PMATH 340 Number Theory, Solutions to the Exercises for Chapter 3

1: (a) Make a table of powers in \mathbf{Z}_{21}, showing the values of x^{k} for all $x \in \mathbf{Z}_{21}$ and all $1 \leq k \leq 7$.
Solution: Here is the table of powers modulo 21.

x	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
x^{2}	0	1	4	9	16	4	15	7	1	18	16	16	18	1	7	15	4	16	9	4	1
x^{3}	0	1	8	6	1	20	6	7	8	15	13	8	6	13	14	15	1	20	15	13	20
x^{4}	0	1	16	18	4	16	15	7	1	9	4	4	9	1	7	15	16	4	18	16	1
x^{5}	0	1	11	12	16	17	6	7	8	18	19	2	3	13	14	15	4	5	9	10	20
x^{6}	0	1	1	15	1	1	15	7	1	15	1	1	15	1	7	15	1	1	15	1	1
x^{7}	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

(b) Find the order of each element in U_{21}.

Solution: Using the table in part (a) we can list the orders:

$$
\begin{array}{ccccccccccccc}
x & 1 & 2 & 4 & 5 & 8 & 10 & 11 & 13 & 16 & 17 & 19 & 20 \\
|x| & 1 & 6 & 3 & 6 & 2 & 6 & 6 & 2 & 3 & 6 & 6 & 2
\end{array}
$$

(c) Solve $x^{100}=x$ in \mathbf{Z}_{21}.

Solution: In \mathbf{Z}_{21} the table of powers repeats every 6 rows beginning with row 1 , and $100=4$ mod 6 , so $x^{100}=x^{4}$ for all $x \in \mathbf{Z}_{21}$, and from row 4 of the table of powers we have

$$
x^{100}=x \Longleftrightarrow x^{4}=x \Longleftrightarrow x=0,1,4,7,9,15,16 \text { or } 18 .
$$

2: (a) Find $7^{24}, 143^{962}$ and $1102^{1101} \bmod 1100$.
Solution: Note that $1100=2^{2} \cdot 5^{2} \cdot 11$ so $\psi(1100)=\operatorname{lcm}(2,20,10)=20$ and $k(1100)=2$: the table of powers repeats every 20 rows beginning with row 2 . Since $24=4 \bmod 20$ we have $7^{24}=7^{4}=2401=201 \bmod 1100$. Since $962=2 \bmod 20$ we have $143^{962}=(143)^{2}=20449=649 \bmod 1100$. Since $1102=2 \bmod 1100$ and $1101=1=21 \bmod 20$ we have $1102^{1101}=2^{21}=2097152=552 \bmod 1100$.
(b) Find $4210^{2142} \bmod 6300$.

Solution: $6300=2^{2} \cdot 3^{2} \cdot 7 \cdot 5^{2}$ so $\psi(6300)=\operatorname{lcm}(2,6,6,20)=60$ and $k(6300)=2$: the table of powers repeats every 60 rows beginning with row 2 . Since $2142=42 \bmod 60$ we have $4210^{2142}=4210^{42} \bmod 6300$. Note that $42=32+8+2$, so $4210^{42}=4210^{32} \cdot 4210^{8} \cdot 4210^{2}$. We make a list of powers of 4210 modulo 6300 :

k	1	2	4	8	16	32	42
4210^{k}	4210	2200	1600	2200	1600	2200	4600

Thus $4210^{2142}=4600 \bmod 6300$.

3: (a) Find $523^{470^{654}} \bmod 37$.
Solution: Note that $523=5 \bmod 37, \psi(37)=36,470=2 \bmod 36, \psi(36)=\psi\left(2^{2} \cdot 3^{2}\right)=\operatorname{lcm}(2,6)=6,654=0=6$ $\bmod 6$ and $2^{6}=64=28 \bmod 36$, and so $523^{470^{654}}=5^{2^{6}}=5^{28}=5^{16} \cdot 5^{8} \cdot 5^{4} \bmod 37$. We make a list of powers of 5 modulo 37 :

$$
\begin{array}{ccccccc}
k & 1 & 2 & 4 & 8 & 16 & 28 \\
5^{k} & 5 & 25 & 33 & 16 & 34 & 7
\end{array}
$$

Thus $523^{470^{654}}=7 \bmod 37$.
(b) Find $60^{59^{58^{57 \cdots 1}}} \bmod 19$

Solution: $60=3 \bmod 19, \psi(19)=18,59=5 \bmod 18, \psi(18)=6,58=4 \bmod 6, \psi(6)=2$ and $57=1 \bmod 2$, so

$$
60^{59^{58^{57 \omega^{1}}}}=3^{5^{4^{1}}}=3^{13}=3^{8} \cdot 3^{4} \cdot 3^{1}=6 \cdot 5 \cdot 3=90=14 \bmod 19
$$

4: (a) Find the largest integer n such that $\psi(n)=12$.
Solution: We begin by finding $\phi\left(p^{k}\right)$ for all prime powers p^{k} for which $\phi\left(p^{k}\right) \leq 12$:

$$
\begin{array}{lllll}
\phi(2)=1 & \phi(3)=2 & \phi(5)=4 & \phi(7)=6 & \phi(11)=10 \\
\phi(4)=2 & \phi(9)=6 & \phi(13)=12 \\
\phi(8)=4 & & \\
\phi(16)=8 & &
\end{array}
$$

For each prime p we choose the largest value of $k \geq 0$ for which $\phi\left(p^{k}\right) \mid 12$, then we multiply these prime powers together to get $n=8 \cdot 9 \cdot 5 \cdot 7 \cdot 13=32760$.
(b) Find every positive integer n such that $\phi(n)=60$.

Solution: We begin by finding $\phi\left(p^{k}\right)$ for all prime powers p^{k} for which $\phi\left(p^{k}\right) \leq 60$, and we list those for which $\phi\left(p^{k}\right) \mid 60$:

$$
\left.\begin{array}{lcccccc}
\phi(2)=1 & \phi(3)=2 & \phi(5)=4 & \phi(7)=6 & \phi(11)=10 & \phi(13)=12 & \phi(31)=30
\end{array} \quad \phi(61)=60\right)
$$

Note that the only four prime powers p^{k} on this list for which $\phi\left(p^{k}\right)$ is a multiple of 5 are $p^{k}=11,25,31$ and 61 , so to get $\phi(n)=60$, one of these four prime powers must be a factor of n. Also note that 25 cannot be a factor of n since $60=\phi(25) \cdot 3$ and there is no prime power p^{k} with $\phi\left(p^{k}\right)=3$. Thus n must have a factor of 11,31 or 61 . This helps to list all the possible values for n :
$n=61,61 \cdot 2=124,31 \cdot 3=93,31 \cdot 3 \cdot 2=186,31 \cdot 4=124,11 \cdot 7=77,11 \cdot 7 \cdot 2=154,11 \cdot 9=99$, or $11 \cdot 9 \cdot 2=198$.
From smallest to largest, the possible values for n are $61,77,93,99,122,124,154,186$ and 198.

5: (a) U_{81} is cyclic and is generated by 2 , so we have $U_{81}=\left\{1,2,2^{2}, 2^{3}, \cdots, 2^{53}\right\}$. Find the number of squares, the number of cubes, and the number of twelfth powers in U_{81}.
Solution: Recall that for an element a of order $|a|=n$ in a finite group G, we have $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$ where $d=\operatorname{gcd}(k, n)$ and $\left|a^{k}\right|=n / d$. In U_{81} we have $|2|=\left|U_{81}\right|=\phi(81)=54$. The set of squares in U_{81} is the set $Q_{81}=\left\langle 2^{2}\right\rangle=\left\{1,2^{2}, 2^{4}, 2^{6}, \cdots\right\}$, and so the number of squares in U_{81} is $\left|Q_{81}\right|=\left|2^{2}\right|=\frac{54}{\operatorname{gcd}(2,54)}=\frac{54}{2}=27$. The set of cubes in U_{81} is the set $\left\langle 2^{3}\right\rangle=\left\{1,2^{3}, 2^{6}, 2^{9}, \cdots\right\}$ so the number of cubes is $\left|2^{3}\right|=\frac{54}{\operatorname{gcd}(3,54)}=\frac{54}{3}=18$. The set of twelfth powers is $\left\langle 2^{12}\right\rangle$ and the number of twelfth powers is $\frac{54}{\operatorname{gcd}(12,54)}=\frac{54}{6}=9$. More generally, if $n=p^{k}$ where p is an odd prime, then the number of $m^{t h}$ powers in U_{n} is equal to $\frac{\phi(n)}{\operatorname{gcd}(m, \phi(n))}$.
(b) U_{128} is generated by -1 and 5 and we have $U_{128}=\left\{ \pm 1, \pm 5, \pm 5^{2}, \cdots, \pm 5^{31}\right\}$. Find the number of squares, the number of cubes, and the number of twelfth powers in U_{128}.
Solution: In U_{128} we have $|5|=32$. The set of squares in U_{128} is the set $Q_{128}=\left\langle 5^{2}\right\rangle=\left\{1,5^{2}, 5^{4}, 5^{6}, \cdots\right\}$ so the number of squares is $\left|Q_{2}\right|=\left|5^{2}\right|=\frac{32}{\operatorname{gcd}(2,32)}=\frac{32}{2}=16$. The set of cubes is generated by -1 and 5 and is equal to $\left\{ \pm 1, \pm 5^{3}, \pm 5^{6}, \pm 5^{9}, \cdots\right\}$ so the number of cubes is $2 \cdot\left|5^{3}\right|=\frac{2 \cdot 32}{\operatorname{gcd}(3,32)}=64$. The set of twelfth powers is $\left\langle 5^{12}\right\rangle=\left\{1,5^{12}, 5^{24}, 5^{36}=5^{4}, \cdots\right\}$ so the number of twelfth powers is $\left|5^{12}\right|=\frac{32}{\operatorname{gcd}(12,32)}=\frac{32}{4}=8$. More generally, if $n=2^{k}$ with $k \geq 3$, then the number of $m^{t h}$ roots in U_{n} is equal to $\frac{2^{k-2}}{\operatorname{gcd}\left(m, 2^{k-2}\right)}$ if m is even and $\frac{2^{k-1}}{\operatorname{gcd}\left(m, 2^{k-2}\right)}$ if m is odd.

