 \mid(6 k+3)$, every prime other than 2 and 3 is either of the form $6 k+1$ or of the form $6 k+5$. Suppose, for a contradiction, that there are only finitely many primes of the form $6 k+5$, say $p_{1}, p_{2}, \cdots, p_{l}$. Consider the number $n=6 p_{1} p_{2} \cdots p_{l}-1$. Since n is odd, its prime factors are odd. Note that 3 is not a factor of n (the remainder when n is divided by 3 is equal to 2), so the pime factors of n are all of one of the forms $6 k+1$ or $6 k+5$. None of the primes p_{i} is a factor of n (since the remainder when n is divided by p_{i} is $p_{i}-1$) and so all of the prime factors of n must be of the form $6 k+1$. But since $(6 k+1)(6 l+1)=6(6 k l+k+l)+1$, we see that a product of terms of the form $6 k+1$ is also of the form $6 k+1$. This shows that n must be of the form $6 k+1$. But n is of the form $6 k-1$, so it is not of the form $6 k+1$, and we have the desired contradiction.
(b) Show that the sequence $\{6 k+5\}$ contains arbitrarily long strings of consecutive terms which are all composite. In other words, show that for every positive integer n there exists a value of k such that the n integers $6 k+5,6 k+11,6 k+17, \cdots, 6 k+6 n-1$ are all composite.

Solution: For any positive integer n, the numbers $(6 n)!+2,(6 n)!+3,(6 n)!+4, \cdots,(6 n)!+6 n$ are all composite since for $2 \leq k \leq 6 n$ we have $k \mid(6 n)!+k$. In particular, the n integers

$$
(6 n)!+5,(6 n)!+11,(6 n)!+17, \cdots,(6 n)!+(6 n-1)
$$

are all composite.

5: (a) Show that there are infinitely many primes of the form $8 k-1$ with $k \in \mathbf{Z}$.
Solution: Let $p_{1}, p_{2}, \cdots, p_{l}$ be primes of the form $8 k-1$ with $k \in \mathbf{Z}$, and let $n=\left(p_{1} p_{2} \cdots p_{l}\right)^{2}-2$. Note that since $p_{i}=-1 \bmod 8$ for all i, we have $p_{i}{ }^{2}=1 \bmod 8$ and so $n=p_{1}{ }^{2} p_{2}{ }^{2} \cdots p_{l}{ }^{2}-2=1-2=-1 \bmod 8$. Let p be a prime factor of n Note that p is odd since n is odd, and note also that $p \neq p_{i}$ for any i, since $n=-2 \bmod p_{i}$ so p_{i} is not a factor of n. We have $n=0 \bmod p$, so $\left(p_{1} p_{2} \cdots p_{l}\right)^{2}=2 \bmod p$, so $2 \in Q_{p}$. Since $2 \in Q_{p}$ we must have $p= \pm 1 \bmod 8$. Since $n=-1 \bmod 8$ it is not possible that every prime factor of n is of the form $p=1 \bmod 8$, and so n must have at least one prime factor of the form $p=-1 \bmod 8$. Thus we have found another prime of the form $8 k-1$.
(b) Show that there are infinitely many primes of the form $8 k+5$ with $k \in \mathbf{Z}$.

Solution: Let $p_{1}, p_{2}, \cdots, p_{l}$ be primes of the form $8 k+5$ with $k \in \mathbf{Z}$, and let $n=\left(p_{1} p_{2} \cdots p_{l}\right)^{2}+4$. Note that each $p_{i}=5 \bmod 8$ so $p_{i}{ }^{2}=1 \bmod 8$ so $n=5 \bmod 8$. Let p be a prime factor of n. Note that p is odd (since n is odd) and that $p \neq p_{i}$ for any i (since no p_{i} is a factor of n). We have

$$
\begin{aligned}
n=0 \bmod p & \Longrightarrow\left(p_{1} p_{2} \cdots p_{l}\right)^{2}=-4 \bmod p \Longrightarrow-4 \in Q_{p} \\
& \Longrightarrow 1=\left(\frac{-4}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{2}{p}\right)^{2}=\left(\frac{-1}{p}\right) \\
& \Longrightarrow p=1 \bmod 4 \Longrightarrow p=1 \text { or } 5 \bmod 8
\end{aligned}
$$

Since $n=5 \bmod 8$ it is not possible that every prime factor of n is of the form $p=1 \bmod 8$, and so n must have at least one prime factor of the form $p=5 \bmod 8$. Thus we have found another prime of the form $p=8 k+5$ with $k \in \mathbf{Z}$.

