PMATH 340 Number Theory, Exercises for Chapter 5 (Prime Numbers)

- 1: (a) Let p = 47, q = 61, e = 43 and n = pq. Encrypt the 2-letter message GO using the RSA public key (e, n) (first replace GO by the number m = 0715 because G and O are the 7th and 15th letters of the alphabet).
 (b) Let p = 41, q = 67, e = 217 and n = pq. Decrypt the cyphertext c = 811 which was encoded from a 2-letter message using the RSA public key (e, n).
- (a) Let n = 459061. Given that n = pq for some primes p < q and that φ(n) = 457612, find the prime factorization of n.
 (b) Let n = 806437. Given that n = pq for some primes p < q with q − p ≤ 100, find the prime factorization of n.
- **3:** (a) Show that 91 is a pseudo-prime in the base 3.
 - (b) Find a prime p such that $n = 5 \cdot 29 \cdot p$ is a Carmichael number.
 - (c) Show that 217 is a strong pseudoprime in the base 6.
- 4: (a) Show that there are infinitely many primes of the form 6k + 5, where k is an integer.

(b) Show that the sequence $\{6k + 5\}$ contains arbitrarily long strings of consecutive terms which are all composite. In other words, show that for every positive integer *n* there exists a value of *k* such that the *n* integers 6k + 5, 6k + 11, 6k + 17, \cdots , 6k + 6n - 1 are all composite.

5: (a) Show that there are infinitely many primes of the form 8k − 1 with k ∈ Z. Hint: suppose that p₁, p₂, ..., p_l are the only such primes, and consider (p₁p₂...p_l)² − 2. (b) Show that there are infinitely many primes of the form 8k + 5 with k ∈ Z.