1: (a) Make a table of powers in \mathbb{Z}_{21} , showing the values of x^k for all $x \in \mathbb{Z}_{21}$ and all $1 \le k \le 7$. Solution: Here is the table of powers modulo 21.

x	0	1	2	3	4	5	6	$\overline{7}$	8	9	10	11	12	13	14	15	16	17	18	19	20
x^2	0	1	4	9	16	4	15	7	1	18	16	16	18	1	7	15	4	16	9	4	1
x^3	0	1	8	6	1	20	6	7	8	15	13	8	6	13	14	15	1	20	15	13	20
x^4	0	1	16	18	4	16	15	7	1	9	4	4	9	1	7	15	16	4	18	16	1
x^5	0	1	11	12	16	17	6	7	8	18	19	2	3	13	14	15	4	5	9	10	20
x^6	0	1	1	15	1	1	15	7	1	15	1	1	15	1	7	15	1	1	15	1	1
x^7	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20

(b) Find the order of each element in U_{21} .

Solution: Using the table in part (a) we can list the orders:

 $1 \ 2 \ 4 \ 5$ 8 1011 1316201719|x| $1 \ 6 \ 3 \ 6 \ 2$ 6 6 23 6 6 2

(c) Solve $x^{100} = x$ in \mathbf{Z}_{21} .

Solution: In \mathbf{Z}_{21} the table of powers repeats every 6 rows beginning with row 1, and $100 = 4 \mod 6$, so $x^{100} = x^4$ for all $x \in \mathbf{Z}_{21}$, and from row 4 of the table of powers we have

$$x^{100} = x \iff x^4 = x \iff x = 0, 1, 4, 7, 9, 15, 16 \text{ or } 18$$

2: (a) Find 7^{24} , 143^{962} and $1102^{1101} \mod 1100$.

Solution: Note that $1100 = 2^2 \cdot 5^2 \cdot 11$ so $\psi(1100) = \text{lcm}(2, 20, 10) = 20$ and k(1100) = 2: the table of powers repeats every 20 rows beginning with row 2. Since $24 = 4 \mod 20$ we have $7^{24} = 7^4 = 2401 = 201 \mod 1100$. Since $962 = 2 \mod 20$ we have $143^{962} = (143)^2 = 20449 = 649 \mod 1100$. Since $1102 = 2 \mod 1100$ and $1101=1=21 \mod 20$ we have $1102^{1101} = 2^{21} = 2097152 = 552 \mod 1100$.

(b) Find $4210^{2142} \mod 6300$.

Solution: $6300 = 2^2 \cdot 3^2 \cdot 7 \cdot 5^2$ so $\psi(6300) = \text{lcm}(2, 6, 6, 20) = 60$ and k(6300) = 2: the table of powers repeats every 60 rows beginning with row 2. Since $2142 = 42 \mod 60$ we have $4210^{2142} = 4210^{42} \mod 6300$. Note that 42 = 32 + 8 + 2, so $4210^{42} = 4210^{32} \cdot 4210^8 \cdot 4210^2$. We make a list of powers of 4210 modulo 6300:

Thus $4210^{2142} = 4600 \mod 6300$.

3: (a) Find $523^{470^{654}} \mod 37$.

Solution: Note that $523 = 5 \mod 37$, $\psi(37) = 36$, $470 = 2 \mod 36$, $\psi(36) = \psi(2^2 \cdot 3^2) = \text{lcm}(2, 6) = 6$, $654 = 0 = 6 \mod 6$ and $2^6 = 64 = 28 \mod 36$, and so $523^{470^{654}} = 5^{2^6} = 5^{28} = 5^{16} \cdot 5^8 \cdot 5^4 \mod 37$. We make a list of powers of 5 modulo 37: k = 1 - 2 - 4 - 8 - 16 - 28

Thus $523^{470^{654}} = 7 \mod 37$.

(b) Find $60^{59^{58^{57}}} \mod 19$

Solution: $60=3 \mod 19$, $\psi(19) = 18$, $59=5 \mod 18$, $\psi(18) = 6$, $58=4 \mod 6$, $\psi(6) = 2$ and $57=1 \mod 2$, so

$$60^{59^{58^{57^{\circ\circ\circ}}}} = 3^{5^{4^1}} = 3^{13} = 3^8 \cdot 3^4 \cdot 3^1 = 6 \cdot 5 \cdot 3 = 90 = 14 \mod 19.$$

4: (a) Find the largest integer n such that $\psi(n) = 12$.

Solution: We begin by finding $\phi(p^k)$ for all prime powers p^k for which $\phi(p^k) \leq 12$:

$$\begin{array}{ll} \phi(2) = 1 & \phi(3) = 2 & \phi(5) = 4 & \phi(7) = 6 & \phi(11) = 10 & \phi(13) = 12 \\ \phi(4) = 2 & \phi(9) = 6 \\ \phi(8) = 4 \\ \phi(16) = 8 \end{array}$$

For each prime p we choose the largest value of $k \ge 0$ for which $\phi(p^k)|_{12}$, then we multiply these prime powers together to get $n = 8 \cdot 9 \cdot 5 \cdot 7 \cdot 13 = 32760$.

(b) Find every positive integer n such that $\phi(n) = 60$.

Solution: We begin by finding $\phi(p^k)$ for all prime powers p^k for which $\phi(p^k) \leq 60$, and we list those for which $\phi(p^k)|60$:

 $\begin{array}{lll} \phi(2)=1 & \phi(3)=2 & \phi(5)=4 & \phi(7)=6 & \phi(11)=10 & \phi(13)=12 & \phi(31)=30 & \phi(61)=60 \\ \phi(4)=2 & \phi(9)=6 & \phi(25)=20 \\ \phi(8)=4 & \end{array}$

Note that the only four prime powers p^k on this list for which $\phi(p^k)$ is a multiple of 5 are $p^k = 11, 25, 31$ and 61, so to get $\phi(n) = 60$, one of these four prime powers must be a factor of n. Also note that 25 cannot be a factor of n since $60 = \phi(25) \cdot 3$ and there is no prime power p^k with $\phi(p^k) = 3$. Thus n must have a factor of 11, 31 or 61. This helps to list all the possible values for n:

 $n = 61, \ 61 \cdot 2 = 124, \ 31 \cdot 3 = 93, \ 31 \cdot 3 \cdot 2 = 186, \ 31 \cdot 4 = 124, \ 11 \cdot 7 = 77, \ 11 \cdot 7 \cdot 2 = 154, \ 11 \cdot 9 = 99, \text{ or } 11 \cdot 9 \cdot 2 = 198$. From smallest to largest, the possible values for n are $61, \ 77, \ 93, \ 99, \ 122, \ 124, \ 154, \ 186 \ \text{and } 198$.

5: (a) U_{81} is cyclic and is generated by 2, so we have $U_{81} = \{1, 2, 2^2, 2^3, \dots, 2^{53}\}$. Find the number of squares, the number of cubes, and the number of twelfth powers in U_{81} .

Solution: Recall that for an element *a* of order |a| = n in a finite group *G*, we have $\langle a^k \rangle = \langle a^d \rangle$ where $d = \gcd(k, n)$ and $|a^k| = n/d$. In U_{81} we have $|2| = |U_{81}| = \phi(81) = 54$. The set of squares in U_{81} is the set $Q_{81} = \langle 2^2 \rangle = \{1, 2^2, 2^4, 2^6, \cdots\}$, and so the number of squares in U_{81} is $|Q_{81}| = |2^2| = \frac{54}{\gcd(2,54)} = \frac{54}{2} = 27$. The set of cubes in U_{81} is the set $\langle 2^3 \rangle = \{1, 2^3, 2^6, 2^9, \cdots\}$ so the number of cubes is $|2^3| = \frac{54}{\gcd(3,54)} = \frac{54}{3} = 18$. The set of twelfth powers is $\langle 2^{12} \rangle$ and the number of twelfth powers is $\frac{54}{\gcd(12,54)} = \frac{54}{6} = 9$. More generally, if $n = p^k$ where *p* is an odd prime, then the number of m^{th} powers in U_n is equal to $\frac{\phi(n)}{\gcd(m,\phi(n))}$.

(b) U_{128} is generated by -1 and 5 and we have $U_{128} = \{\pm 1, \pm 5, \pm 5^2, \dots, \pm 5^{31}\}$. Find the number of squares, the number of cubes, and the number of twelfth powers in U_{128} .

Solution: In U_{128} we have |5| = 32. The set of squares in U_{128} is the set $Q_{128} = \langle 5^2 \rangle = \{1, 5^2, 5^4, 5^6, \cdots\}$ so the number of squares is $|Q_2| = |5^2| = \frac{32}{\gcd(2,32)} = \frac{32}{2} = 16$. The set of cubes is generated by -1 and 5 and is equal to $\{\pm 1, \pm 5^3, \pm 5^6, \pm 5^9, \cdots\}$ so the number of cubes is $2 \cdot |5^3| = \frac{2 \cdot 32}{\gcd(3,32)} = 64$. The set of twelfth powers is $\langle 5^{12} \rangle = \{1, 5^{12}, 5^{24}, 5^{36} = 5^4, \cdots\}$ so the number of twelfth powers is $|5^{12}| = \frac{32}{\gcd(12,32)} = \frac{32}{4} = 8$. More generally, if $n = 2^k$ with $k \ge 3$, then the number of m^{th} roots in U_n is equal to $\frac{2^{k-2}}{\gcd(m,2^{k-2})}$ if m is even and $\frac{2^{k-1}}{\gcd(m,2^{k-2})}$ if m is odd.