PMATH 340 Number Theory, Solutions to the Exercises for Chapter 4

: Determine whether 10 € QY37 in each of the following four ways.
(a) For each k € P = {1,2,---,18}, find k? mod 37 and hence determine Q3.
(b) For each k € P, find 10* mod 37, and hence determine (33) using Euler’s Criterion.

(c) For each k € P, find 10k, determine [10P N N/, then find (32) using Gauss’ Lemma.
. . . . 0
(d) Use Quadratic Reciprocity to calculate (32).
Solution: For parts (a), (b) and (c) we make a table modulo 37.
k 1 2 3 4 5 6 7T 8 9 10 11 12 13 14 15 16 17 18

k2 1 4 9 16 25 36 12 27 7 26 10 33 21 11 3 34 30 28
10F 10 26 1 10 26 1 10 26 1 10 26 1 10 26 1 10 26 1
10k 10 -17 -7 3 13 -14 -4 6 16 -1 -1 9 —-18 -8 2 12 —-15 =5

a) From the list of values of k? we see that Q37 = {1,3,47,9,10, 11,12, 16, 21, 25, 26,27, 28, 30, 33, 34, 36 }.

b) From the list of values of 10* we see that 10'® = 1 € Us7 and so by Euler’s Criterion (32) = (-1)% =1.

¢) From the last row we see that [10P N N| =10 so by Gauss’ Lemma (32) = (-1 JHOPONT — (_1)10 = 1,
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(d) Using Quadratic Reciprocity and the fact that for odd primes p, ( ) =1 <= p= %1 mod8, we have

%) ( ) (357) = (357) = (357) = — (5) = 1. We conclude that 10 is most definitely in Q37.

Solution: g) ~ @) = (DD = @) -G - B - ) - @) - @) -

(5) (+5)

: (a) Determine whether 569 € Q2600-

Solution: Note that 2600 = 23 - 52 - 13. We have 569 € Qg since 569 = 1 mod 8. Also, (@) = (%) = (%)2 =1
so 569 € Q5 and hence 569 € Q25. Finally, (5—69) = (m) =1 (from our solution to part (c) of problem 2), so

13
569 € @Q13. Thus 569 € Q2600-
(b) Determine whether 84168 is a square (a quadratic residue) modulo 75924.

Solution: Note that 75924 = 2232 .19 - 37. We have 84168 = 0 = 0% mod 4, so 84168 is a square mod 4, and
84168 = 9 = 3% mod 27, so it is a square modulo 27, and (84168) = (;—5) = (;91) (—) =150 84168 € @19, and
84168 = 30 mod 37 so 84168 € Q37 by our solution to part (a) of question 1. Thus 84168 is a square modulo

75924. (We remark that 84168 ¢ Q75925 since 84168 ¢ Ursgaq).




4: (a) Find all of the primes p with 2 < p < 100 such that (%) =1.

Solution: Modulo 11, the squares are 12 =1, 22 =4, 32 =9, 42 = 5 and 52 = 3, s0 Q11 = {1,3,4,5,9}. Let
p be an odd prime Wlthp # 11. Since Q11 = {1,3,4,5,9}, we have (—) =1 < p=1,3,4,50r 9mod11,
and by Quadratic Reciprocity we have

L) ,if p=1mod4
®-{-5

1
(%) , if p =3 mod4

—

and so
(1?) =1 <= (p=1mod4 and p=1,3,4,5,9 mod11) or (p = 3 mod4 and p = 2,6,7,8,10 mod 11)

<~ (p=1,25,37,5,9 mod44) or (p = 35,39,7,19,43 mod 44)
— p=1,5,7,9,19,25,35,37,39 or 43 mod 44.

For p < 100 we must have
p=1,57,9,19,25,35,37,39, 43,45, 49, 51,53, 63, 69, 79, 81, 83, 87, 89,93, 95 or 97

and picking out the primes in this list gives p = 5,7,19, 37,43, 53,79, 83,89 or 97.

(b) Find all of the primes p with 2 < p < 100 such that (_710) =1.

Solution: We have (7710) = (’?2) (g) We know that (772) =1 <= p=1or3 mod8, and we have
(2)-()

g =1 < p=1or4modb (since Q5 = {1,4}), and so
( ) (p=1or3mod8and p=1or 4 mod5)or (p=>5or7mod8 and p =2 or 3 mod5)

< (p=1,9,11 or 19 mod 40) or (p = 37,13,7 or 23)
e (p=1,7,9,11,13,19,23 or 37 mod 40).
For p < 100 we must have
p=1,7,9,11,13,19,23, 37, 41, 47,49, 51,53, 59, 63, 77, 81,87, 89, 91, 93 or 99
and picking out the primes in this list gives p = 7,11, 13,19, 23,37, 41, 47, 53, 59 or 89,

: Let p be an odd prime, let a,b,c € Z, with a # 0, and let d = b*> — 4ac € Z,. Show that when d = 0 the
quadratic equation az? + bz + ¢ = 0 has exactly one solution z € Z,, and when d # 0 so d € U,, if d ¢ Q,
then az? + bz + ¢ = 0 has no solution z € Z,, and if d € Q, then az® + bz + ¢ = 0 has exactly 2 distinct
solutions = € Z,,.
Solution: Recall that Z, is a field. Since Z, has no has no zero divisors, for u,e € Z, we have

W= = ¥ -e=0 < (u—e)(ut+e)=0 < (u—e=0oru+e=0) < u= e

Also, since 0 # a € Z, it follows that a is a unit in Z,. Since p is an odd prime, we also have 0 # 2,4 € Z,, so
that 2 and 4 are also units in Z,. Thus we have

ar’+br+c=0 < 2>+ 224+ =0
2
@(1’4—%) 4a2+c_0

= (o+g;) =V

<— 4a2(x + %)2 =d.
When d = 0 we have
b

ar?+br+c=0 < 4a2(x—|—%)2=0 — (a:+2”) =0 r+L =0 z=—L

so the equation az? + bz + ¢ = 0 has exactly one solution = € Z,, namely z = —%. Suppose that d # 0. If

d ¢ Q, then we cannot have 4a? (Jc+ %)2 = d because 4a? (x+ %)2 € @, and so the equation az?+bxr+c =0
has no solution @ € Z,. Suppose that d € @, say d = e with 0 # e € Z,. Then we have

2

ar?+br+e=0 < 4a2(x+%) =2 — 2a(x+%)::|:e <— x—}—%::ti <— x:—%:l:i.

b e _ b e ksl __ e
+ 5, and T2 = 5- — 5= are distinct because x1 — x2 = < #0.

Finally we note that the two solutions z; = 5~ >~ = 5



