1: Determine whether $10 \in Q_{37}$ in each of the following four ways.

- (a) For each $k \in P = \{1, 2, \dots, 18\}$, find $k^2 \mod 37$ and hence determine Q_{37} .
- (b) For each $k \in P$, find $10^k \mod 37$, and hence determine $\left(\frac{10}{37}\right)$ using Euler's Criterion.
- (c) For each $k \in P$, find 10k, determine $|10P \cap N|$, then find $(\frac{10}{37})$ using Gauss' Lemma.

(d) Use Quadratic Reciprocity to calculate $\left(\frac{10}{37}\right)$.

Solution: For parts (a), (b) and (c) we make a table modulo 37.

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
k^2	1	4	9	16	25	36	12	27	7	26	10	33	21	11	3	34	30	28
10^k	10	26	1	10	26	1	10	26	1	10	26	1	10	26	1	10	26	1
10k	10	-17	-7	3	13	-14	-4	6	16	-11	-1	9	-18	-8	2	12	-15	-5

(a) From the list of values of k^2 we see that $Q_{37} = \{1, 3, 47, 9, 10, 11, 12, 16, 21, 25, 26, 27, 28, 30, 33, 34, 36\}.$

(b) From the list of values of 10^k we see that $10^{18} = 1 \in U_{37}$ and so by Euler's Criterion $\left(\frac{10}{37}\right) = (-1)^{18} = 1$.

(c) From the last row we see that $|10P \cap N| = 10$ so by Gauss' Lemma $\left(\frac{10}{37}\right) = (-1)^{|10P \cap N|} = (-1)^{10} = 1$.

(d) Using Quadratic Reciprocity and the fact that for odd primes p, $\left(\frac{2}{p}\right) = 1 \iff p = \pm 1 \mod 8$, we have $\left(\frac{10}{37}\right) = \left(\frac{2}{37}\right) \left(\frac{5}{37}\right) = -\left(\frac{5}{37}\right) = -\left(\frac{2}{5}\right) = 1$. We conclude that 10 is most definitely in Q_{37} .

2: (a) Find
$$\left(\frac{19}{53}\right)$$
.
Solution: $\left(\frac{19}{53}\right) = \left(\frac{53}{19}\right) = \left(\frac{15}{19}\right) = \left(\frac{3}{19}\right) \left(\frac{5}{19}\right) = -\left(\frac{19}{3}\right) \left(\frac{19}{5}\right) = -\left(\frac{1}{3}\right) \left(\frac{4}{5}\right) = -1$.
(b) Find $\left(\frac{71}{127}\right)$.
Solution: $\left(\frac{71}{127}\right) = -\left(\frac{127}{71}\right) = -\left(\frac{56}{71}\right) = -\left(\frac{2}{71}\right)^3 \left(\frac{7}{71}\right) = -\left(\frac{2}{71}\right) \left(\frac{7}{71}\right) = -\left(\frac{7}{71}\right) = \left(\frac{71}{7}\right) = \left(\frac{1}{7}\right) = 1$.
(c) Find $\left(\frac{649}{967}\right)$.
Solution: $\left(\frac{649}{967}\right) = \left(\frac{11}{697}\right) \left(\frac{59}{697}\right) = \left(\frac{967}{11}\right) \left(\frac{967}{59}\right) = \left(\frac{-1}{11}\right) \left(\frac{23}{59}\right) = -\left(\frac{23}{59}\right) = \left(\frac{59}{23}\right) = \left(\frac{13}{23}\right) = \left(\frac{23}{13}\right) = \left(\frac{10}{13}\right) = \left(\frac{2}{13}\right) \left(\frac{5}{13}\right) = -\left(\frac{5}{13}\right) = -\left(\frac{3}{5}\right) = -\left(\frac{5}{3}\right) = -\left(\frac{2}{3}\right) = 1$.

3: (a) Determine whether $569 \in Q_{2600}$.

Solution: Note that $2600 = 2^3 \cdot 5^2 \cdot 13$. We have $569 \in Q_8$ since $569 = 1 \mod 8$. Also, $\left(\frac{569}{5}\right) = \left(\frac{4}{5}\right) = \left(\frac{2}{5}\right)^2 = 1$ so $569 \in Q_5$ and hence $569 \in Q_{25}$. Finally, $\left(\frac{569}{13}\right) = \left(\frac{10}{13}\right) = 1$ (from our solution to part (c) of problem 2), so $569 \in Q_{13}$. Thus $569 \in Q_{2600}$.

(b) Determine whether 84168 is a square (a quadratic residue) modulo 75924.

Solution: Note that $75924 = 2^2 \cdot 3^3 \cdot 19 \cdot 37$. We have $84168 = 0 = 0^2 \mod 4$, so 84168 is a square mod 4, and $84168 = 9 = 3^2 \mod 27$, so it is a square modulo 27, and $\left(\frac{84168}{19}\right) = \left(\frac{-2}{19}\right) = \left(\frac{-1}{19}\right) \left(\frac{2}{19}\right) = 1$ so $84168 \in Q_{19}$, and $84168 = 30 \mod 37$ so $84168 \in Q_{37}$ by our solution to part (a) of question 1. Thus 84168 is a square modulo 75924. (We remark that $84168 \notin Q_{75925}$ since $84168 \notin U_{75924}$).

4: (a) Find all of the primes p with $2 such that <math>\left(\frac{11}{p}\right) = 1$.

Solution: Modulo 11, the squares are $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, $4^2 = 5$ and $5^2 = 3$, so $Q_{11} = \{1, 3, 4, 5, 9\}$. Let p be an odd prime with $p \neq 11$. Since $Q_{11} = \{1, 3, 4, 5, 9\}$, we have $\left(\frac{p}{11}\right) = 1 \iff p = 1, 3, 4, 5$ or $9 \mod 11$, and by Quadratic Reciprocity we have

$$\left(\frac{11}{p}\right) = \begin{cases} \left(\frac{p}{11}\right), \text{ if } p = 1 \mod 4\\ -\left(\frac{p}{11}\right), \text{ if } p = 3 \mod 4 \end{cases}$$

and so

$$\begin{pmatrix} \frac{11}{p} \end{pmatrix} = 1 \iff (p = 1 \mod 4 \text{ and } p = 1, 3, 4, 5, 9 \mod 11) \text{ or } (p = 3 \mod 4 \text{ and } p = 2, 6, 7, 8, 10 \mod 11) \\ \iff (p = 1, 25, 37, 5, 9 \mod 44) \text{ or } (p = 35, 39, 7, 19, 43 \mod 44) \\ \iff p = 1, 5, 7, 9, 19, 25, 35, 37, 39 \text{ or } 43 \mod 44.$$

For p < 100 we must have

$$p = 1, 5, 7, 9, 19, 25, 35, 37, 39, 43, 45, 49, 51, 53, 63, 69, 79, 81, 83, 87, 89, 93, 95$$
 or 97

and picking out the primes in this list gives p = 5, 7, 19, 37, 43, 53, 79, 83, 89 or 97.

(b) Find all of the primes p with $2 such that <math>\left(\frac{-10}{p}\right) = 1$.

Solution: We have $\left(\frac{-10}{p}\right) = \left(\frac{-2}{p}\right) \left(\frac{5}{p}\right)$. We know that $\left(\frac{-2}{p}\right) = 1 \iff p = 1 \text{ or } 3 \mod 8$, and we have $\left(\frac{5}{p}\right) = \left(\frac{p}{5}\right) = 1 \iff p = 1 \text{ or } 4 \mod 5$ (since $Q_5 = \{1, 4\}$), and so $\left(\frac{-10}{p}\right) = 1 \iff (p = 1 \text{ or } 3 \mod 8 \text{ and } p = 1 \text{ or } 4 \mod 5)$ or $(p = 5 \text{ or } 7 \mod 8 \text{ and } p = 2 \text{ or } 3 \mod 5)$ $\iff (p = 1, 9, 11 \text{ or } 19 \mod 40)$ or (p = 37, 13, 7 or 23) $\iff (p = 1, 7, 9, 11, 13, 19, 23 \text{ or } 37 \mod 40).$

For p < 100 we must have

$$p = 1, 7, 9, 11, 13, 19, 23, 37, 41, 47, 49, 51, 53, 59, 63, 77, 81, 87, 89, 91, 93$$
 or 99

and picking out the primes in this list gives p = 7, 11, 13, 19, 23, 37, 41, 47, 53, 59 or 89.

5: Let p be an odd prime, let $a, b, c \in \mathbf{Z}_p$ with $a \neq 0$, and let $d = b^2 - 4ac \in \mathbf{Z}_p$. Show that when d = 0 the quadratic equation $ax^2 + bx + c = 0$ has exactly one solution $x \in \mathbf{Z}_p$, and when $d \neq 0$ so $d \in U_p$, if $d \notin Q_p$ then $ax^2 + bx + c = 0$ has no solution $x \in \mathbf{Z}_p$, and if $d \in Q_p$ then $ax^2 + bx + c = 0$ has exactly 2 distinct solutions $x \in \mathbf{Z}_p$.

Solution: Recall that \mathbf{Z}_p is a field. Since \mathbf{Z}_p has no has no zero divisors, for $u, e \in \mathbf{Z}_p$ we have

$$u^2 = e^2 \iff u^2 - e^2 = 0 \iff (u - e)(u + e) = 0 \iff (u - e = 0 \text{ or } u + e = 0) \iff u = \pm e.$$

Also, since $0 \neq a \in \mathbf{Z}_p$ it follows that a is a unit in \mathbf{Z}_p . Since p is an odd prime, we also have $0 \neq 2, 4 \in \mathbf{Z}_p$ so that 2 and 4 are also units in \mathbf{Z}_p . Thus we have

$$ax^{2} + bx + c = 0 \iff x^{2} + \frac{b}{a}x + \frac{c}{a} = 0$$
$$\iff \left(x + \frac{b}{2a}\right)^{2} - \frac{b^{2}}{4a^{2}} + \frac{c}{a} = 0$$
$$\iff \left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$
$$\iff 4a^{2}\left(x + \frac{b}{2a}\right)^{2} = d.$$

When d = 0 we have

$$ax^{2} + bx + c = 0 \iff 4a^{2}\left(x + \frac{b}{2a}\right)^{2} = 0 \iff \left(x + \frac{b}{2a}\right)^{2} = 0 \iff x + \frac{b}{2a} = 0 \iff x = -\frac{b}{2a}$$

so the equation $ax^2 + bx + c = 0$ has exactly one solution $x \in \mathbf{Z}_p$, namely $x = -\frac{b}{2a}$. Suppose that $d \neq 0$. If $d \notin Q_p$ then we cannot have $4a^2\left(x + \frac{b}{2a}\right)^2 = d$ because $4a^2\left(x + \frac{b}{2a}\right)^2 \in Q_p$, and so the equation $ax^2 + bx + c = 0$ has no solution $x \in \mathbf{Z}_p$. Suppose that $d \in Q_p$, say $d = e^2$ with $0 \neq e \in Z_p$. Then we have

$$ax^2 + bx + c = 0 \iff 4a^2\left(x + \frac{b}{2a}\right)^2 = e^2 \iff 2a\left(x + \frac{b}{2a}\right) = \pm e \iff x + \frac{b}{2a} = \pm \frac{e}{2a} \iff x = -\frac{b}{2a} \pm \frac{e}{2a}$$
.
Finally we note that the two solutions $x_1 = \frac{b}{2a} + \frac{e}{2a}$ and $x_2 = \frac{b}{2a} - \frac{e}{2a}$ are distinct because $x_1 - x_2 = \frac{e}{a} \neq 0$.