PMATH 340 Number Theory, Exercises for Chapter 4 (Quadratic Residues)

1: Determine whether $10 \in Q_{37}$ in each of the following four ways.
(a) For each $k \in P=\{1,2, \cdots, 18\}$, find $k^{2} \bmod 37$ and hence determine Q_{37}.
(b) For each $k \in P$, find $10^{k} \bmod 37$, and hence determine $\left(\frac{10}{37}\right)$ using Euler's Criterion.
(c) For each $k \in P$, find $10 k$, determine $|10 P \cap N|$, then find $\left(\frac{10}{37}\right)$ using Gauss' Lemma.
(d) Use Quadratic Reciprocity to calculate $\left(\frac{10}{37}\right)$.

2: (a) Find $\left(\frac{19}{53}\right)$.
(b) Find $\left(\frac{71}{127}\right)$.
(c) Find $\left(\frac{649}{967}\right)$.

3: (a) Determine whether $569 \in Q_{2600}$.
(b) Determine whether 84168 is a square (a quadratic residue) modulo 75924.

4: (a) Find all of the primes p with $2<p<100$ such that $\left(\frac{11}{p}\right)=1$.
(b) Find all of the primes p with $2<p<100$ such that $\left(\frac{-10}{p}\right)=1$.

5: Let p be an odd prime, let $a, b, c \in \mathbf{Z}_{p}$ with $a \neq 0$, and let $d=b^{2}-4 a c \in \mathbf{Z}_{p}$. Show that when $d=0$ the quadratic equation $a x^{2}+b x+c=0$ has exactly one solution $x \in \mathbf{Z}_{p}$, and when $d \neq 0$ so $d \in U_{p}$, if $d \notin Q_{p}$ then $a x^{2}+b x+c=0$ has no solution $x \in \mathbf{Z}_{p}$, and if $d \in Q_{p}$ then $a x^{2}+b x+c=0$ has exactly 2 distinct solutions $x \in \mathbf{Z}_{p}$.

