PMATH 340 Number Theory, Solutions to the Exercises for Chapter 1

: Let a = 17537, b = 5434 and ¢ = 1482.
(a) Find ged(a, b) and lem(a, b).
Solution: We use the Euclidean Algorithm.
17537 = 3 - 5434 + 1235
5434 =4 -1235 + 494
1235 = 2 - 494 + 247
494 = 224740

This gives ged(a, b) = 247, and hence lem(a, b) = gcda(lzb, ) = 1753274.75434 = 385814.
(b) Solve the linear Diophantine equation az + by = c.
Solution: Let d = ged(a,b) = 247. Note that ¢ = 6d, so solutions do exist. Also note that a = 71d and
b = 22d. Back substitution gives the sequence {uy} = 1,—2,9,—29 and so 9a — 290 = d. Multiply by 6

to get 54a — 174b = ¢, so we have one solution one solution (zg,yo) = (54, —174). The general solution is
(z,y) = (zo,y0) + k (=5, %) that is (z,y) = (54, —174) + k (—22, 71), where k € Z.

: (a) Find o(10!).
Solution: We have 10! = 25+2+1.33+1 .52 .71 — 98 .34 .52. 71 and so
G(101) = (14 2+ 4+ 8+ +256)(1+3+9+27+81)(1+5+25)(1+7) =511-121 - 31 - § = 15334088.

(b) List all of the positive integers n such that o(n) = 42.
Solution: We begin by listing o(p”*) for all prime powers p* for which a(pk)|42:
0(2) =3, 0d) =7, 0(5)=6, o(13) = 14, o(41) = 42.
From this list we see that the integers n with o(n) =42 are n =41, n =13-2=26 and n =5 -4 = 20.
(c) Find the smallest positive integer n such that 7(n) = 42.

Solution: 42 can be factored as 42 =2-3-7=2-21 =314 =7-6 = 42 and so the positive integers n with
1,20 213

7(n) = 42 are of one of the forms p'q¢?r%, p'¢®°, p?¢*® or p*! for some distinct primes p, g, ». The smallest
such integer is n = 26 - 32 . 51 = 2880.

(d) For which positive integers n is 7(n) odd?

Solution: 7(n) is odd when all primes have an even exponent in the prime factorization of n, that is when n
is a square.

(e) For which positive integers n is o(n) odd?

Solution: ¢(2¥) = (1 +2+ 4+ --- 4+ 2F) is odd for all values of k& > 1 and, for an odd prime p, o(p*) =
(1+p+p*>+---+pF) is odd when k is even. Thus o(n) is odd when all odd primes have an even exponent
in the prime factorization of n, that is when n is either a square or twice a square.



3: Let a = (25)! and b = (5500)3(1001)2.
(a) Find the prime factorization of a and of b.

Solution: Recall that the exponent of the prime p in n!is [2] + [;5] 4+ [;5], so we have

a = 212+6+3+1 . 38+2 . 55+1 . 73 . 112 . 131 . 171 . 191 . 231
=222.310.56.73.112. 131 . 171 . 191 . 23!

b=(2%-5%. 11h)3(7t - 11t - 131)2
=96.59.72.115.132.

(b) Find the prime factorization of ged(a,b) and of lem(a,b).
Solution: From the prime factorizations of a and b we obtain
ged(a,b) =26-.3%.55.72.112 . 13!
lem(a,b) = 222-310.5%. 73 . 115132 . 171 - 191 . 231

(¢) Find the number of positive factors of b which are not factors of a.

Solution: Recall that the number N(n) of positive factors of n = py*1po*2 ... p* is given by the formula
N(n)= (k1 +1)(ka+1)---(k; +1). Let N be the number of positive factors of b which are not factors of a.
Notice that N = N(b) — N(d), where d = gcd(a, b), so by the factorizations from parts (a) and (b) we have

N=N(b)—N(d)=7-10-3-6-3—7-7-3-3-2 = 2898.

(d) Find the number of factors (positive or negative) of b which are either perfect squares or perfect cubes (or
both).

Solution: Let n = p1*1pyF2 ... p/F . then the positive factors of n which are perfect squares are of the form
r = p19iped? - - - 7t where each j; is even with 0 < j; < k;. For each 4, the number of choices for j; is L%J +1, so
the total number of positive factors which are perfect squares is (Lk—lj + 1) (L%J + 1) e (L%J + 1). Similarly,
the number N (n,m) of positive factors of n which are perfect m“g powers is

o= (]9 (2] ()

Using this formula, we have N (b,2) = 4-5-2-3-2 = 240, N(b,3) = 3-4-1-2-1 = 24 and N(b,6) =2-2-1-1-1 = 4.
Notice that perfect squares are always positive, but perfect squares can be positive or negative, so the total
number of factors of b which are either perfect squares or perfect cubes is

N(b,2) + 2N (b,3) — N(b,6) = 240 + 48 — 4 = 284 .



4: Solve the linear Diophantine equation 8x + 18y + 45z + 30w = 4.

Solution: Since ged(45,30) = 15, we can write 45z + 30w = 15u, that is 3z + 2w = u. Then the given equation
reduces to 8z 4 18y + 15u = 4. Since ged(18,15) = 3, we can write 18y 4+ 15u = 3v, that is 6y + 5u = v. Then
the given equation further reduces to 8x 4+ 3v = 4. By inspection, one solution to this reduced equation is
(z,v) = (—=1,4) and so the general solution is

(z,v) = (-1,4) + k(-3,8) = (-1 — 3k, 4 + 8k).
Put v = 4 4 8k back into the equation 6y + bu = v to get 6y + bu = 4 + 8k. By inspection, one solution to the
equation 6y + 5u = 1is (y,u) = (1,—1), and so the general solution to the equation 6y + 5u = 4 + 8k is
(y,u) = (4+8k)(1,—1) +1(—5,6) = (4+ 8k — 51,—4 — 8k + 61) .
Put w = —4 — 8k + 6l back into the equation 3z + 2w = u to get 3z + 2w = —4 — 8k + 6. By inspection,

one solution to the equation 3z + 2w = 1 is (z,w) = (1,—1), and so the general solution to the equation
3z+ 2w =—4—-8k+6lis

(z,w)=(—4—-8k+60)(1,-1)+m(-2,3) = (-4 -8k + 6l —2m, 4+ 8k — 6l + 3m).
Combining components of the above solutions (z, v), (y,u) and (z,w), we see that the solution to the original
equation is
(z,y,2z,w)=(—1—3k,4+8k—51, —4 — 8k + 6] —2m, 4+ 8k — 61 + 3m)
=(—-1,4,-4,4) + k(-3,8,-8,8) +1(0,—5,5,—6) +m (0,0,—2,3),
where k,l, m € Z. We remark that there are other correct ways to express this solution which use a different
particular solution and a different basis of direction vectors, for example

(2,y,z,w) = (=2,1,0,0) + k(3,-3,0,1) + 1 (0, —5,2,0) + m (0,0, -2, 3) .



5: Consider the following system of linear Diophantine equations.

Sr+y+4dz+w=a
4y + 62+ 9w =2

(a) Find all integers a such that the system has a solution.

Solution: We solve the second equation 4y + 6z + 9w. Since ged(6,9) = 3 we can write 6z + 9w = 3u, that is
2z 4+ 3w = u. Then the second equation reduces to 4y + 3y = 2. By inpection, the solution to this reduced
equation is

(y,u) =(-1,2) + k(-3,4) = (-1 -3k, 2+ 4k) .

Put u = 2 + 4k back into the equation 2z + 3w = u to get 2z + 3w = 2 + 4k. By inspection, a solution to the
equation 2z 4+ 3w = 1 is (z,w) = (-1, 1), and so the general solution to the equation 2z + 3w = 2 + 4k is
(zy,w) = (24+4k)(-1,1) +1(-3,2) = (-2 —4k =31, 2+ 4k + 2]).

Combining the above solutions (y,u) and (z,w) we find that the general solution to the second of the two
given equations is
(y,z,w) = (—=1—3k, -2 —4k — 31, 2+ 4k + 21).

Put this solution back into the first of the two given equations (that is the equation 5z 4+ y + 4z + w = a) to
get b — 1 — 3k — 8 — 16k — 12] + 2 + 4k 4 2] = a, that is

5c— 15k — 10l =a+ 7.
In order for a solution to exist, we need ged(5, —15,—10) to divide a + 7, so a + 7 must be a multiple of 5.
Thus a solution exists when a is of the form a = 3 + 57 for some r € Z.

(b) Solve the system when a = 3.

Solution: When a = 3 the equation 5x — 15k — 10l = a + 7 becomes 5x — 15k — 10l = 10, or equivalently
x — 3k — 2l = 2. Write —3k — 2] = v so this equation becomes x + v = 2. By inspection, the solution to the
equation r +v = 2 is

(,v) = (1, 1) +s(-1,1)=(1—5,1439).

Put v =1+ s back into the equation —3k — 2] = v to get —3k — 2] = 1 4+ s. The general solution to this is
(k,)=(1+9)(-1,1)+t2,-3)=(—1—s+2t,1+s—3t).
From our solution (z,v), and by substituting the above values for k and ! back into our solution (y, z, w) from
part (a), and we obtain the final solution:
(z,y,z,w)=(1—s,—1 -3k, =2 —4k — 31,24+ 4k + 2])

=(1-s,-1+3+3s—6t, 2+4+4s—8 —3—-3s+9t,2—4—4s+ 8+ 2+ 2s—6t)
=(1-s2+3s—6t, —1+s+t, —2s+2t)
=(1,2,-1,0)+s(-1,3,1,-2) + ¢ (0,—6,1,2),

where s,t € Z.



