PMATH 340 Number Theory, Exercises for Chapter 5 (Prime Numbers)

1: (a) Let $p=47, q=61, e=43$ and $n=p q$. Encrypt the 2-letter message GO using the RSA public key (e, n) (first replace GO by the number $m=0715$ because G and O are the $7^{\text {th }}$ and $15^{\text {th }}$ letters of the alphabet).
(b) Let $p=41, q=67, e=217$ and $n=p q$. Decrypt the cyphertext $c=811$ which was encoded from a 2-letter message using the RSA public key (e, n).

2: (a) Let $n=459061$. Given that $n=p q$ for some primes $p<q$ and that $\varphi(n)=457612$, find the prime factorization of n.
(b) Let $n=806437$. Given that $n=p q$ for some primes $p<q$ with $q-p \leq 100$, find the prime factorization of n.

3: (a) Show that 91 is a pseudo-prime in the base 3.
(b) Find a prime p such that $n=5 \cdot 29 \cdot p$ is a Carmichael number.
(c) Show that 217 is a strong pseudoprime in the base 6 .

4: (a) Show that there are infinitely many primes of the form $6 k+5$, where k is an integer.
(b) Show that the sequence $\{6 k+5\}$ contains arbitrarily long strings of consecutive terms which are all composite. In other words, show that for every positive integer n there exists a value of k such that the n integers $6 k+5,6 k+11,6 k+17, \cdots, 6 k+6 n-1$ are all composite.

5: (a) Show that there are infinitely many primes of the form $8 k-1$ with $k \in \mathbf{Z}$.
Hint: suppose that $p_{1}, p_{2}, \cdots, p_{l}$ are the only such primes, and consider $\left(p_{1} p_{2} \cdots p_{l}\right)^{2}-2$.
(b) Show that there are infinitely many primes of the form $8 k+5$ with $k \in \mathbf{Z}$.

