
PMATH 340 Number Theory, Solutions to the Exercises for Chapter 1

1: Let a = 17537, b = 5434 and c = 1482.

(a) Find gcd(a, b) and lcm(a, b).

Solution: We use the Euclidean Algorithm.

17537 = 3 · 5434 + 1235

5434 = 4 · 1235 + 494

1235 = 2 · 494 + 247

494 = 2 · 247 + 0

This gives gcd(a, b) = 247, and hence lcm(a, b) =
ab

gcd(a, b)
=

17537 · 5434

247
= 385814.

(b) Solve the linear Diophantine equation ax+ by = c.

Solution: Let d = gcd(a, b) = 247. Note that c = 6 d, so solutions do exist. Also note that a = 71 d and
b = 22 d. Back substitution gives the sequence {uk} = 1,−2, 9,−29 and so 9a − 29b = d. Multiply by 6
to get 54 a − 174 b = c, so we have one solution one solution (x0, y0) = (54,−174). The general solution is
(x, y) = (x0, y0) + k

(
− b

d ,
a
d

)
that is (x, y) = (54,−174) + k (−22, 71), where k ∈ Z.

2: (a) Find σ(10!).

Solution: We have 10! = 25+2+1 · 33+1 · 52 · 71 = 28 · 34 · 52 · 71 and so

σ(10!) = (1 + 2 + 4 + 8 + · · ·+ 256)(1 + 3 + 9 + 27 + 81)(1 + 5 + 25)(1 + 7) = 511 · 121 · 31 · 8 = 15334088.

(b) List all of the positive integers n such that σ(n) = 42.

Solution: We begin by listing σ(pk) for all prime powers pk for which σ(pk)
∣∣42:

σ(2) = 3 , σ(4) = 7 , σ(5) = 6 , σ(13) = 14 , σ(41) = 42 .

From this list we see that the integers n with σ(n) = 42 are n = 41, n = 13 · 2 = 26 and n = 5 · 4 = 20.

(c) Find the smallest positive integer n such that τ(n) = 42.

Solution: 42 can be factored as 42 = 2 · 3 · 7 = 2 · 21 = 3 · 14 = 7 · 6 = 42 and so the positive integers n with
τ(n) = 42 are of one of the forms p1q2r6, p1q20, p2q13 or p41 for some distinct primes p, q, r. The smallest
such integer is n = 26 · 32 · 51 = 2880.

(d) For which positive integers n is τ(n) odd?

Solution: τ(n) is odd when all primes have an even exponent in the prime factorization of n, that is when n
is a square.

(e) For which positive integers n is σ(n) odd?

Solution: σ(2k) = (1 + 2 + 4 + · · · + 2k) is odd for all values of k ≥ 1 and, for an odd prime p, σ(pk) =
(1 + p + p2 + · · · + pk) is odd when k is even. Thus σ(n) is odd when all odd primes have an even exponent
in the prime factorization of n, that is when n is either a square or twice a square.



3: Let a = (25)! and b = (5500)3(1001)2.

(a) Find the prime factorization of a and of b.

Solution: Recall that the exponent of the prime p in n! is bnp c+ b a
p2 c+ b a

p3 c, so we have

a = 212+6+3+1 · 38+2 · 55+1 · 73 · 112 · 131 · 171 · 191 · 231

= 222 · 310 · 56 · 73 · 112 · 131 · 171 · 191 · 231

b = (22 · 53 · 111)3(71 · 111 · 131)2

= 26 · 59 · 72 · 115 · 132 .

(b) Find the prime factorization of gcd(a, b) and of lcm(a, b).

Solution: From the prime factorizations of a and b we obtain

gcd(a, b) = 26 · 30 · 56 · 72 · 112 · 131

lcm(a, b) = 222 · 310 · 59 · 73 · 115 · 132 · 171 · 191 · 231 .

(c) Find the number of positive factors of b which are not factors of a.

Solution: Recall that the number N(n) of positive factors of n = p1
k1p2

k2 · · · plkl is given by the formula
N(n) = (k1 + 1)(k2 + 1) · · · (kl + 1). Let N be the number of positive factors of b which are not factors of a.
Notice that N = N(b)−N(d), where d = gcd(a, b), so by the factorizations from parts (a) and (b) we have

N = N(b)−N(d) = 7 · 10 · 3 · 6 · 3− 7 · 7 · 3 · 3 · 2 = 2898 .

(d) Find the number of factors (positive or negative) of b which are either perfect squares or perfect cubes (or
both).

Solution: Let n = p1
k1p2

k2 · · · plkl , then the positive factors of n which are perfect squares are of the form
r = p1

j1p2
j2 · · · pljl where each ji is even with 0 ≤ ji ≤ ki. For each i, the number of choices for ji is

⌊
ki

2

⌋
+1, so

the total number of positive factors which are perfect squares is
(⌊

k1

2

⌋
+ 1

) (⌊
k2

2

⌋
+ 1

)
· · ·

(⌊
kl

2

⌋
+ 1

)
. Similarly,

the number N(n,m) of positive factors of n which are perfect mth powers is

N(n,m) =

(⌊
k1
m

⌋
+ 1

)(⌊
k2
m

⌋
+ 1

)
· · ·

(⌊
kl
m

⌋
+ 1

)
.

Using this formula, we have N(b, 2) = 4·5·2·3·2 = 240, N(b, 3) = 3·4·1·2·1 = 24 and N(b, 6) = 2·2·1·1·1 = 4.
Notice that perfect squares are always positive, but perfect squares can be positive or negative, so the total
number of factors of b which are either perfect squares or perfect cubes is

N(b, 2) + 2N(b, 3)−N(b, 6) = 240 + 48− 4 = 284 .



4: Solve the linear Diophantine equation 8x+ 18y + 45z + 30w = 4.

Solution: Since gcd(45, 30) = 15, we can write 45z+ 30w = 15u, that is 3z+ 2w = u. Then the given equation
reduces to 8x+ 18y+ 15u = 4. Since gcd(18, 15) = 3, we can write 18y+ 15u = 3v, that is 6y+ 5u = v. Then
the given equation further reduces to 8x + 3v = 4. By inspection, one solution to this reduced equation is
(x, v) = (−1, 4) and so the general solution is

(x, v) = (−1, 4) + k (−3, 8) = (−1− 3k, 4 + 8k) .

Put v = 4 + 8k back into the equation 6y+ 5u = v to get 6y+ 5u = 4 + 8k. By inspection, one solution to the
equation 6y + 5u = 1 is (y, u) = (1,−1), and so the general solution to the equation 6y + 5u = 4 + 8k is

(y, u) = (4 + 8k)(1,−1) + l(−5, 6) = (4 + 8k − 5l,−4− 8k + 6l) .

Put u = −4 − 8k + 6l back into the equation 3z + 2w = u to get 3z + 2w = −4 − 8k + 6l. By inspection,
one solution to the equation 3z + 2w = 1 is (z, w) = (1,−1), and so the general solution to the equation
3z + 2w = −4− 8k + 6l is

(z, w) = (−4− 8k + 6l)(1,−1) +m (−2, 3) = (−4− 8k + 6l − 2m, 4 + 8k − 6l + 3m) .

Combining components of the above solutions (x, v), (y, u) and (z, w), we see that the solution to the original
equation is

(x, y, z, w) = (−1− 3k , 4 + 8k − 5l , −4− 8k + 6l − 2m, 4 + 8k − 6l + 3m)

= (−1, 4,−4, 4) + k (−3, 8,−8, 8) + l (0,−5, 5,−6) +m (0, 0,−2, 3) ,

where k, l,m ∈ Z. We remark that there are other correct ways to express this solution which use a different
particular solution and a different basis of direction vectors, for example

(x, y, z, w) = (−2, 1, 0, 0) + k (3,−3, 0, 1) + l (0,−5, 2, 0) +m (0, 0,−2, 3) .



5: Consider the following system of linear Diophantine equations.

5x+ y + 4z + w = a

4y + 6z + 9w = 2

(a) Find all integers a such that the system has a solution.

Solution: We solve the second equation 4y + 6z + 9w. Since gcd(6, 9) = 3 we can write 6z + 9w = 3u, that is
2z + 3w = u. Then the second equation reduces to 4y + 3y = 2. By inpection, the solution to this reduced
equation is

(y, u) = (−1, 2) + k (−3, 4) = (−1− 3k , 2 + 4k) .

Put u = 2 + 4k back into the equation 2z + 3w = u to get 2z + 3w = 2 + 4k. By inspection, a solution to the
equation 2z + 3w = 1 is (z, w) = (−1, 1), and so the general solution to the equation 2z + 3w = 2 + 4k is

(z, w) = (2 + 4k)(−1, 1) + l (−3, 2) = (−2− 4k − 3l , 2 + 4k + 2l) .

Combining the above solutions (y, u) and (z, w) we find that the general solution to the second of the two
given equations is

(y, z, w) = (−1− 3k , −2− 4k − 3l , 2 + 4k + 2l) .

Put this solution back into the first of the two given equations (that is the equation 5x+ y + 4z + w = a) to
get 5x− 1− 3k − 8− 16k − 12l + 2 + 4k + 2l = a, that is

5x− 15k − 10l = a+ 7 .

In order for a solution to exist, we need gcd(5,−15,−10) to divide a + 7, so a + 7 must be a multiple of 5.
Thus a solution exists when a is of the form a = 3 + 5r for some r ∈ Z.

(b) Solve the system when a = 3.

Solution: When a = 3 the equation 5x − 15k − 10l = a + 7 becomes 5x − 15k − 10l = 10, or equivalently
x − 3k − 2l = 2. Write −3k − 2l = v so this equation becomes x + v = 2. By inspection, the solution to the
equation x+ v = 2 is

(x, v) = (1, 1) + s(−1, 1) = (1− s , 1 + s) .

Put v = 1 + s back into the equation −3k − 2l = v to get −3k − 2l = 1 + s. The general solution to this is

(k, l) = (1 + s)(−1, 1) + t(2,−3) = (−1− s+ 2t, 1 + s− 3t) .

From our solution (x, v), and by substituting the above values for k and l back into our solution (y, z, w) from
part (a), and we obtain the final solution:

(x, y, z, w) = (1− s,−1− 3k , −2− 4k − 3l , 2 + 4k + 2l)

= (1− s , −1 + 3 + 3s− 6t , −2 + 4 + 4s− 8t− 3− 3s+ 9t , 2− 4− 4s+ 8t+ 2 + 2s− 6t)

= (1− s, 2 + 3s− 6t , −1 + s+ t , −2s+ 2t)

= (1, 2,−1, 0) + s (−1, 3, 1,−2) + t (0,−6, 1, 2) ,

where s, t ∈ Z.


