PMATH 340 Number Theory, Solutions to the Exercises for Chapter 1

1: Let $a=17537, b=5434$ and $c=1482$.
(a) Find $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$.

Solution: We use the Euclidean Algorithm.

$$
\begin{aligned}
17537 & =3 \cdot 5434+1235 \\
5434 & =4 \cdot 1235+494 \\
1235 & =2 \cdot 494+247 \\
494 & =2 \cdot 247+0
\end{aligned}
$$

This gives $\operatorname{gcd}(a, b)=247$, and hence $\operatorname{lcm}(a, b)=\frac{a b}{\operatorname{gcd}(a, b)}=\frac{17537 \cdot 5434}{247}=385814$.
(b) Solve the linear Diophantine equation $a x+b y=c$.

Solution: Let $d=\operatorname{gcd}(a, b)=247$. Note that $c=6 d$, so solutions do exist. Also note that $a=71 d$ and $b=22 d$. Back substitution gives the sequence $\left\{u_{k}\right\}=1,-2,9,-29$ and so $9 a-29 b=d$. Multiply by 6 to get $54 a-174 b=c$, so we have one solution one solution $\left(x_{0}, y_{0}\right)=(54,-174)$. The general solution is $(x, y)=\left(x_{0}, y_{0}\right)+k\left(-\frac{b}{d}, \frac{a}{d}\right)$ that is $(x, y)=(54,-174)+k(-22,71)$, where $k \in \mathbf{Z}$.

2: (a) Find $\sigma(10!)$.
Solution: We have $10!=2^{5+2+1} \cdot 3^{3+1} \cdot 5^{2} \cdot 7^{1}=2^{8} \cdot 3^{4} \cdot 5^{2} \cdot 7^{1}$ and so

$$
\sigma(10!)=(1+2+4+8+\cdots+256)(1+3+9+27+81)(1+5+25)(1+7)=511 \cdot 121 \cdot 31 \cdot 8=15334088
$$

(b) List all of the positive integers n such that $\sigma(n)=42$.

Solution: We begin by listing $\sigma\left(p^{k}\right)$ for all prime powers p^{k} for which $\sigma\left(p^{k}\right) \mid 42$:

$$
\sigma(2)=3, \sigma(4)=7, \sigma(5)=6, \sigma(13)=14, \sigma(41)=42
$$

From this list we see that the integers n with $\sigma(n)=42$ are $n=41, n=13 \cdot 2=26$ and $n=5 \cdot 4=20$.
(c) Find the smallest positive integer n such that $\tau(n)=42$.

Solution: 42 can be factored as $42=2 \cdot 3 \cdot 7=2 \cdot 21=3 \cdot 14=7 \cdot 6=42$ and so the positive integers n with $\tau(n)=42$ are of one of the forms $p^{1} q^{2} r^{6}, p^{1} q^{20}, p^{2} q^{13}$ or p^{41} for some distinct primes p, q, r. The smallest such integer is $n=2^{6} \cdot 3^{2} \cdot 5^{1}=2880$.
(d) For which positive integers n is $\tau(n)$ odd?

Solution: $\tau(n)$ is odd when all primes have an even exponent in the prime factorization of n, that is when n is a square.
(e) For which positive integers n is $\sigma(n)$ odd?

Solution: $\sigma\left(2^{k}\right)=\left(1+2+4+\cdots+2^{k}\right)$ is odd for all values of $k \geq 1$ and, for an odd prime $p, \sigma\left(p^{k}\right)=$ $\left(1+p+p^{2}+\cdots+p^{k}\right)$ is odd when k is even. Thus $\sigma(n)$ is odd when all odd primes have an even exponent in the prime factorization of n, that is when n is either a square or twice a square.

3: Let $a=(25)$! and $b=(5500)^{3}(1001)^{2}$.
(a) Find the prime factorization of a and of b.

Solution: Recall that the exponent of the prime p in $n!$ is $\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{a}{p^{2}}\right\rfloor+\left\lfloor\frac{a}{p^{3}}\right\rfloor$, so we have

$$
\begin{aligned}
a & =2^{12+6+3+1} \cdot 3^{8+2} \cdot 5^{5+1} \cdot 7^{3} \cdot 11^{2} \cdot 13^{1} \cdot 17^{1} \cdot 19^{1} \cdot 23^{1} \\
& =2^{22} \cdot 3^{10} \cdot 5^{6} \cdot 7^{3} \cdot 11^{2} \cdot 13^{1} \cdot 17^{1} \cdot 19^{1} \cdot 23^{1} \\
b & =\left(2^{2} \cdot 5^{3} \cdot 11^{1}\right)^{3}\left(7^{1} \cdot 11^{1} \cdot 13^{1}\right)^{2} \\
& =2^{6} \cdot 5^{9} \cdot 7^{2} \cdot 11^{5} \cdot 13^{2} .
\end{aligned}
$$

(b) Find the prime factorization of $\operatorname{gcd}(a, b)$ and of $\operatorname{lcm}(a, b)$.

Solution: From the prime factorizations of a and b we obtain

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=2^{6} \cdot 3^{0} \cdot 5^{6} \cdot 7^{2} \cdot 11^{2} \cdot 13^{1} \\
& \operatorname{lcm}(a, b)=2^{22} \cdot 3^{10} \cdot 5^{9} \cdot 7^{3} \cdot 11^{5} \cdot 13^{2} \cdot 17^{1} \cdot 19^{1} \cdot 23^{1} .
\end{aligned}
$$

(c) Find the number of positive factors of b which are not factors of a.

Solution: Recall that the number $N(n)$ of positive factors of $n=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdots p_{l}{ }^{k_{l}}$ is given by the formula $N(n)=\left(k_{1}+1\right)\left(k_{2}+1\right) \cdots\left(k_{l}+1\right)$. Let N be the number of positive factors of b which are not factors of a. Notice that $N=N(b)-N(d)$, where $d=\operatorname{gcd}(a, b)$, so by the factorizations from parts (a) and (b) we have

$$
N=N(b)-N(d)=7 \cdot 10 \cdot 3 \cdot 6 \cdot 3-7 \cdot 7 \cdot 3 \cdot 3 \cdot 2=2898 .
$$

(d) Find the number of factors (positive or negative) of b which are either perfect squares or perfect cubes (or both).
Solution: Let $n=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdots p_{l}{ }^{k_{l}}$, then the positive factors of n which are perfect squares are of the form $r=p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{l}{ }^{j_{l}}$ where each j_{i} is even with $0 \leq j_{i} \leq k_{i}$. For each i, the number of choices for j_{i} is $\left\lfloor\frac{k_{i}}{2}\right\rfloor+1$, so the total number of positive factors which are perfect squares is $\left(\left\lfloor\frac{k_{1}}{2}\right\rfloor+1\right)\left(\left\lfloor\frac{k_{2}}{2}\right\rfloor+1\right) \cdots\left(\left\lfloor\frac{k_{l}}{2}\right\rfloor+1\right)$. Similarly, the number $N(n, m)$ of positive factors of n which are perfect $m^{t h}$ powers is

$$
N(n, m)=\left(\left\lfloor\frac{k_{1}}{m}\right\rfloor+1\right)\left(\left\lfloor\frac{k_{2}}{m}\right\rfloor+1\right) \cdots\left(\left\lfloor\frac{k_{l}}{m}\right\rfloor+1\right) .
$$

Using this formula, we have $N(b, 2)=4 \cdot 5 \cdot 2 \cdot 3 \cdot 2=240, N(b, 3)=3 \cdot 4 \cdot 1 \cdot 2 \cdot 1=24$ and $N(b, 6)=2 \cdot 2 \cdot 1 \cdot 1 \cdot 1=4$. Notice that perfect squares are always positive, but perfect squares can be positive or negative, so the total number of factors of b which are either perfect squares or perfect cubes is

$$
N(b, 2)+2 N(b, 3)-N(b, 6)=240+48-4=284
$$

4: Solve the linear Diophantine equation $8 x+18 y+45 z+30 w=4$.
Solution: Since $\operatorname{gcd}(45,30)=15$, we can write $45 z+30 w=15 u$, that is $3 z+2 w=u$. Then the given equation reduces to $8 x+18 y+15 u=4$. Since $\operatorname{gcd}(18,15)=3$, we can write $18 y+15 u=3 v$, that is $6 y+5 u=v$. Then the given equation further reduces to $8 x+3 v=4$. By inspection, one solution to this reduced equation is $(x, v)=(-1,4)$ and so the general solution is

$$
(x, v)=(-1,4)+k(-3,8)=(-1-3 k, 4+8 k) .
$$

Put $v=4+8 k$ back into the equation $6 y+5 u=v$ to get $6 y+5 u=4+8 k$. By inspection, one solution to the equation $6 y+5 u=1$ is $(y, u)=(1,-1)$, and so the general solution to the equation $6 y+5 u=4+8 k$ is

$$
(y, u)=(4+8 k)(1,-1)+l(-5,6)=(4+8 k-5 l,-4-8 k+6 l) .
$$

Put $u=-4-8 k+6 l$ back into the equation $3 z+2 w=u$ to get $3 z+2 w=-4-8 k+6 l$. By inspection, one solution to the equation $3 z+2 w=1$ is $(z, w)=(1,-1)$, and so the general solution to the equation $3 z+2 w=-4-8 k+6 l$ is

$$
(z, w)=(-4-8 k+6 l)(1,-1)+m(-2,3)=(-4-8 k+6 l-2 m, 4+8 k-6 l+3 m) .
$$

Combining components of the above solutions $(x, v),(y, u)$ and (z, w), we see that the solution to the original equation is

$$
\begin{aligned}
(x, y, z, w) & =(-1-3 k, 4+8 k-5 l,-4-8 k+6 l-2 m, 4+8 k-6 l+3 m) \\
& =(-1,4,-4,4)+k(-3,8,-8,8)+l(0,-5,5,-6)+m(0,0,-2,3),
\end{aligned}
$$

where $k, l, m \in \mathbf{Z}$. We remark that there are other correct ways to express this solution which use a different particular solution and a different basis of direction vectors, for example

$$
(x, y, z, w)=(-2,1,0,0)+k(3,-3,0,1)+l(0,-5,2,0)+m(0,0,-2,3) .
$$

5: Consider the following system of linear Diophantine equations.

$$
\begin{array}{r}
5 x+y+4 z+w=a \\
4 y+6 z+9 w=2
\end{array}
$$

(a) Find all integers a such that the system has a solution.

Solution: We solve the second equation $4 y+6 z+9 w$. Since $\operatorname{gcd}(6,9)=3$ we can write $6 z+9 w=3 u$, that is $2 z+3 w=u$. Then the second equation reduces to $4 y+3 y=2$. By inpection, the solution to this reduced equation is

$$
(y, u)=(-1,2)+k(-3,4)=(-1-3 k, 2+4 k) .
$$

Put $u=2+4 k$ back into the equation $2 z+3 w=u$ to get $2 z+3 w=2+4 k$. By inspection, a solution to the equation $2 z+3 w=1$ is $(z, w)=(-1,1)$, and so the general solution to the equation $2 z+3 w=2+4 k$ is

$$
(z, w)=(2+4 k)(-1,1)+l(-3,2)=(-2-4 k-3 l, 2+4 k+2 l)
$$

Combining the above solutions (y, u) and (z, w) we find that the general solution to the second of the two given equations is

$$
(y, z, w)=(-1-3 k,-2-4 k-3 l, 2+4 k+2 l) .
$$

Put this solution back into the first of the two given equations (that is the equation $5 x+y+4 z+w=a$) to get $5 x-1-3 k-8-16 k-12 l+2+4 k+2 l=a$, that is

$$
5 x-15 k-10 l=a+7
$$

In order for a solution to exist, we need $\operatorname{gcd}(5,-15,-10)$ to divide $a+7$, so $a+7$ must be a multiple of 5 . Thus a solution exists when a is of the form $a=3+5 r$ for some $r \in \mathbf{Z}$.
(b) Solve the system when $a=3$.

Solution: When $a=3$ the equation $5 x-15 k-10 l=a+7$ becomes $5 x-15 k-10 l=10$, or equivalently $x-3 k-2 l=2$. Write $-3 k-2 l=v$ so this equation becomes $x+v=2$. By inspection, the solution to the equation $x+v=2$ is

$$
(x, v)=(1,1)+s(-1,1)=(1-s, 1+s) .
$$

Put $v=1+s$ back into the equation $-3 k-2 l=v$ to get $-3 k-2 l=1+s$. The general solution to this is

$$
(k, l)=(1+s)(-1,1)+t(2,-3)=(-1-s+2 t, 1+s-3 t)
$$

From our solution (x, v), and by substituting the above values for k and l back into our solution (y, z, w) from part (a), and we obtain the final solution:

$$
\begin{aligned}
(x, y, z, w) & =(1-s,-1-3 k,-2-4 k-3 l, 2+4 k+2 l) \\
& =(1-s,-1+3+3 s-6 t,-2+4+4 s-8 t-3-3 s+9 t, 2-4-4 s+8 t+2+2 s-6 t) \\
& =(1-s, 2+3 s-6 t,-1+s+t,-2 s+2 t) \\
& =(1,2,-1,0)+s(-1,3,1,-2)+t(0,-6,1,2),
\end{aligned}
$$

where $s, t \in \mathbf{Z}$.

