PMATH 340 Number Theory, Exercises for Chapter 3 (The Group of Units Modulo N)

- **1:** (a) Make a table of powers in \mathbb{Z}_{21} , showing the values of x^k for all $x \in \mathbb{Z}_{21}$ and all $1 \le k \le 7$.
 - (b) Find the order of each element in U_{21} .
 - (c) Solve $x^{100} = x$ in \mathbf{Z}_{21} .
- (a) Find 7²⁴, 143⁹⁶² and 1102¹¹⁰¹ mod 1100.
 (b) Find 4210²¹⁴² mod 6300.
- **3:** (a) Find $523^{470^{654}} \mod 37$.
 - (b) Find $60^{59^{58^{57}}} \mod 19$
- 4: (a) Find the largest integer n such that ψ(n) = 12.
 (b) Find every positive integer n such that φ(n) = 60.
- 5: (a) U_{81} is cyclic and is generated by 2, so we have $U_{81} = \{1, 2, 2^2, 2^3, \dots, 2^{53}\}$. Find the number of squares, the number of cubes, and the number of twelfth powers in U_{81} .

(b) U_{128} is generated by -1 and 5 and we have $U_{128} = \{\pm 1, \pm 5, \pm 5^2, \dots, \pm 5^{31}\}$. Find the number of squares, the number of cubes, and the number of twelfth powers in U_{128} .