
Chapter 8. Some Diophantine Equations

Differences of Two Squares

8.1 Theorem: (Differences of Two Squares) Let n ∈ Z+.

(1) There exists a solution (x, y) ∈ Z2 to the Diophantine equation x2−y2 = n if and only
if n is odd or n is a multiple of 4.
(2) In the case that n is odd, the number of solutions is equal to 2 τ(n) and the solutions
are given by (x, y) =

(
± s+r

2 ,± s−r2
)

where n = rs with 0 < r ≤ s.
(3) In the case that n is a multiple of 4, the number of solutions is 2 τ

(
n
4

)
, and the solutions

are given by (x, y) =
(
± (`+ k),±(`− k)

)
where n = 4k` with 0 < k ≤ `.

Proof: For x, y ∈ Z4 we have x2 ∈ {0, 1} and y2 ∈ {0, 1}, and so x2 − y2 ∈ {0, 1, 3}. Thus
for n ∈ Z, if n = x2− y2 for some x, y ∈ Z then n ∈ {0, 1, 3} mod 4, that is either n is odd
or n is a multiple of 4. When n is odd, say n = 2k + 1, we can take x = k + 1 and y = k
to get x2 − y2 = (k + 1)2 − k2 = 2k + 1 = n. When n is a multiple of 4, say n = 4k, we
can take x = k + 1 and y = k − 1 to get x2 − y2 = (k + 1)2 − (k − 1)2 = 4k = n. Thus for
n ∈ Z, the Diophantine equation x2 − y2 = n has a solution if and only if either n is odd
or n is a multiple of 4.

When n = 0 we have x2 − y2 = n ⇐⇒ x2 − y2 = 0 ⇐⇒ x2 = y2 ⇐⇒ y = ±x and
so there are infinitely many solutions, namely (x, y) = (r, r), r ∈ Z.

Since x2 − y2 = −n ⇐⇒ y2 − x2 = n, it follows that the number of solutions to the
equation x2 − y2 = −n is equal to the number of solutions to the equations x2 − y2 = n,
so it suffices to consider the case that n > 0. Also note that if x2 − y2 = n then we also
have (±x)2 − (±y)2 = n so it suffices to count the number of solutions (x, y) ∈ Z2 with
0 ≤ y < x. We must multiply the number of solutions with 0 < y < x by 4 and, in the
case that n is a square, we also have the 2 solutions (x, y) =

(
±
√
n, 0
)
.

Suppose that n ∈ Z+ and that either n is odd or n is a multiple of 4. Note that
x2−y2 = n ⇐⇒ (x−y)(x+y) = n. Given x, y ∈ Z with 0 ≤ y < x such that x2−y2 = n,
we can let r = x− y and s = x+ y and then we have 0 < r ≤ s and rs = n and s− r = 2y
so that r = s mod 2. On the other hand, given r, s ∈ Z with 0 < r ≤ s and rs = n
and r = s mod 2, we can let x = s+r

2 and y = s−r
2 and then we have 0 < y ≤ x and

x2− y2 = (x− y)(x+ y) = rs = n. Thus there is a bijective correspondence between pairs
(x, y) ∈ Z2 with 0 < y ≤ x such that x2 − y2 = n and pairs (r, s) ∈ Z2 with 0 < r ≤ s
and rs = n and r = s mod 2. In the case that n is a square, the pair (x, y) with y = 0
corresponds to the pair (r, s) with r = s.

When n is odd and rs = n, both r and s are odd so that we have r = s mod 2. When
n is not a square, τ(n) is even and the number of pairs (r, s) ∈ Z2 with 0 < r ≤ s and

rs = n is equal to τ(n)
2 . In this case, the total number of solutions (x, y) ∈ Z2 is equal to

4 · τ(n)2 = 2τ(n). When n is a square, τ(n) is odd and we obtain 1 pair (r, s) with r = s

and τ(n)−1
2 pairs (r, s) with r < s. In this case, the total number of solutions (x, y) ∈ Z2

is 2 + 4 · τ(n)−12 = 2τ(n). In either case, the total number of solutions is 2τ(n).
When n is a multiple of 4, say n = 4m, to get rs = n with r = s mod 2, the factors

r and s must both be even, say r = 2k and s = 2`. The number of required pairs (r, s) is
equal to the number of pairs (k, `) ∈ Z2 with 0 < k ≤ ` and k` = m. As above, whether
or not m is a square, the total number of solutions (x, y) ∈ Z2 is equal to 2τ(m).
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Sums of Two Squares

8.2 Note: Our main goal in this section is to determine for which integers n ∈ Z there
exists a solution (x, y) ∈ Z2 to the Diophantine equation x2 + y2 = n and, for such n,
to determine the number of solutions. In our analysis of the simpler equation x2 − y2 =
n we made use of the factorization x2 − y2 = (x − y)(x + y). In our analysis of the
equation x2 + y2 = n we shall find it useful to work in the ring of Gaussian integers
Z[i] =

{
a+ ib

∣∣ a, b ∈ Z
}

and to make use of the factorization x2 + y2 = (x− iy)(x+ iy).
Let us recall some facts about the ring Z[i] from Chapter 6. Recall that Z[i] is a

Euclidean domain, hence a unique factorization domain, with Euclidean norm equal to the
field norm N in Q[i]. For x, y ∈ Q and u = x+ iy ∈ Q[i], we have

N(u) = uu = ‖u‖2 = x2 + y2.

The norm is multiplicative, meaning that N(uv) = N(u)N(v) for all u, v ∈ Q[i]. The units
in Z[i] are the elements u ∈ Z[i] with N(u) = 1, namely the 4 elements ±1 and ±i, and the
non-zero non-units are the elements u ∈ Z[i] with N(u) > 1. The associates of the element
u ∈ Z[i] are the elements ±u and ±iu. Because Z[i] is a unique factorization domain, the
prime elements in Z[i] are the same as the irreducible elements in ∈ Z[i]. Finally, note
that for u ∈ Z[i], if N(u) is a prime number in Z+ then u must be irreducible in Z[i]
because if we had u = vw ∈ Z[i] with v and w being nonzero nonunits, then we would
have N(u) = N(v)N(w) ∈ Z+ with N(u) > 1 and N(w) > 1.

8.3 Theorem: (Irreducible Elements in the Ring of Gaussian Integers) Every irreducible
element in the ring Z[i] is an associate of exactly one of the following elements.

(1) 1 + i,
(2) p, where p is a prime number in Z+ with p = 3 mod 4,
(3) x± iy, where x, y ∈ Z with 0 < y < x and x2 + y2 = p for some prime number p ∈ Z+

with p = 1 mod 4.

Proof: Our first claim is that for a prime number p ∈ Z+, p is reducible in Z[i] if and only
if p = x2 + y2 for some x, y ∈ Z. Let p be a prime number in Z+. Suppose first that p
is reducible in Z[i]. Choose nonzero nonunits u, v ∈ Z[i] such that p = uv. Since u and v
are nonzero nonunits we have N(u) > 1 and N(v) > 1, and since N(u)N(v) = N(uv) =
N(p) = p2 we must have N(u) = p and N(v) = p. Write u = x + iy with x, y ∈ Z. Then
we have p = N(u) = x2 + y2. Suppose, conversely, that p = x2 + y2 where x, y ∈ Z. Let
u = x + iy and v = x− iy. Then N(u) = N(v) = p so that u and v are nonzero nonuits,
and we have uv = x2 + y2 = p so that p is reducible.

Note that 2 is reducible in Z[i] with 2 = (1+i)(1−i). Our second claim is that when p
is an odd prime number in Z+, p is reducible in Z[i] if and only if p = 1 mod 4. Let p be an
odd prime number in Z+ and note that (since p is odd) either p = 1 mod 4 or p = 3 mod 4.
Since 02 = 22 = 0 mod 4 and 12 = 32 = 1 mod 4, for all x ∈ Z we have x2 ∈ {0, 1} mod 4.
It follows that for all x, y ∈ Z we have x2 + y2 ∈ {0 + 0, 0 + 1, 1 + 1} = {0, 1, 2} mod 4.
Thus when p = 3 mod 4 there do not exist x, y ∈ Z such that x2 + y2 = p so, by our
first claim, we know that p is irreducible. On the other hand, when p = 1 mod 4 we know
from Chapter 4 that −1 ∈ Qp so we can choose x ∈ Z+ such that x2 = −1 mod p, say
x2 = −1 + kp with k ∈ Z+. Then in Z[i] we have kp = x2 + 1 = (x + i)(x − i). If p was
irreducible in Z[i], then by unique factorization, either p

∣∣(x+ i) or p
∣∣(x− i), but this is not

the case because (working in Q[i]) the elements x±i
p do not lie in Z[i], so p is reducible.
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Our third claim is that each element q ∈ Z[i] which is of one of the types 1, 2 and 3
(in the statement of the theorem) is irreducible in Z[i]. When q is of type 1, that is when
q = 1 + i, we have N(q) = 2 (which is prime in Z+) and so q is irreducible in Z[i] (by the
last remark in Note 8.2). When q is of type 2, that is when q = p for some prime number
p ∈ Z+ with p = 3 mod 4, then we know that q is irreducible from our second claim. When
q is of type 3, that is when q = x± iy where x, y ∈ Z with 0 < y ≤ x and x2 + y2 = p for
some prime number p ∈ Z+ with p = 1 mod 4, then we have N(q) = x2 + y2 = p, which is
prime in Z+, so q must be irreducible in Z[i] (by the final remark in Note 8.2 again).

Our fourth claim is that every irreducible element q ∈ Z[i] is an associate of a unique
element of one of the three types. Let q be an irreducible element in Z[i]. Since the units
in Z[i] are the elements ±1 and ±i, it follows that the 4 associates of q (which are also
irreducible) are obtained by rotating q bout the origin by a multiple of π

2 , and so q has a
unique associate x+ iy which lies in the quarter-plane given by −x < y ≤ x. When y = x
we have x+ iy = x(1 + i) with x ∈ Z+, and for this to be irreducible we must have x = 1
so that x+ iy = 1+ i, which is of type 1. When y = 0 we have x+ iy = x with x ∈ Z+ and,
for this to be irreducible in Z[i], we must have x irreducible in Z+ so that x+ iy = x = p
for some prime number p ∈ Z+ and, again for this to be irreducible in Z[i], we must have
p = 3 mod 4, which is of type 2. Otherwise (that is when y 6= x and y 6= 0) we have
−x < y < 0 or 0 < y < x, so we can say that q has a unique associate of the form x± iy
with 0 < y < x. In this case, factor N(q) = x2 + y2 = qq in Z+ to get qq = p1p2 · · · p`
with each pk a prime number in Z+. Since q is irreducible in Z[i], by unique factorization
in Z[i], we must have q

∣∣pk in Z[i] for some index k. Say q
∣∣p in Z[i] where p = pk is a

prime number in Z+. Since q
∣∣p in Z[i] we have N(q)

∣∣N(p), that is N(q)
∣∣p2, in Z+. Since

N(q) > 1 we must have N(q) = p or N(q) = p2. In the case that N(q) = p2, since q
∣∣p in

Z[i] and N(q) = N(p) = p2 it follows that p
q ∈ Z[i] with N

(
p
q

)
= 1, and hence p

q is a unit

in Z[i], so q is an associate of p, which is of type 2. In that case that N(q) = p we have
p = N(q) +N(x+ iy) = x2 + y2 so that q is an associate of x+ iy, which is of type 3.

8.4 Corollary: (Sums of Two Squares) Let n ∈ Z+ factor as n = 2m ·
∏
α
pα
kα ·

∏
β

qβ
`β

where m ∈ N, kα, `β ∈ Z+, the pα are distinct primes with pα = 1 mod 4, and the qβ are
distinct primes with qβ = 3 mod 4. Then there exists a solution (x, y) ∈ Z2 to the Sum
of Two Squares Equation x2 + y2 = n if and only if each exponent `β is even, and in this
case, the number of solutions (x, y) ∈ Z2 is equal to 4 ·

∏
α

(kα+ 1).

Proof: Note that for x, y ∈ Z, we have x2 + y2 = n in Z if and only if (x+ iy)(x− iy) = n
in Z[i]. Thus the number of pairs (x, y) ∈ Z2 such that x2 + y2 = n is equal to the number
of elements u = x + iy ∈ Z[i] such that n = uu. By the above theorem, n factors in Z[i]
into irreducibles as

n = (1 + i)m(1− i)m ·
∏
α
vα
kα vα

kα ·
∏
β

qβ
`β = (−i)m(1 + i)2m ·

∏
α
vα
kα vα

kα ·
∏
β

qβ
`β .

To get n = uu, u must be a factor of n in Z[i]. The factors of n in Z[i] are

u = e · (1 + i)a ·
∏
α
vα
bαvα

cα ·
∏
β

qβ
dβ

where e ∈ {±1,±i}, 0 ≤ a ≤ m, 0 ≤ bα ≤ kα, 0 ≤ cα ≤ kα and 0 ≤ dβ ≤ `β , and for

the above factor u we have uu = 1·2a·
∏
α
pα

bα+cα ·
∑
β

qβ
2dβ , so in order to get uu = n we need

e ∈ {±1,±i} (there are 4 choices for e), we need a = m (so there are no choices for a), we
need bα + cα = kα (so there are kα + 1 choices for the pair (bα, cα)) and we need 2dβ = `β
(so each `β must be even and there are no choices for dα).

3



Pell’s Equation

8.5 Note: In this section we discuss Pell’s equation, which is the Diophantine equation
x2 − dy2 = 1 where d ∈ Z+ is a non-square. In Chapters 6 and 7 we have already done all
of the work necessary to solve this equation. Let us recall some of the relevant facts.

It is useful to work in the real quadratic ring Z[
√
d ]. For u = x+ y

√
d ∈ Q[

√
d ] with

x, y ∈ Q, we write u = x− y
√
d and we use the field norm in Q[

√
d ] given by

N(u) = uu = x2 − dy2.
The norm is multiplicative, meaning that N(uv) = N(u)N(v). The units in Z[

√
d ] are the

elements u ∈ Z[
√
d ] with N(u) = ±1, that is the elements u = x+ y

√
d with x, y ∈ Z such

that x2 − dy2 = ±1 (almost, but not quite, the same as the solutions to Pell’s equation).
When x, y ∈ Z and u = x+ y

√
d is a unit in Z[

√
d ], we have u > 1 if and only if x, y ∈ Z+.

There is a unique smallest unit u ∈ Z[
√
d ] with u > 1, and (all of) the units in Z[

√
d ]

are the elements of the form ±uk with k ∈ Z. When u is this unique smallest unit with
u > 1, either we have N(u) = 1 or we have N(u) = −1. In the case that N(u) = 1
we have N(±uk) = 1 for all k ∈ Z so (all of) the solutions to Pell’s equation are given
by (x, y) = (±rk,±sk) where uk = rk + sk

√
d. In the case that N(u) = −1 we have

N(±uk) = (−1)k so the smallest unit v ∈ Z[
√
d ] with v > 1 and with N(v) = 1 is

v = u2 and (all of) the solutions to Pell’s equation are given by (x, y) = (±r2k,±s2k)
where vk = u2k = rk + sk

√
d.

When d is fairly small, the smallest unit u ∈ Z[
√
d ] with u > 1 can be found using

trial and error (simply try values of y ∈ Z+ until dy2 ± 1 is a square, say dy2 ± 1 = x2,
and then the smallest such unit is u = x + y

√
d ). When d is large, trial and error can

become quite tedious, but we can calculate u using continued fractions. We calculate the
continued fraction for

√
d and the convergents pk

qk
. If we let uk = pk + qk

√
d then the

smallest unit u ∈ Z[
√
d ] with u > 1 is u = u`−1 where ` is the minimum period of the

continued fraction.

8.6 Example: Solve Pell’s equation x2 − 53y2 = 1.

Solution: We calculate the continued fraction for
√

53 and the first few convergents ck = pk
qk

along with the norms Nk = N(pk + qk
√

53) = p2k − 53 q2k.

k xk ak pk qk Nk

0
√

53 7 7 1 −4

1 1√
53−7 =

√
53+7
4 3 22 3 7

2 4√
53−5 =

√
53+5
7 1 29 4 −7

3 7√
53−2 =

√
53+2
7 1 51 7 4

4 7√
53−5 =

√
53+5
4 3 182 25 −1

5 4√
53−7 =

√
53+7
1 14

We have
√

53 = [7, 3, 1, 1, 3, 14] with period ` = 5. Writing uk = pk + qk
√

53 ∈ Z[
√

53 ],
the smallest unit in Z[

√
53 ] with u > 1 is u = u`−1 = u4 = 182 + 25

√
53, and we have

N(u) = −1. The smallest unit v in Z[
√

53 ] with v > 1 and N(v) = 1 is

v = u2 = (182 + 25
√

53)2 = 66 249 + 9 100
√

53.

If we write vk = (66 249 + 9 100
√

53)k = rk + sk
√

53 for 0 ≤ k ∈ Z, then the solutions to
Pell’s equation x2 − 53y2 = 1 are given by (x, y) = (±rk,±sk) where 0 ≤ k ∈ Z.
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Pythagorean Triples

8.7 Note: In this section we study the Diophantine equation x2 + y2 = z2. The solutions
given by x = 0 and z ± y and by y = 0 and z = ±x are called the trivial solutions. If
(x, y, z) is a solution, then so are (±x,±y,±z). A solution (x, y, z) with x, y, z ∈ Z+ is
called a Pythagorean triple. Note that if (x, y, z) is a Pythagorean triple and r ∈ Z+

then r(x, y, z) = (rx, ry, rz) is also a Pythagorean triple and, likewise, if (x, y, z) is a
Pythagorean triple and d = gcd(x, y, z), then 1

d (x, y, z) is also a Pythagorean triple. A
primitive Pythagorean triple is a Pythagorean triple (x, y, z) with gcd(x, y, z) = 1.
Note that when (x, y, z) is a primitive Pythagorean triple, one of the numbers x and y is
even and the other is odd (if both were odd we would have z2 = x2 +y2 = 1+1 = 2 ∈ Z4).

8.8 Theorem: (Pythagorean Triples) The Pythagorean triples (x, y, z), with x even, are
of the form

(x, y, z) = r
(
2st, s2 − t2, s2 + t2

)
for some uniquely determined r, s, t ∈ Z+ with s > t, gcd(s, t) = 1 where s and t are not
both odd.

Proof: Note that when (x, y, z) ∈ Z3 with x2+y2 = z2 and z 6= 0, we have
(
x
z

)2
+
(
y
z

)2
= 1

so that the point
(
x
z ,

y
z

)
is a point on the unit circle with rational coordinates. Let S be

the unit circle S = {(x, y) ∈ R2 |x2 +y2 = 1} and let T = S \{(0, 1)}. The stereographic
projection from T to R is the function f : T → R defined as follows: given (a, b) ∈ T , let
f(a, b) = u where u is the real number such that (u, 0) lies on the line through (0, 1) and
(a, b). The inverse map g : R → T is given as follows: Given u ∈ R, we let g(u) = (a, b)
where (a, b) is the (unique) point on T which lies on the line through (0, 1) and (u, 0). Let
us find a formula for f and a formula for its inverse g.

Given (a, b) ∈ T , the line from (0, 1) to (a, b) is given parametrically by (x, y) =
(0, 1) + t((a, b) − (0, 1)) = (ta, 1 + t(b − 1)). We have (ta, 1 + t(b − 1)) = (u, 0) when
1 + t(b− 1) = 0, that is t = 1

1−b , and u = ta = a
1−b . Thus the map f is given by

u = f(a, b) = a
1−b .

Given u ∈ R, the line through (0, 1) and (u, 0) is given parametrically by (x, y) = (0, 1) +
t((u, 0) − (0, 1)) = (tu, 1 − t). The point (a, b) = (tu, 1 − t) lies on S when 1 = a2 + b2 =
(tu)2 + (1 − t)2 = t2u2 + 1 − 2t + t2, that is when (u2 + 1)t2 = 2t, or equivalently when
t = 0 or t = 2

u2+1 . When t = 0 the resulting point is (a, b) = (tu, 1− t) = (0, 1) and when

t = 2
u2+1 the resulting point is (a, b) = (tu, 1− t) =

(
2u
u2+1 ,

u2−1
u2+1

)
. Thus the inverse map g

is given by
(a, b) = g(u) =

(
2u
u2+1 ,

u2−1
u2+1

)
.

Verify that f
(
g(u)

)
= u for all u ∈ R, and that g

(
f(a, b)

)
= (a, b) for all (a, b) ∈ T .

Notice that if (a, b) ∈ T with a, b ∈ Q then u = f(a, b) ∈ Q and that, conversely, if
u ∈ Q then (a, b) = g(u) ∈ Q2. It follows that we have a bijective correspondence between
T ∩Q2 and Q given by f : T ∩Q2 → Q and g : Q→ T ∩Q2. Thus every element in T ∩Q2

is of the form
(a, b) = g

(
s
t

)
=
(

2(s/t)

(s/t)2+1
, (s/t)

2−1
(s/t)2+1

)
=
(

2st
s2+t2 ,

s2−t2
s2+t2

)
for some s, t ∈ Z with t 6= 0 and gcd(s, t) = 1. Putting s 6= 0 and t = 0 in the term on
the right gives (a, b) = (0, 1), so we can say that every point (a, b) ∈ S ∩Q2

(
including the

point (a, b) = (0, 1)
)

is of the form a = x
z and b = y

z with

(x, y, z) =
(
2st, s2 − t2, s2 + t2

)
for some s, t ∈ Z with gcd(s, t) = 1.
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Notice that when s and t are both odd, the values of x = 2st, y = s2 − t2 and
z = s2 + t2 are all even so that the fractions a = x

z and b = y
z are not in reduced form. In

this case we can divide x, y and z by 2, or equivalently, we can interchange x and y and
replace s and t by s′ = s+t

2 and t′ = s−t
2 (which are both integers) because

x′ = 2s′t′ = 2
(
s+t
2

)(
s−t
2

)
= s2−t2

2 = y
2 ,

y′ = (s′)2 − (t′)2 =
(
s+t
2

)2 − ( s−t2 )2 = st = x
2 , and

z′ = (s′)2 + (s′)2 =
(
s+t
2

)2
+
(
s−t
2

)2
= s2+y2

2 = z
2 .

It follows that every Pythagorean triple (x, y, z) with x even is of the form

(x, y, z) = r
(
2st, s2 − t2, s2 + t2

)
for some s, t ∈ Z+ with s > t and gcd(s, t) = 1 where s and t are not both odd.

It remains to verify that the positive integers s and t, as above, are uniquely deter-
mined. The key fact to verify is that in the case r = 1, so that (x, y, z) =

(
2st, s2−t2, s2+t2

)
with s and t as above, we must have gcd(x, y, z) = 1. Indeed, note that since gcd(s, t) = 1
so that s and t are not both even, and since s and t are not both odd, it follows that
y = s2 − t2 and z = s2 + t2 are both odd so that 2 cannot be a factor of either y or z.
And when p is an odd prime, p cannot be a common factor of both y and z because if we
had p

∣∣y = (s2 − t2) and p
∣∣z = (s2 + t2) then we would have p

∣∣((s2 + t2) + (s2 − t2)) = 4s2

so that p
∣∣s and we would have p

∣∣((s2 + t2) − (s2 − t2)) = 4t2 so that p
∣∣t, but this is not

possible since gcd(s, t) = 1. Thus when s, t ∈ Z+ with s > t and gcd(s, t) = 1 and with s
and t not both odd, the Pythagorean triple

(
2st, s2 − t2, s2 + t2

)
is primitive. Thus for

(x, y, z) = r
(
2st, s2 − t2, s2 + t2

)
with r ∈ Z+, the value of r is uniquely determined by r = gcd(x, y, z) and then s and t
are uniquely determined by the two equations s2 + t2 = z

r and s2 − t2 = y
r which can be

added to give 2s2 = z+y
2r and subtracted to give 2t2 = z−y

2r .

8.9 Example: List all primitive pythagorean triples (x, y, z) with x even and z ≤ 100.

Solution: We list all pairs (s, t) ∈ Z2 with 1 ≤ t < s and s2 + t2 ≤ 100, then we cross off
the pairs with gcd(s, t) > 1 and the pairs with s and t both odd. We find 15 such pairs,
and for each pair we calculate (x, y, z) =

(
2st, s2− t2, s2 + t2

)
and display the result in the

following table (to save space we have listed the triples (x, y, z) vertically).

s 2 4 6 8 3 5 7 9 4 8 5 7 9 6 8
t 1 1 1 1 2 2 2 2 3 3 4 4 4 5 5

x 4 8 12 16 12 20 28 36 24 48 40 56 72 60 80
y 3 15 35 63 5 21 45 77 7 55 9 33 65 11 39
z 5 17 37 65 13 29 53 85 25 73 41 65 97 61 89

8.10 Example: We notice that z = 65 occurs twice in the above table in the triples
(x, y, z) = (16, 63, 65), (56, 33, 65). Note that 65 = 5 · 13, so from the Sums of Two Squares
Theorem, we know that there are 4 · 3 · 3 = 36 pairs (x, y) ∈ Z2 such that x2 + y2 = 652.
Note that 4 of these pairs are given by (x, y) = (±65, 0), (0,±65) and the other 32 pairs
can be grouped into sets of 4 pairs of the form (±x,±y) with x, y ∈ Z+. Thus there should
be 8 pairs (x, y) with x, y ∈ Z+ such that x2 +y2 = 652. There are 4 such pairs (x, y) with
x even and 4 such pairs with y even. Two of the 4 pairs (x, y) with x even occur in the
two primitive Pythagorean triples (x, y, z) = (16, 63, 65), (56, 33, 65). The other two pairs
occur in the non-primitive Pythagorean triples (x, y, z) = 13(4, 3, 5) and 5(12, 5, 13).
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Fermat’s Last Theorem

I may include some notes on Fermat’s Last Theorem later.
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