1: (a) Find the inverse of 178 in \mathbf{Z}_{365} .

Solution: We find s and t so that 178s + 365t = 1 so that $178^{-1} = s$. The Euclidean Algorithm gives

$$\begin{array}{l} 365 = 2 \times 178 + 9 \\ 178 = 19 \times 9 + 7 \\ 9 = 1 \times 7 + 2 \\ 7 = 3 \times 2 + 1 \\ 2 = 2 \times 1 + 0 \end{array}$$

so gcd(178, 365) = 1, then back substitution gives $u_k = 1, -3, 4, -79, 162$, so (178)(162) + (365)(-79) = 1 and hence $178^{-1} = 162$.

(b) Solve the linear congruence $356 x \equiv 28 \pmod{730}$.

Solution: We have $356 x \equiv 28 \pmod{730} \iff 178 x = 14 \pmod{365}$. Multiply by $178^{-1} = 162$ to get $x = 162 \cdot 14 = 2268 = 78 \pmod{365}$.

2: Solve the following system of linear equations in \mathbf{Z}_{20} .

$$x - 2y + 3z = 1$$

$$2x + y + 4z = -2$$

$$x + 3y + 7z = 5$$

Solution: We do some basic operations on the equations to get

$$\begin{pmatrix} 1 & -2 & 3 & | & 1 \\ 2 & 1 & 4 & | & -2 \\ 1 & 3 & 7 & | & 5 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 & | & 1 \\ 0 & 5 & -2 & | & -4 \\ 0 & 5 & 4 & | & 4 \end{pmatrix} \sim \begin{pmatrix} 1 & -2 & 3 & | & 1 \\ 0 & 5 & -2 & | & -4 \\ 0 & 0 & 6 & | & 8 \end{pmatrix}$$

The third equation has become 6z = 8, and the solutions are z = 8, 18. Put z = 8 or 18 into the second equation 5y - 2z = -4 to get 5y = 12. This has no solution in \mathbb{Z}_{20} , so the given system has no solution.

3: Solve the following system of congruences.

$$x^{2} \equiv x + 6 \pmod{10}$$
$$2x^{3} \equiv 7 \pmod{9}$$
$$x \equiv 11 \pmod{24}$$

Solution: Modulo 10 we have

x	0	1	2	3	4	5	6	7	8	9
x^2	0	1	4	9	6	5	6	9	4	1
x + 6	6	7	8	9	0	1	2	3	4	5

so $x^2 \equiv x + 6 \pmod{10} \iff x \equiv 3 \text{ or } 8 \pmod{10} \iff x \equiv 3 \pmod{5}$. Modulo 9 we have

so $2x^3 \equiv 7 \pmod{9} \iff x \equiv 2, 5 \text{ or } 8 \pmod{9} \iff x \equiv 2 \pmod{3}$. Thus we need to solve the 3 equations

 $x \equiv 3 \pmod{5}$ $x \equiv 2 \pmod{3}$ $x \equiv 11 \pmod{24}$

By inspection, one solution to the first two of these equations is $x_0 = 8$, so by the C.R.T. the complete solution is $x \equiv 8 \pmod{15}$. Thus we need to solve the pair of equations

$$x \equiv 8 \pmod{15}$$
$$x \equiv 11 \pmod{24}$$

We need x = 8 + 15k = 11 + 24l (1) for some k, l, so we solve 15k - 24l = 3. Divide this equation by 3 to get 5k - 8l = 1. By inspection, one solution is $(k_0, l_0) = (-3, -2)$. Put k_0 (or l_0) into (1) to get one solution $x_0 = 8 + 15k_0 = 8 - 45 = -37$. Also, lcm(15, 24) = 120, so by the C.R.T the complete solution is $x \equiv -37 \pmod{120} \equiv 83 \pmod{120}$.

4: Solve $x^3 + 6x \equiv 43 \pmod{792}$.

Solution: By the CRT, we can instead solve the three equations

	$x^{3} +$	6x	$\equiv 4$	$3 \equiv$	3 (mo	d 8)			
	$x^3 + 6x \equiv 43 \equiv 7 \pmod{9}$									
	$x^3 + 6x \equiv 43 \equiv 10 \pmod{1}$									
Modulo 8 we have		0	1	0	0	4	٣	c	-	
	x	0	1	2	3	4	\mathbf{b}	0	1	
	x^2	0	1	4	1	0	1	4	1	
	x^3	0	1	0	3	0	5	0	7	
	$x^3 + 6x$	0	7	4	5	0	3	4	1	
			. ,	1	0)	ъr	1 1	0		

so the solution to the equation modulo 8 is $x \equiv 5 \pmod{8}$. Modulo 9 we have

x	0	1	2	3	4	5	6	7	8
x^2	0	1	4	0	7	7	0	4	1
x^3	0	1	8	0	1	8	0	1	8
$x^3 + 6x$	0	7	2	0	$\overline{7}$	2	0	7	2

so the solution to the equation modulo 9 is $x \equiv 1, 4$ or 7 (mod 9), or equivalently $x \equiv 1 \pmod{3}$. Modulo 11 we have

x	0	1	2	3	4	5	6	7	8	9	10
x^2	0	1	4	9	5	3	3	5	9	4	1
x^3	0	1	8	5	9	4	7	2	6	3	10
$x^3 + 6x$	0	7	9	1	0	1	10	0	10	2	4

so the solution to the equation modulo 11 is $x \equiv 6$ or 8 (mod 11). So now we need to solve the 3 linear equations

 $x \equiv 5 \pmod{8}$ $x \equiv 1 \pmod{3}$ $x \equiv 6 \text{ or } 8 \pmod{11}$

One solution to the first two of these is $x_0 = 13$, so by the C.R.T. the complete solution to the first 2 is $x \equiv 13 \pmod{24}$. And now, we only need to solve the 2 linear equations

 $x \equiv 13 \pmod{24}$ $x \equiv 6 \text{ or } 8 \pmod{11}$

Case 1: if $x \equiv 6 \pmod{11}$ then we need (*) x = 13 + 24k = 6 + 11l for some k, l so we solve 11l - 24k = 7. The E.A. gives $24 = 2 \times 11 + 2$, $11 = 5 \times 2 + 1$ and $2 = 2 \times 1 + 0$ and then B.S. gives $u_k = 1, -5, 11$ showing that (11)(11) - (24)(5) = 1. Multiply this equation by 7 to get one solution for k and l: $(k_0, l_0) = (35, 77)$. Put $k_0 = 35$ (or $l_0 = 77$) into (*) to get a solution for x: $x_0 = 6 + 11 \times 77 = 853$. By the C.R.T the complete solution for x is $x \equiv 853 \pmod{264} \equiv 61 \pmod{264}$.

Case 2: if $x \equiv 8 \pmod{11}$ then we need (**) x = 13 + 24k = 8 + 11l for some k, l, so we solve 11k - 24l = 5. We already used the E.A. and B.S. to show that (11)(11) - (24)(5) = 1. Multiply this by 5 to get one solution for k and l: $(k_0, l_0) = (25, 55)$. Put $k_0 = 25$ into (**) to get one solution for x: $x_0 = 13 + 24 \times 25 = 613$. By the C.R.T. the complete solution is $x \equiv 613 \pmod{264} \equiv 85 \pmod{264}$.

Thus the final answer is $x \equiv 61$ or 85 (mod 264).

5: Let $n = p^k$ where p is prime and $k \ge 1$. Let $f(x) = x^3 + 2x^2 - x - 2 = (x - 1)(x + 1)(x + 2)$. Determine the number of solutions in \mathbb{Z}_n to the equation f(x) = 0. Express your answer in terms of p and k.

Solution: We consider several cases. When p = 2 and k = 1 so n = 2, there are 2 solutions to f(x) = 0 in \mathbb{Z}_n , namely x = 0, 1. When p = 2 and k = 2 so n = 4, there are 3 solutions to f(x) = 0 in \mathbb{Z}_n , namely x = 1, 2, 3. When p = 2 and $k \ge 3$ and $n = p^k$, notice that when (x + 2) is even, (x - 1) and (x + 1) are both odd, and when (x + 2) is odd, (x - 1) and (x + 1) are both even, and in this case exactly one of the two numbers (x - 1) and (x + 1) is a multiple of 4. Thus $2^k | (x - 1)(x + 1)(x + 2) \iff (2^k | (x + 2) \text{ or } 2^{k-1} | (x - 1) \text{ or } 2^{k-1} | (x + 1))$, and so there are 5 solutions to f(x) = 0 in \mathbb{Z}_n , namely $x = -2, 1, 1 + 2^{k-1}, -1$ and $-1 + 2^{k-1}$.

When p = 3 and k = 1 so n = 3, there are 2 solutions to f(x) = 0 in \mathbb{Z}_n , namely x = 1, 2. When p = 3 and k = 2 so n = 9, there are 4 solutions to f(x) = 0 in \mathbb{Z}_n , namely x = 1, 4, 7, 8. When p = 3 and $k \ge 3$ and $n = p^k$, notice that when (x + 1) is a multiple of 3, neither (x - 1) nor (x + 2) can be a multiple of 3 and that $3|(x - 1) \iff 3|(x + 2)$ and in this case 9 can only divide one of the two numbers (x - 1) and (x + 2). Thus $3^k|(x - 1)(x + 1)(x + 2) \iff (3^k|(x + 1) \text{ or } 3^{k-1}|(x - 1) \text{ or } 3^{k-1}|(x + 2))$, and so there are 7 solutions to f(x) = 0 in \mathbb{Z}_n , namely $x = -2, 1, 1 + 3^{k-1}, 1 + 2 \cdot 3^{k-1}, -2, -2 + 3^{k-1}$ and $-2 + 2 \cdot 3^{k-1}$.

Finally, when p > 3 and $k \ge 1$ and $n = p^k$, notice that p can only divide one of the three numbers (x-1), (x+1) and (x+2), and so $p^k | (x-1)(x+1)(x+2) \iff (p^k | (x-1) \text{ or } p^k | (x+2))$, and so there are 3 solutions to f(x) = 0 in \mathbf{Z}_n , namely x = 1, -1, -2.