PMATH 340 Number Theory, Solutions to the Exercises for Chapter 5

: (a) Let p =47, g = 61, e = 43 and n = pq. Encrypt the 2-letter message GO using the RSA public key (e, n)
(first replace GO by the number m = 0715 because G and O are the 7" and 15" letters of the alphabet).

Solution: Note that n = pg = 47 - 61 = 2867. We must find ¢ = m® ( modn), that is ¢ = 715** ( mod 2867).
We make a list of powers of 715 modulo 2867.

715"

715
899
2574
2706
118
2456

o = N =

W =
N

Since 43 = 32+ 8 +2 + 1 we have
c=T715% = 71532 . 715% . 7152 - 7151 = (2456 - 2706)(899 - 715) = 230 - 577 = 828 ( mod 2867) .
Thus the cyphertext is 828.

(b) Let p = 41, ¢ = 67, ¢ = 217 and n = pg. Decrypt the cyphertext ¢ = 811 which was encoded from a
2-letter message using the RSA public key (e, n).

Solution: We have n = pg = 41 - 67 = 2747, and we have p(n) = ¢(41)p(67) = 40 - 66 = 2640. To decypher ¢
we can use d = e~ ( modp(n)), that is d = 2177 ( mod 2640). We consider the equation 217z + 2640y = 1.
The Euclidean Algorithm gives 2640 = 12 - 217 + 36 and 217 = 6 - 36 + 1 so we have gcd(217,2640) = 1, and
then Back-Substitution gives the sequence 1, —6, 73 so we have (217)(73) + (2640)(—6) = 1. Thus we have
21771 = 73 ( mod 2640) and we can take d = 73. (Alternatively, we could use d = e~! ( mod A(n)) where
A(n) = lem(p(41),9(67)) = lem(40,66) = 1320, but as it happens, this gives the same value d = 73). We
must find m = ¢? ( modn), that is m = 8117 ( mod 2747). We make a list of powers of 811 modulo 2747.

ko 811*
1 811
2 1188
4 2133
8 657
16 370
32 2297
64 1969

Since 73 = 64 + 8 + 1 we have
w= 811" = 811%4 . 811% - 811! = 1969 - 657 - 811 = 2123 ( mod 2747) .
Thus the message is m = 2123 which corresponds to the 2-letter message UW.



2: (a) Let n = 459061. Given that n = pqg for some primes p < ¢ and that ¢(n) = 457612, find the prime

factorization of n.

Solution: Using n = pg we have
(p—1(g—1) =p(n)
pg—p—q+1=p(n)
n—p-—q+1=¢pn)
g+p=n—pn)+1.
Also, we have
(¢—p)* = (g+p)* —4pq
q—p=+(¢+p)?—4n
Using the given values of n and ¢(n) we have
g+p=(n—pn)+1)=1450 and ¢ — p = /(¢ + p)2 — 4n = /(1450)2 — 4(459061) = 516..
Thus p = CHRI_=P) _ M50-516 — 467 and g = 516 + p = 516 + 467 = 983.

(b) Let n = 806437. Given that n = pq for some primes p < ¢ with ¢ — p < 100, find the prime factorization
of n.

Solution: We have
(g—p)°=(qg+p)° —4pg=(¢+p)° —4n.

Since the left side is positive, we must have (q + p)? > 4n, so (¢ +p) > [\/ 471—‘ = [\/4(806437” = 1797. We
have 1797% — 4n = 3461, which is not a square, and 17982 — 4n = 7056 = 842, and 17992 — 4n = 10653 > 1002,
so we must have g+ p = 1798 and g — p = 84. Thus p = LHRI_(=P) _ 179881 _ g57 and g = 84 + p = 941.

(We remark that part (a) illustrates that in the RSA Scheme, the Value of gp ¢(n) must be kept secret, and
part (b) illustrates that the two primes p and ¢ must not be chosen too close together).




3: (a) Show that 91 is a pseudo-prime to the base 3.

Solution: Note that 91 = 7 - 13, so 91 is composite and we have A(91) = ¢(91) = lem(6,12) = 12. Since
91 = 7 mod 12, we have 3°! = 37 = 2187 = 3 mod 91, so 91 passes the base 3 test.

(b) Find a prime p such that n =529 - p is a Carmichael number.

Solution: For n = 5-29-p to be a Carmichael number, we need to have 4|(n—1), 28|(n—1) and (p—1)|(n—1).
Note that

4/(n—1)=n=1mod4=>5-29-p=1mod4 = p=1mod4 , and
28|(n71):>n:1mod28:>5~290p:1mod28:>5p:1mod28:>p:17mod28

so we need to have p = 17 mod 28, that is p = 17,45,73,101,129,---. By trying some of the primes in this
list we find that p = 17 and p = 73 both satisfy (p — 1)’(71 — 1), so they both yield Carmichael numbers. The
corresponding Carmichael numbers are n =5-29 .17 = 7395 and n = 5 - 29 - 73 = 10585.

Alternatively, rather than simply trying some of the (infinitely many) primes in the list, we can be more
selective as follows. Note that n —1=5-29-p—1=145p — 1 = 145(p — 1) 4+ 144 and so

(p—1|(n—1) < (p—1)|(145(p — 1) + 144) < (p—1)|144.

Thus it is enough to test each of the (finitely many) primes p = 17 mod 28 with p < 145 = 5-29 to see whether
(p— 1)|144. In particular, this shows that p = 17 and p = 73 are the only two primes for which n =5-29 - p
is a Carmichael number.

(¢) Show that 217 is a strong pseudoprime for the base 6.

Solution: Note that 217 = 7 - 31, so 217 is composite and we have ged(6,217) = 1. We need to show that
either 62! = —1 mod 217 or 6! = —1 mod 217 or 6°* = —1 mod 217 or 627 = £1 mod 217. Modulo 7 we
have 627 = (—1)?!7 = —1. Modulo 31 we have

E 012 3 4 5 6
68 1 6 5 -1 -6 -5 1

so the powers of 6 modulo 31 repeat every 6 terms beginning with 6° and so 627 = 63 = —1. Since 627 =
—1 mod 7 and 62 = —1 mod 31 we have 627 = —1 mod 217 by the CRT. Thus 217 is a strong pseudoprime
for the base 6.



4: (a) Show that there are infinitely many primes of the form 6k + 5, where k is an integer.

Solution: Every odd integer is of one of the forms 6k + 1, 6k + 3 or 6k + 5. Since 3‘(6k + 3), every prime
other than 2 and 3 is either of the form 6k + 1 or of the form 6k + 5. Suppose, for a contradiction, that there
are only finitely many primes of the form 6k + 5, say p1,pa, - -, p;. Consider the number n = 6pyps---p; — 1.
Since n is odd, its prime factors are odd. Note that 3 is not a factor of n (the remainder when n is divided by
3 is equal to 2), so the pime factors of n are all of one of the forms 6k + 1 or 6k + 5. None of the primes p; is
a factor of n (since the remainder when n is divided by p; is p; — 1) and so all of the prime factors of n must
be of the form 6k + 1. But since (6k + 1)(6] + 1) = 6(6kl + k + 1) + 1, we see that a product of terms of the
form 6k + 1 is also of the form 6k + 1. This shows that n must be of the form 6k + 1. But n is of the form
6k — 1, so it is not of the form 6k + 1, and we have the desired contradiction.

(b) Show that the sequence {6k + 5} contains arbitrarily long strings of consecutive terms which are all
composite. In other words, show that for every positive integer n there exists a value of k such that the n
integers 6k + 5,6k 4+ 11,6k + 17,---,6k 4+ 6n — 1 are all composite.

Solution: For any positive integer n, the numbers (6n)!+ 2, (6n)! 43, (6n)!+4, - - -, (6n)! 4 6n are all composite
since for 2 < k < 6n we have k’(6n)! + k. In particular, the n integers

(6n)! + 5, (6n)! + 11, (6n)! +17, - -+, (6n)! + (6n — 1)

are all composite.

5: (a) Show that there are infinitely many primes of the form 8k — 1 with k € Z.

Solution: Let py,pa,--+,p be primes of the form 8k — 1 with k € Z, and let n = (p1p2---p;)> — 2. Note
that since p; = —1 mod 8 for all 4, we have p;2 =1 mod8 and so n = p;?ps2-- - p2 —2=1—-2= —1 mod8.
Let p be a prime factor of n Note that p is odd since n is odd, and note also that p # p; for any 4, since
n = —2 mod p; so p; is not a factor of n. We have n = 0 mod p, so (p1p2 -+ pi)*> =2 modp, so 2 € Q,. Since
2 € @p we must have p = £1 mod 8. Since n = —1 mod 8 it is not possible that every prime factor of n is of
the form p = 1 mod 8, and so n must have at least one prime factor of the form p = —1 mod 8. Thus we have
found another prime of the form 8k — 1.

(b) Show that there are infinitely many primes of the form 8k + 5 with k € Z.

Solution: Let p1,pa,---,p; be primes of the form 8k + 5 with k& € Z, and let n = (p1p2 - - - p;)? + 4. Note that
each p; = 5 mod 8 so p;2 = 1 mod 8 so n =5 mod 8. Let p be a prime factor of n. Note that p is odd (since n
is odd) and that p # p; for any i (since no p; is a factor of n). We have

nzOmodp:>(p1p2~--pl)2:—4modp:>—46Qp
2
(=4 _ (=1)(2\ _ (-1
—1=(3)=-(3) ) - ()
—>p=1mod4 = p=1or 5 mod8

Since n = 5 mod 8 it is not possible that every prime factor of n is of the form p = 1 mod 8, and so n must have
at least one prime factor of the form p = 5 mod 8. Thus we have found another prime of the form p =8k + 5
with k € Z.



