PMATH 340 Number Theory, Exercises for Chapter 1 (The Euclidean Algorithm)

1: Let $a=17537, b=5434$ and $c=1482$.
(a) Find $\operatorname{gcd}(a, b)$ and $\operatorname{lcm}(a, b)$.
(b) Solve the linear Diophantine equation $a x+b y=c$.

2: (a) Find $\sigma(10!)$.
(b) List all of the positive integers n such that $\sigma(n)=42$.
(c) Find the smallest positive integer n such that $\tau(n)=42$.
(d) For which positive integers n is $\tau(n)$ odd?
(e) For which positive integers n is $\sigma(n)$ odd?

3: Let $a=(25)$! and $b=(5500)^{3}(1001)^{2}$.
(a) Find the prime factorization of a and of b.
(b) Find the prime factorization of $\operatorname{gcd}(a, b)$ and of $\operatorname{lcm}(a, b)$.
(c) Find the number of positive factors of b which are not factors of a.
(d) Find the number of factors (positive or negative) of b which are either perfect squares or perfect cubes (or both).

4: Solve the linear Diophantine equation $8 x+18 y+45 z+30 w=4$.
5: Consider the following system of linear Diophantine equations.

$$
\begin{array}{r}
5 x+y+4 z+w=a \\
4 y+6 z+9 w=2
\end{array}
$$

(a) Find all integers a such that the system has a solution.
(b) Solve the system when $a=3$.

