Differences of Two Squares

8.1 Theorem: (Differences of Two Squares) Let $n \in \mathbb{Z}^+$.

(1) There exists a solution $(x, y) \in \mathbb{Z}^2$ to the Diophantine equation $x^2 - y^2 = n$ if and only if n is odd or n is a multiple of 4.

(2) In the case that n is odd, the number of solutions is equal to $2\tau(n)$ and the solutions are given by $(x, y) = \left(\pm \frac{s+r}{2}, \pm \frac{s-r}{2}\right)$ where n = rs with $0 < r \le s$.

(3) In the case that n is a multiple of 4, the number of solutions is $2\tau(\frac{n}{4})$, and the solutions are given by $(x, y) = (\pm (\ell + k), \pm (\ell - k))$ where $n = 4k\ell$ with $0 < k \leq \ell$.

Proof: For $x, y \in \mathbb{Z}_4$ we have $x^2 \in \{0, 1\}$ and $y^2 \in \{0, 1\}$, and so $x^2 - y^2 \in \{0, 1, 3\}$. Thus for $n \in \mathbb{Z}$, if $n = x^2 - y^2$ for some $x, y \in \mathbb{Z}$ then $n \in \{0, 1, 3\} \mod 4$, that is either n is odd or n is a multiple of 4. When n is odd, say n = 2k + 1, we can take x = k + 1 and y = kto get $x^2 - y^2 = (k + 1)^2 - k^2 = 2k + 1 = n$. When n is a multiple of 4, say n = 4k, we can take x = k + 1 and y = k - 1 to get $x^2 - y^2 = (k + 1)^2 - (k - 1)^2 = 4k = n$. Thus for $n \in \mathbb{Z}$, the Diophantine equation $x^2 - y^2 = n$ has a solution if and only if either n is odd or n is a multiple of 4.

When n = 0 we have $x^2 - y^2 = n \iff x^2 - y^2 = 0 \iff x^2 = y^2 \iff y = \pm x$ and so there are infinitely many solutions, namely $(x, y) = (r, r), r \in \mathbb{Z}$.

Since $x^2 - y^2 = -n \iff y^2 - x^2 = n$, it follows that the number of solutions to the equation $x^2 - y^2 = -n$ is equal to the number of solutions to the equations $x^2 - y^2 = n$, so it suffices to consider the case that n > 0. Also note that if $x^2 - y^2 = n$ then we also have $(\pm x)^2 - (\pm y)^2 = n$ so it suffices to count the number of solutions $(x, y) \in \mathbb{Z}^2$ with $0 \le y < x$. We must multiply the number of solutions with 0 < y < x by 4 and, in the case that n is a square, we also have the 2 solutions $(x, y) = (\pm \sqrt{n}, 0)$.

Suppose that $n \in \mathbb{Z}^+$ and that either n is odd or n is a multiple of 4. Note that $x^2 - y^2 = n \iff (x - y)(x + y) = n$. Given $x, y \in \mathbb{Z}$ with $0 \le y < x$ such that $x^2 - y^2 = n$, we can let r = x - y and s = x + y and then we have $0 < r \le s$ and rs = n and s - r = 2y so that $r = s \mod 2$. On the other hand, given $r, s \in \mathbb{Z}$ with $0 < r \le s$ and rs = n and $r = s \mod 2$, we can let $x = \frac{s+r}{2}$ and $y = \frac{s-r}{2}$ and then we have $0 < y \le x$ and $x^2 - y^2 = (x - y)(x + y) = rs = n$. Thus there is a bijective correspondence between pairs $(x, y) \in \mathbb{Z}^2$ with $0 < y \le x$ such that $x^2 - y^2 = n$ and pairs $(r, s) \in \mathbb{Z}^2$ with $0 < r \le s$ and rs = n and $r = s \mod 2$. In the case that n is a square, the pair (x, y) with y = 0 corresponds to the pair (r, s) with r = s.

When n is odd and rs = n, both r and s are odd so that we have $r = s \mod 2$. When n is not a square, $\tau(n)$ is even and the number of pairs $(r,s) \in \mathbb{Z}^2$ with $0 < r \le s$ and rs = n is equal to $\frac{\tau(n)}{2}$. In this case, the total number of solutions $(x, y) \in \mathbb{Z}^2$ is equal to $4 \cdot \frac{\tau(n)}{2} = 2\tau(n)$. When n is a square, $\tau(n)$ is odd and we obtain 1 pair (r,s) with r = sand $\frac{\tau(n)-1}{2}$ pairs (r,s) with r < s. In this case, the total number of solutions $(x, y) \in \mathbb{Z}^2$ is $2 + 4 \cdot \frac{\tau(n)-1}{2} = 2\tau(n)$. In either case, the total number of solutions is $2\tau(n)$.

When \overline{n} is a multiple of 4, say n = 4m, to get rs = n with $r = s \mod 2$, the factors r and s must both be even, say r = 2k and $s = 2\ell$. The number of required pairs (r, s) is equal to the number of pairs $(k, \ell) \in \mathbb{Z}^2$ with $0 < k \leq \ell$ and $k\ell = m$. As above, whether or not m is a square, the total number of solutions $(x, y) \in \mathbb{Z}^2$ is equal to $2\tau(m)$.

Sums of Two Squares

8.2 Note: Our main goal in this section is to determine for which integers $n \in \mathbb{Z}$ there exists a solution $(x, y) \in \mathbb{Z}^2$ to the Diophantine equation $x^2 + y^2 = n$ and, for such n, to determine the number of solutions. In our analysis of the simpler equation $x^2 - y^2 = n$ we made use of the factorization $x^2 - y^2 = (x - y)(x + y)$. In our analysis of the equation $x^2 + y^2 = n$ we shall find it useful to work in the ring of Gaussian integers $\mathbb{Z}[i] = \{a + ib \mid a, b \in \mathbb{Z}\}$ and to make use of the factorization $x^2 + y^2 = (x - iy)(x + iy)$.

Let us recall some facts about the ring $\mathbb{Z}[i]$ from Chapter 6. Recall that $\mathbb{Z}[i]$ is a Euclidean domain, hence a unique factorization domain, with Euclidean norm equal to the field norm N in $\mathbb{Q}[i]$. For $x, y \in \mathbb{Q}$ and $u = x + iy \in \mathbb{Q}[i]$, we have

$$N(u) = u\overline{u} = ||u||^2 = x^2 + y^2.$$

The norm is multiplicative, meaning that N(uv) = N(u)N(v) for all $u, v \in \mathbb{Q}[i]$. The units in $\mathbb{Z}[i]$ are the elements $u \in \mathbb{Z}[i]$ with N(u) = 1, namely the 4 elements ± 1 and $\pm i$, and the non-zero non-units are the elements $u \in \mathbb{Z}[i]$ with N(u) > 1. The associates of the element $u \in \mathbb{Z}[i]$ are the elements $\pm u$ and $\pm iu$. Because $\mathbb{Z}[i]$ is a unique factorization domain, the prime elements in $\mathbb{Z}[i]$ are the same as the irreducible elements in $\in \mathbb{Z}[i]$. Finally, note that for $u \in \mathbb{Z}[i]$, if N(u) is a prime number in \mathbb{Z}^+ then u must be irreducible in $\mathbb{Z}[i]$ because if we had $u = vw \in \mathbb{Z}[i]$ with v and w being nonzero nonunits, then we would have $N(u) = N(v)N(w) \in \mathbb{Z}^+$ with N(u) > 1 and N(w) > 1.

8.3 Theorem: (Irreducible Elements in the Ring of Gaussian Integers) Every irreducible element in the ring $\mathbb{Z}[i]$ is an associate of exactly one of the following elements.

(1) 1 + i,

(2) p, where p is a prime number in \mathbb{Z}^+ with $p = 3 \mod 4$,

(3) $x \pm iy$, where $x, y \in \mathbb{Z}$ with 0 < y < x and $x^2 + y^2 = p$ for some prime number $p \in \mathbb{Z}^+$ with $p = 1 \mod 4$.

Proof: Our first claim is that for a prime number $p \in \mathbb{Z}^+$, p is reducible in $\mathbb{Z}[i]$ if and only if $p = x^2 + y^2$ for some $x, y \in \mathbb{Z}$. Let p be a prime number in \mathbb{Z}^+ . Suppose first that pis reducible in $\mathbb{Z}[i]$. Choose nonzero nonunits $u, v \in \mathbb{Z}[i]$ such that p = uv. Since u and vare nonzero nonunits we have N(u) > 1 and N(v) > 1, and since N(u)N(v) = N(uv) = $N(p) = p^2$ we must have N(u) = p and N(v) = p. Write u = x + iy with $x, y \in \mathbb{Z}$. Then we have $p = N(u) = x^2 + y^2$. Suppose, conversely, that $p = x^2 + y^2$ where $x, y \in \mathbb{Z}$. Let u = x + iy and v = x - iy. Then N(u) = N(v) = p so that u and v are nonzero nonuits, and we have $uv = x^2 + y^2 = p$ so that p is reducible.

Note that 2 is reducible in $\mathbb{Z}[i]$ with 2 = (1+i)(1-i). Our second claim is that when p is an odd prime number in \mathbb{Z}^+ , p is reducible in $\mathbb{Z}[i]$ if and only if $p = 1 \mod 4$. Let p be an odd prime number in \mathbb{Z}^+ and note that (since p is odd) either $p = 1 \mod 4$ or $p = 3 \mod 4$. Since $0^2 = 2^2 = 0 \mod 4$ and $1^2 = 3^2 = 1 \mod 4$, for all $x \in \mathbb{Z}$ we have $x^2 \in \{0,1\} \mod 4$. It follows that for all $x, y \in \mathbb{Z}$ we have $x^2 + y^2 \in \{0 + 0, 0 + 1, 1 + 1\} = \{0, 1, 2\} \mod 4$. Thus when $p = 3 \mod 4$ there do not exist $x, y \in \mathbb{Z}$ such that $x^2 + y^2 = p$ so, by our first claim, we know that p is irreducible. On the other hand, when $p = 1 \mod 4$ we know from Chapter 4 that $-1 \in Q_p$ so we can choose $x \in \mathbb{Z}^+$ such that $x^2 = -1 \mod p$, say $x^2 = -1 + kp$ with $k \in \mathbb{Z}^+$. Then in $\mathbb{Z}[i]$ we have $kp = x^2 + 1 = (x+i)(x-i)$. If p was irreducible in $\mathbb{Z}[i]$, then by unique factorization, either $p \mid (x+i)$ or $p \mid (x-i)$, but this is not the case because (working in $\mathbb{Q}[i]$) the elements $\frac{x \pm i}{p}$ do not lie in $\mathbb{Z}[i]$, so p is reducible.

Our third claim is that each element $q \in \mathbb{Z}[i]$ which is of one of the types 1, 2 and 3 (in the statement of the theorem) is irreducible in $\mathbb{Z}[i]$. When q is of type 1, that is when q = 1 + i, we have N(q) = 2 (which is prime in \mathbb{Z}^+) and so q is irreducible in $\mathbb{Z}[i]$ (by the last remark in Note 8.2). When q is of type 2, that is when q = p for some prime number $p \in \mathbb{Z}^+$ with $p = 3 \mod 4$, then we know that q is irreducible from our second claim. When q is of type 3, that is when $q = x \pm iy$ where $x, y \in \mathbb{Z}$ with $0 < y \leq x$ and $x^2 + y^2 = p$ for some prime number $p \in \mathbb{Z}^+$ with $p = 1 \mod 4$, then we have $N(q) = x^2 + y^2 = p$, which is prime in \mathbb{Z}^+ , so q must be irreducible in $\mathbb{Z}[i]$ (by the final remark in Note 8.2 again).

Our fourth claim is that every irreducible element $q \in \mathbb{Z}[i]$ is an associate of a unique element of one of the three types. Let q be an irreducible element in $\mathbb{Z}[i]$. Since the units in $\mathbb{Z}[i]$ are the elements ± 1 and $\pm i$, it follows that the 4 associates of q (which are also irreducible) are obtained by rotating q bout the origin by a multiple of $\frac{\pi}{2}$, and so q has a unique associate x + iy which lies in the quarter-plane given by $-x < y \le x$. When y = xwe have x + iy = x(1 + i) with $x \in \mathbb{Z}^+$, and for this to be irreducible we must have x = 1so that x + iy = 1 + i, which is of type 1. When y = 0 we have x + iy = x with $x \in \mathbb{Z}^+$ and, for this to be irreducible in $\mathbb{Z}[i]$, we must have x irreducible in \mathbb{Z}^+ so that x + iy = x = pfor some prime number $p \in \mathbb{Z}^+$ and, again for this to be irreducible in $\mathbb{Z}[i]$, we must have $p = 3 \mod 4$, which is of type 2. Otherwise (that is when $y \neq x$ and $y \neq 0$) we have -x < y < 0 or 0 < y < x, so we can say that q has a unique associate of the form $x \pm iy$ with 0 < y < x. In this case, factor $N(q) = x^2 + y^2 = q\overline{q}$ in \mathbb{Z}^+ to get $q\overline{q} = p_1 p_2 \cdots p_\ell$ with each p_k a prime number in \mathbb{Z}^+ . Since q is irreducible in $\mathbb{Z}[i]$, by unique factorization in $\mathbb{Z}[i]$, we must have $q|p_k$ in $\mathbb{Z}[i]$ for some index k. Say q|p in $\mathbb{Z}[i]$ where $p = p_k$ is a prime number in \mathbb{Z}^+ . Since q|p in $\mathbb{Z}[i]$ we have N(q)|N(p), that is $N(q)|p^2$, in \mathbb{Z}^+ . Since N(q) > 1 we must have N(q) = p or $N(q) = p^2$. In the case that $N(q) = p^2$, since q|p in $\mathbb{Z}[i]$ and $N(q) = N(p) = p^2$ it follows that $\frac{p}{q} \in \mathbb{Z}[i]$ with $N\left(\frac{p}{q}\right) = 1$, and hence $\frac{p}{q}$ is a unit in $\mathbb{Z}[i]$, so q is an associate of p, which is of type 2. In that case that N(q) = p we have $p = N(q) + N(x + iy) = x^2 + y^2$ so that q is an associate of x + iy, which is of type 3.

8.4 Corollary: (Sums of Two Squares) Let $n \in \mathbb{Z}^+$ factor as $n = 2^m \cdot \prod_{\alpha} p_{\alpha}^{k_{\alpha}} \cdot \prod_{\beta} q_{\beta}^{\ell_{\beta}}$ where $m \in \mathbb{N}$, $k_{\alpha}, \ell_{\beta} \in \mathbb{Z}^+$, the p_{α} are distinct primes with $p_{\alpha} = 1 \mod 4$, and the q_{β} are distinct primes with $q_{\beta} = 3 \mod 4$. Then there exists a solution $(x, y) \in \mathbb{Z}^2$ to the Sum of Two Squares Equation $x^2 + y^2 = n$ if and only if each exponent ℓ_{β} is even, and in this case, the number of solutions $(x, y) \in \mathbb{Z}^2$ is equal to $4 \cdot \prod (k_{\alpha} + 1)$.

Proof: Note that for $x, y \in \mathbb{Z}$, we have $x^2 + y^2 = n$ in \mathbb{Z} if and only if (x + iy)(x - iy) = nin $\mathbb{Z}[i]$. Thus the number of pairs $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^2 = n$ is equal to the number of elements $u = x + iy \in \mathbb{Z}[i]$ such that $n = u\overline{u}$. By the above theorem, n factors in $\mathbb{Z}[i]$ into irreducibles as

$$n = (1+i)^m (1-i)^m \cdot \prod_{\alpha} v_{\alpha}{}^{k_{\alpha}} \,\overline{v}_{\alpha}{}^{k_{\alpha}} \cdot \prod_{\beta} q_{\beta}{}^{\ell_{\beta}} = (-i)^m (1+i)^{2m} \cdot \prod_{\alpha} v_{\alpha}{}^{k_{\alpha}} \,\overline{v}_{\alpha}{}^{k_{\alpha}} \cdot \prod_{\beta} q_{\beta}{}^{\ell_{\beta}}.$$

To get $n = u\overline{u}$, u must be a factor of n in $\mathbb{Z}[i]$. The factors of n in $\mathbb{Z}[i]$ are

$$u = e \cdot (1+i)^a \cdot \prod_{\alpha} v_{\alpha}{}^{b_{\alpha}} \overline{v}_{\alpha}{}^{c_{\alpha}} \cdot \prod_{\beta} q_{\beta}{}^{d_{\beta}}$$

where $e \in \{\pm 1, \pm i\}$, $0 \le a \le m$, $0 \le b_{\alpha} \le k_{\alpha}$, $0 \le c_{\alpha} \le k_{\alpha}$ and $0 \le d_{\beta} \le \ell_{\beta}$, and for the above factor u we have $u\overline{u} = 1 \cdot 2^a \cdot \prod_{\alpha} p_{\alpha}{}^{b_{\alpha}+c_{\alpha}} \cdot \sum_{\beta} q_{\beta}{}^{2d_{\beta}}$, so in order to get $u\overline{u} = n$ we need $e \in \{\pm 1, \pm i\}$ (there are 4 choices for e), we need a = m (so there are no choices for a), we need $b_{\alpha} + c_{\alpha} = k_{\alpha}$ (so there are $k_{\alpha} + 1$ choices for the pair (b_{α}, c_{α})) and we need $2d_{\beta} = \ell_{\beta}$ (so each ℓ_{β} must be even and there are no choices for d_{α}). **8.5 Note:** In this section we discuss **Pell's equation**, which is the Diophantine equation $x^2 - dy^2 = 1$ where $d \in \mathbb{Z}^+$ is a non-square. In Chapters 6 and 7 we have already done all of the work necessary to solve this equation. Let us recall some of the relevant facts.

It is useful to work in the real quadratic ring $\mathbb{Z}[\sqrt{d}]$. For $u = x + y\sqrt{d} \in \mathbb{Q}[\sqrt{d}]$ with $x, y \in \mathbb{Q}$, we write $\overline{u} = x - y\sqrt{d}$ and we use the field norm in $\mathbb{Q}[\sqrt{d}]$ given by

$$N(u) = u\overline{u} = x^2 - dy^2.$$

The norm is multiplicative, meaning that N(uv) = N(u)N(v). The units in $\mathbb{Z}[\sqrt{d}]$ are the elements $u \in \mathbb{Z}[\sqrt{d}]$ with $N(u) = \pm 1$, that is the elements $u = x + y\sqrt{d}$ with $x, y \in \mathbb{Z}$ such that $x^2 - dy^2 = \pm 1$ (almost, but not quite, the same as the solutions to Pell's equation). When $x, y \in \mathbb{Z}$ and $u = x + y\sqrt{d}$ is a unit in $\mathbb{Z}[\sqrt{d}]$, we have u > 1 if and only if $x, y \in \mathbb{Z}^+$. There is a unique smallest unit $u \in \mathbb{Z}[\sqrt{d}]$ with u > 1, and (all of) the units in $\mathbb{Z}[\sqrt{d}]$ are the elements of the form $\pm u^k$ with $k \in \mathbb{Z}$. When u is this unique smallest unit with u > 1, either we have N(u) = 1 or we have N(u) = -1. In the case that N(u) = 1 we have $N(\pm u^k) = 1$ for all $k \in \mathbb{Z}$ so (all of) the solutions to Pell's equation are given by $(x, y) = (\pm r_k, \pm s_k)$ where $u^k = r_k + s_k\sqrt{d}$. In the case that N(u) = -1 we have $N(\pm u^k) = (-1)^k$ so the smallest unit $v \in \mathbb{Z}[\sqrt{d}]$ with v > 1 and with N(v) = 1 is $v = u^2$ and (all of) the solutions to Pell's equation are given by $(x, y) = (\pm r_{2k}, \pm s_k\sqrt{d}$.

When d is fairly small, the smallest unit $u \in \mathbb{Z}[\sqrt{d}]$ with u > 1 can be found using trial and error (simply try values of $y \in \mathbb{Z}^+$ until $dy^2 \pm 1$ is a square, say $dy^2 \pm 1 = x^2$, and then the smallest such unit is $u = x + y\sqrt{d}$). When d is large, trial and error can become quite tedious, but we can calculate u using continued fractions. We calculate the continued fraction for \sqrt{d} and the convergents $\frac{p_k}{q_k}$. If we let $u_k = p_k + q_k\sqrt{d}$ then the smallest unit $u \in \mathbb{Z}[\sqrt{d}]$ with u > 1 is $u = u_{\ell-1}$ where ℓ is the minimum period of the continued fraction.

8.6 Example: Solve Pell's equation $x^2 - 53y^2 = 1$.

Solution: We calculate the continued fraction for $\sqrt{53}$ and the first few convergents $c_k = \frac{p_k}{q_k}$ along with the norms $N_k = N(p_k + q_k\sqrt{53}) = p_k^2 - 53 q_k^2$.

$$k \qquad x_k \qquad a_k \qquad p_k \qquad q_k \qquad N_k$$

$$0 \qquad \sqrt{53} \qquad 7 \qquad 7 \qquad 1 \qquad -4$$

$$1 \qquad \frac{1}{\sqrt{53}-7} = \frac{\sqrt{53}+7}{4} \qquad 3 \qquad 22 \qquad 3 \qquad 7$$

$$2 \qquad \frac{4}{\sqrt{53}-5} = \frac{\sqrt{53}+5}{7} \qquad 1 \qquad 29 \qquad 4 \qquad -7$$

$$3 \qquad \frac{7}{\sqrt{53}-2} = \frac{\sqrt{53}+2}{7} \qquad 1 \qquad 51 \qquad 7 \qquad 4$$

$$4 \qquad \frac{7}{\sqrt{53}-5} = \frac{\sqrt{53}+5}{4} \qquad 3 \qquad 182 \qquad 25 \qquad -1$$

$$5 \qquad \frac{4}{\sqrt{53}-7} = \frac{\sqrt{53}+7}{1} \qquad 14$$

We have $\sqrt{53} = [7, \overline{3}, 1, 1, 3, 14]$ with period $\ell = 5$. Writing $u_k = p_k + q_k \sqrt{53} \in \mathbb{Z}[\sqrt{53}]$, the smallest unit in $\mathbb{Z}[\sqrt{53}]$ with u > 1 is $u = u_{\ell-1} = u_4 = 182 + 25\sqrt{53}$, and we have N(u) = -1. The smallest unit v in $\mathbb{Z}[\sqrt{53}]$ with v > 1 and N(v) = 1 is

$$v = u^2 = (182 + 25\sqrt{53})^2 = 66\,249 + 9\,100\sqrt{53}.$$

If we write $v^k = (66\,249 + 9\,100\sqrt{53})^k = r_k + s_k\sqrt{53}$ for $0 \le k \in \mathbb{Z}$, then the solutions to Pell's equation $x^2 - 53y^2 = 1$ are given by $(x, y) = (\pm r_k, \pm s_k)$ where $0 \le k \in \mathbb{Z}$.

Pythagorean Triples

8.7 Note: In this section we study the Diophantine equation $x^2 + y^2 = z^2$. The solutions given by x = 0 and $z \pm y$ and by y = 0 and $z = \pm x$ are called the **trivial solutions**. If (x, y, z) is a solution, then so are $(\pm x, \pm y, \pm z)$. A solution (x, y, z) with $x, y, z \in \mathbb{Z}^+$ is called a **Pythagorean triple**. Note that if (x, y, z) is a Pythagorean triple and $r \in \mathbb{Z}^+$ then r(x, y, z) = (rx, ry, rz) is also a Pythagorean triple and, likewise, if (x, y, z) is a Pythagorean triple and $d = \gcd(x, y, z)$, then $\frac{1}{d}(x, y, z)$ is also a Pythagorean triple. A **primitive Pythagorean triple** is a Pythagorean triple (x, y, z) with gcd(x, y, z) = 1. Note that when (x, y, z) is a primitive Pythagorean triple, one of the numbers x and y is even and the other is odd (if both were odd we would have $z^2 = x^2 + y^2 = 1 + 1 = 2 \in \mathbb{Z}_4$).

8.8 Theorem: (Pythagorean Triples) The Pythagorean triples (x, y, z), with x even, are of the form

$$(x, y, z) = r(2st, s^2 - t^2, s^2 + t^2)$$

for some uniquely determined $r, s, t \in \mathbb{Z}^+$ with s > t, gcd(s, t) = 1 where s and t are not both odd.

Proof: Note that when $(x, y, z) \in \mathbb{Z}^3$ with $x^2 + y^2 = z^2$ and $z \neq 0$, we have $\left(\frac{x}{z}\right)^2 + \left(\frac{y}{z}\right)^2 = 1$ so that the point $\left(\frac{x}{z}, \frac{y}{z}\right)$ is a point on the unit circle with rational coordinates. Let S be the unit circle $S = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$ and let $T = S \setminus \{(0, 1)\}$. The stereographic **projection** from T to \mathbb{R} is the function $f: T \to \mathbb{R}$ defined as follows: given $(a, b) \in T$, let f(a,b) = u where u is the real number such that (u,0) lies on the line through (0,1) and (a,b). The inverse map $q:\mathbb{R}\to T$ is given as follows: Given $u\in\mathbb{R}$, we let q(u)=(a,b)where (a, b) is the (unique) point on T which lies on the line through (0, 1) and (u, 0). Let us find a formula for f and a formula for its inverse q.

Given $(a,b) \in T$, the line from (0,1) to (a,b) is given parametrically by (x,y) =(0,1) + t((a,b) - (0,1)) = (ta, 1 + t(b-1)). We have (ta, 1 + t(b-1)) = (u,0) when 1 + t(b-1) = 0, that is $t = \frac{1}{1-b}$, and $u = ta = \frac{a}{1-b}$. Thus the map f is given by

$$u = f(a, b) = \frac{a}{1-b} \,.$$

Given $u \in \mathbb{R}$, the line through (0,1) and (u,0) is given parametrically by (x,y) = (0,1) + (0,1)t((u,0) - (0,1)) = (tu, 1-t). The point (a,b) = (tu, 1-t) lies on S when $1 = a^2 + b^2 = (tu)^2 + (1-t)^2 = t^2u^2 + 1 - 2t + t^2$, that is when $(u^2 + 1)t^2 = 2t$, or equivalently when t = 0 or $t = \frac{2}{u^2 + 1}$. When t = 0 the resulting point is (a, b) = (tu, 1 - t) = (0, 1) and when $t = \frac{2}{u^2+1}$ the resulting point is $(a,b) = (tu, 1-t) = \left(\frac{2u}{u^2+1}, \frac{u^2-1}{u^2+1}\right)$. Thus the inverse map g is given by

$$(a,b) = g(u) = \left(\frac{2u}{u^2+1}, \frac{u-1}{u^2+1}\right).$$

Verify that f(g(u)) = u for all $u \in \mathbb{R}$, and that g(f(a, b)) = (a, b) for all $(a, b) \in T$.

Notice that if $(a,b) \in T$ with $a,b \in \mathbb{Q}$ then $u = f(a,b) \in \mathbb{Q}$ and that, conversely, if $u \in \mathbb{Q}$ then $(a, b) = g(u) \in \mathbb{Q}^2$. It follows that we have a bijective correspondence between $T \cap \mathbb{Q}^2$ and \mathbb{Q} given by $f: T \cap \mathbb{Q}^2 \to \mathbb{Q}$ and $g: \mathbb{Q} \to T \cap \mathbb{Q}^2$. Thus every element in $T \cap \mathbb{Q}^2$ is of the form

$$(a,b) = g\left(\frac{s}{t}\right) = \left(\frac{2(s/t)}{(s/t)^2 + 1}, \frac{(s/t)^2 - 1}{(s/t)^2 + 1}\right) = \left(\frac{2st}{s^2 + t^2}, \frac{s^2 - t^2}{s^2 + t^2}\right)$$

for some $s, t \in \mathbb{Z}$ with $t \neq 0$ and gcd(s, t) = 1. Putting $s \neq 0$ and t = 0 in the term on the right gives (a, b) = (0, 1), so we can say that every point $(a, b) \in S \cap \mathbb{Q}^2$ (including the point (a,b) = (0,1) is of the form $a = \frac{x}{z}$ and $b = \frac{y}{z}$ with

$$(x, y, z) = \left(2st, s^2 - t^2, s^2 + t^2\right)$$

for some $s, t \in \mathbb{Z}$ with gcd(s, t) = 1.

Notice that when s and t are both odd, the values of x = 2st, $y = s^2 - t^2$ and $z = s^2 + t^2$ are all even so that the fractions $a = \frac{x}{z}$ and $b = \frac{y}{z}$ are not in reduced form. In this case we can divide x, y and z by 2, or equivalently, we can interchange x and y and replace s and t by $s' = \frac{s+t}{2}$ and $t' = \frac{s-t}{2}$ (which are both integers) because

$$x' = 2s't' = 2\left(\frac{s+t}{2}\right)\left(\frac{s-t}{2}\right) = \frac{s^2 - t^2}{2} = \frac{y}{2},$$

$$y' = (s')^2 - (t')^2 = \left(\frac{s+t}{2}\right)^2 - \left(\frac{s-t}{2}\right)^2 = st = \frac{x}{2}, \text{ and}$$

$$z' = (s')^2 + (s')^2 = \left(\frac{s+t}{2}\right)^2 + \left(\frac{s-t}{2}\right)^2 = \frac{s^2 + y^2}{2} = \frac{z}{2}.$$

It follows that every Pythagorean triple (x, y, z) with x even is of the form

$$(x, y, z) = r(2st, s^2 - t^2, s^2 + t^2)$$

for some $s, t \in \mathbb{Z}^+$ with s > t and gcd(s, t) = 1 where s and t are not both odd.

It remains to verify that the positive integers s and t, as above, are uniquely determined. The key fact to verify is that in the case r = 1, so that $(x, y, z) = (2st, s^2 - t^2, s^2 + t^2)$ with s and t as above, we must have gcd(x, y, z) = 1. Indeed, note that since gcd(s, t) = 1 so that s and t are not both even, and since s and t are not both odd, it follows that $y = s^2 - t^2$ and $z = s^2 + t^2$ are both odd so that 2 cannot be a factor of either y or z. And when p is an odd prime, p cannot be a common factor of both y and z because if we had $p|y = (s^2 - t^2)$ and $p|z = (s^2 + t^2)$ then we would have $p|((s^2 + t^2) + (s^2 - t^2)) = 4s^2$ so that p|s and we would have $p|((s^2 + t^2) - (s^2 - t^2)) = 4t^2$ so that p|t, but this is not possible since gcd(s,t) = 1. Thus when $s, t \in \mathbb{Z}^+$ with s > t and gcd(s,t) = 1 and with s and t not both odd, the Pythagorean triple $(2st, s^2 - t^2, s^2 + t^2)$ is primitive. Thus for

$$(x, y, z) = r(2st, s^2 - t^2, s^2 + t^2)$$

with $r \in \mathbb{Z}^+$, the value of r is uniquely determined by $r = \gcd(x, y, z)$ and then s and t are uniquely determined by the two equations $s^2 + t^2 = \frac{z}{r}$ and $s^2 - t^2 = \frac{y}{r}$ which can be added to give $2s^2 = \frac{z+y}{2r}$ and subtracted to give $2t^2 = \frac{z-y}{2r}$.

8.9 Example: List all primitive pythagorean triples (x, y, z) with x even and $z \leq 100$.

Solution: We list all pairs $(s,t) \in \mathbb{Z}^2$ with $1 \leq t < s$ and $s^2 + t^2 \leq 100$, then we cross off the pairs with gcd(s,t) > 1 and the pairs with s and t both odd. We find 15 such pairs, and for each pair we calculate $(x, y, z) = (2st, s^2 - t^2, s^2 + t^2)$ and display the result in the following table (to save space we have listed the triples (x, y, z) vertically).

s	2	4	6	8	3	5	7	9	4	8	5	7	9	6	8
t	1	1	1	1	2	2	2	2	3	3	4	4	4	5	5
x	4	8	12	16	12	20	28	36	24	48	40	56	72	60	80
y	3	15	35	63	5	21	45	77	7	55	9	33	65	11	39
z	5	17	37	65	13	29	53	85	25	73	41	65	97	61	89

8.10 Example: We notice that z = 65 occurs twice in the above table in the triples (x, y, z) = (16, 63, 65), (56, 33, 65). Note that $65 = 5 \cdot 13$, so from the Sums of Two Squares Theorem, we know that there are $4 \cdot 3 \cdot 3 = 36$ pairs $(x, y) \in \mathbb{Z}^2$ such that $x^2 + y^2 = 65^2$. Note that 4 of these pairs are given by $(x, y) = (\pm 65, 0), (0, \pm 65)$ and the other 32 pairs can be grouped into sets of 4 pairs of the form $(\pm x, \pm y)$ with $x, y \in \mathbb{Z}^+$. Thus there should be 8 pairs (x, y) with $x, y \in \mathbb{Z}^+$ such that $x^2 + y^2 = 65^2$. There are 4 such pairs (x, y) with x even and 4 such pairs with y even. Two of the 4 pairs (x, y) with x even occur in the two primitive Pythagorean triples (x, y, z) = (16, 63, 65), (56, 33, 65). The other two pairs occur in the non-primitive Pythagorean triples (x, y, z) = 13(4, 3, 5) and 5(12, 5, 13).

Fermat's Last Theorem

I may include some notes on Fermat's Last Theorem later.