
PMATH 340 Number Theory, Solutions to the Exercises for Chapter 5

1: (a) Let p = 47, q = 61, e = 43 and n = pq. Encrypt the 2-letter message GO using the RSA public key (e, n)
(first replace GO by the number m = 0715 because G and O are the 7th and 15th letters of the alphabet).

Solution: Note that n = pq = 47 · 61 = 2867. We must find c ≡ me ( modn), that is c ≡ 71543 ( mod 2867).
We make a list of powers of 715 modulo 2867.

k 715k

1 715
2 899
4 2574
8 2706
16 118
32 2456

Since 43 = 32 + 8 + 2 + 1 we have

c ≡ 71543 ≡ 71532 · 7158 · 7152 · 7151 ≡ (2456 · 2706)(899 · 715) ≡ 230 · 577 ≡ 828 ( mod 2867) .

Thus the cyphertext is 828.

(b) Let p = 41, q = 67, e = 217 and n = pq. Decrypt the cyphertext c = 811 which was encoded from a
2-letter message using the RSA public key (e, n).

Solution: We have n = pq = 41 · 67 = 2747, and we have ϕ(n) = ϕ(41)ϕ(67) = 40 · 66 = 2640. To decypher c
we can use d = e−1

(
modϕ(n)

)
, that is d = 217−1 ( mod 2640). We consider the equation 217x+ 2640y = 1.

The Euclidean Algorithm gives 2640 = 12 · 217 + 36 and 217 = 6 · 36 + 1 so we have gcd(217, 2640) = 1, and
then Back-Substitution gives the sequence 1, −6, 73 so we have (217)(73) + (2640)(−6) = 1. Thus we have
217−1 ≡ 73 ( mod 2640) and we can take d = 73. (Alternatively, we could use d = e−1

(
modλ(n)

)
where

λ(n) = lcm(ϕ(41), ϕ(67)
)

= lcm(40, 66) = 1320, but as it happens, this gives the same value d = 73). We
must find m ≡ cd ( modn), that is m ≡ 81173 ( mod 2747). We make a list of powers of 811 modulo 2747.

k 811k

1 811
2 1188
4 2133
8 657
16 370
32 2297
64 1969

Since 73 = 64 + 8 + 1 we have

w ≡ 81173 ≡ 81164 · 8118 · 8111 ≡ 1969 · 657 · 811 ≡ 2123 ( mod 2747) .

Thus the message is m = 2123 which corresponds to the 2-letter message UW.



2: (a) Let n = 459061. Given that n = pq for some primes p < q and that ϕ(n) = 457612, find the prime
factorization of n.

Solution: Using n = pq we have

(p− 1)(q − 1) = ϕ(n)

pq − p− q + 1 = ϕ(n)

n− p− q + 1 = ϕ(n)

q + p = n− ϕ(n) + 1 .

Also, we have

(q − p)2 = (q + p)2 − 4pq

q − p =
√

(q + p)2 − 4n

Using the given values of n and ϕ(n) we have

q + p = (n− ϕ(n) + 1) = 1450 and q − p =
√

(q + p)2 − 4n =
√

(1450)2 − 4(459061) = 516 .

Thus p = (q+p)−(q−p)
2 = 1450−516

2 = 467 and q = 516 + p = 516 + 467 = 983.

(b) Let n = 806437. Given that n = pq for some primes p < q with q − p ≤ 100, find the prime factorization
of n.

Solution: We have
(q − p)2 = (q + p)2 − 4pq = (q + p)2 − 4n .

Since the left side is positive, we must have (q + p)2 > 4n, so (q + p) ≥
⌈√

4n
⌉

=
⌈√

4(806437)
⌉

= 1797. We

have 17972−4n = 3461, which is not a square, and 17982−4n = 7056 = 842, and 17992−4n = 10653 > 1002,

so we must have q + p = 1798 and q − p = 84. Thus p = (q+p)−(q−p)
2 = 1798−84

2 = 857 and q = 84 + p = 941.
(We remark that part (a) illustrates that in the RSA Scheme, the value of ϕ = ϕ(n) must be kept secret, and
part (b) illustrates that the two primes p and q must not be chosen too close together).



3: (a) Show that 91 is a pseudo-prime to the base 3.

Solution: Note that 91 = 7 · 13, so 91 is composite and we have λ(91) = ψ(91) = lcm(6, 12) = 12. Since
91 = 7 mod 12, we have 391 = 37 = 2187 = 3 mod 91, so 91 passes the base 3 test.

(b) Find a prime p such that n = 5 · 29 · p is a Carmichael number.

Solution: For n = 5 ·29 ·p to be a Carmichael number, we need to have 4
∣∣(n−1), 28

∣∣(n−1) and (p−1)
∣∣(n−1).

Note that

4
∣∣(n− 1) =⇒ n = 1 mod 4 =⇒ 5 · 29 · p = 1 mod 4 =⇒ p = 1 mod 4 , and

28
∣∣(n− 1) =⇒ n = 1 mod 28 =⇒ 5 · 29 · p = 1 mod 28 =⇒ 5p = 1 mod 28 =⇒ p = 17 mod 28

so we need to have p = 17 mod 28, that is p = 17, 45, 73, 101, 129, · · ·. By trying some of the primes in this
list we find that p = 17 and p = 73 both satisfy (p− 1)

∣∣(n− 1), so they both yield Carmichael numbers. The
corresponding Carmichael numbers are n = 5 · 29 · 17 = 7395 and n = 5 · 29 · 73 = 10585.

Alternatively, rather than simply trying some of the (infinitely many) primes in the list, we can be more
selective as follows. Note that n− 1 = 5 · 29 · p− 1 = 145 p− 1 = 145(p− 1) + 144 and so

(p− 1)
∣∣(n− 1) ⇐⇒ (p− 1)

∣∣(145(p− 1) + 144
)
⇐⇒ (p− 1)

∣∣144 .

Thus it is enough to test each of the (finitely many) primes p = 17 mod 28 with p ≤ 145 = 5 ·29 to see whether
(p− 1)

∣∣144. In particular, this shows that p = 17 and p = 73 are the only two primes for which n = 5 · 29 · p
is a Carmichael number.

(c) Show that 217 is a strong pseudoprime for the base 6.

Solution: Note that 217 = 7 · 31, so 217 is composite and we have gcd(6, 217) = 1. We need to show that
either 6216 = −1 mod 217 or 6108 = −1 mod 217 or 654 = −1 mod 217 or 627 = ±1 mod 217. Modulo 7 we
have 627 = (−1)217 = −1. Modulo 31 we have

k 0 1 2 3 4 5 6
6k 1 6 5 −1 −6 −5 1

so the powers of 6 modulo 31 repeat every 6 terms beginning with 60 and so 627 = 63 = −1. Since 627 =
−1 mod 7 and 627 = −1 mod 31 we have 627 = −1 mod 217 by the CRT. Thus 217 is a strong pseudoprime
for the base 6.



4: (a) Show that there are infinitely many primes of the form 6k + 5, where k is an integer.

Solution: Every odd integer is of one of the forms 6k + 1, 6k + 3 or 6k + 5. Since 3
∣∣(6k + 3), every prime

other than 2 and 3 is either of the form 6k+ 1 or of the form 6k+ 5. Suppose, for a contradiction, that there
are only finitely many primes of the form 6k+ 5, say p1, p2, · · · , pl. Consider the number n = 6 p1p2 · · · pl − 1.
Since n is odd, its prime factors are odd. Note that 3 is not a factor of n (the remainder when n is divided by
3 is equal to 2), so the pime factors of n are all of one of the forms 6k + 1 or 6k + 5. None of the primes pi is
a factor of n (since the remainder when n is divided by pi is pi − 1) and so all of the prime factors of n must
be of the form 6k + 1. But since (6k + 1)(6l + 1) = 6(6kl + k + l) + 1, we see that a product of terms of the
form 6k + 1 is also of the form 6k + 1. This shows that n must be of the form 6k + 1. But n is of the form
6k − 1, so it is not of the form 6k + 1, and we have the desired contradiction.

(b) Show that the sequence {6k + 5} contains arbitrarily long strings of consecutive terms which are all
composite. In other words, show that for every positive integer n there exists a value of k such that the n
integers 6k + 5, 6k + 11, 6k + 17, · · · , 6k + 6n− 1 are all composite.

Solution: For any positive integer n, the numbers (6n)!+2, (6n)!+3, (6n)!+4, · · · , (6n)!+6n are all composite
since for 2 ≤ k ≤ 6n we have k

∣∣(6n)! + k. In particular, the n integers

(6n)! + 5, (6n)! + 11, (6n)! + 17, · · · , (6n)! + (6n− 1)

are all composite.

5: (a) Show that there are infinitely many primes of the form 8k − 1 with k ∈ Z.

Solution: Let p1, p2, · · · , pl be primes of the form 8k − 1 with k ∈ Z, and let n = (p1p2 · · · pl)2 − 2. Note
that since pi = −1 mod 8 for all i, we have pi

2 = 1 mod 8 and so n = p1
2p2

2 · · · pl2 − 2 = 1 − 2 = −1 mod 8.
Let p be a prime factor of n Note that p is odd since n is odd, and note also that p 6= pi for any i, since
n = −2 mod pi so pi is not a factor of n. We have n = 0 mod p, so (p1p2 · · · pl)2 = 2 mod p, so 2 ∈ Qp. Since
2 ∈ Qp we must have p = ±1 mod 8. Since n = −1 mod 8 it is not possible that every prime factor of n is of
the form p = 1 mod 8, and so n must have at least one prime factor of the form p = −1 mod 8. Thus we have
found another prime of the form 8k − 1.

(b) Show that there are infinitely many primes of the form 8k + 5 with k ∈ Z.

Solution: Let p1, p2, · · · , pl be primes of the form 8k + 5 with k ∈ Z, and let n = (p1p2 · · · pl)2 + 4. Note that
each pi = 5 mod 8 so pi

2 = 1 mod 8 so n = 5 mod 8. Let p be a prime factor of n. Note that p is odd (since n
is odd) and that p 6= pi for any i (since no pi is a factor of n). We have

n = 0 mod p =⇒ (p1p2 · · · pl)2 = −4 mod p =⇒ −4 ∈ Qp

=⇒ 1 =
(

−4
p

)
=
(

−1
p

)(
2
p

)2
=
(

−1
p

)
=⇒ p = 1 mod 4 =⇒ p = 1 or 5 mod 8

Since n = 5 mod 8 it is not possible that every prime factor of n is of the form p = 1 mod 8, and so n must have
at least one prime factor of the form p = 5 mod 8. Thus we have found another prime of the form p = 8k + 5
with k ∈ Z.


