Chapter 8. Some Diophantine Equations

Differences of Two Squares

8.1 Theorem: (Differences of Two Squares) Let $n \in \mathbb{Z}^{+}$.
(1) There exists a solution $(x, y) \in \mathbb{Z}^{2}$ to the Diophantine equation $x^{2}-y^{2}=n$ if and only if n is odd or n is a multiple of 4 .
(2) In the case that n is odd, the number of solutions is equal to $2 \tau(n)$ and the solutions are given by $(x, y)=\left(\pm \frac{s+r}{2}, \pm \frac{s-r}{2}\right)$ where $n=r s$ with $0<r \leq s$.
(3) In the case that n is a multiple of 4 , the number of solutions is $2 \tau\left(\frac{n}{4}\right)$, and the solutions are given by $(x, y)=(\pm(\ell+k), \pm(\ell-k))$ where $n=4 k \ell$ with $0<k \leq \ell$.
Proof: For $x, y \in \mathbb{Z}_{4}$ we have $x^{2} \in\{0,1\}$ and $y^{2} \in\{0,1\}$, and so $x^{2}-y^{2} \in\{0,1,3\}$. Thus for $n \in \mathbb{Z}$, if $n=x^{2}-y^{2}$ for some $x, y \in \mathbb{Z}$ then $n \in\{0,1,3\} \bmod 4$, that is either n is odd or n is a multiple of 4 . When n is odd, say $n=2 k+1$, we can take $x=k+1$ and $y=k$ to get $x^{2}-y^{2}=(k+1)^{2}-k^{2}=2 k+1=n$. When n is a multiple of 4 , say $n=4 k$, we can take $x=k+1$ and $y=k-1$ to get $x^{2}-y^{2}=(k+1)^{2}-(k-1)^{2}=4 k=n$. Thus for $n \in \mathbb{Z}$, the Diophantine equation $x^{2}-y^{2}=n$ has a solution if and only if either n is odd or n is a multiple of 4 .

When $n=0$ we have $x^{2}-y^{2}=n \Longleftrightarrow x^{2}-y^{2}=0 \Longleftrightarrow x^{2}=y^{2} \Longleftrightarrow y= \pm x$ and so there are infinitely many solutions, namely $(x, y)=(r, r), r \in \mathbb{Z}$.

Since $x^{2}-y^{2}=-n \Longleftrightarrow y^{2}-x^{2}=n$, it follows that the number of solutions to the equation $x^{2}-y^{2}=-n$ is equal to the number of solutions to the equations $x^{2}-y^{2}=n$, so it suffices to consider the case that $n>0$. Also note that if $x^{2}-y^{2}=n$ then we also have $(\pm x)^{2}-(\pm y)^{2}=n$ so it suffices to count the number of solutions $(x, y) \in \mathbb{Z}^{2}$ with $0 \leq y<x$. We must multiply the number of solutions with $0<y<x$ by 4 and, in the case that n is a square, we also have the 2 solutions $(x, y)=(\pm \sqrt{n}, 0)$.

Suppose that $n \in \mathbb{Z}^{+}$and that either n is odd or n is a multiple of 4 . Note that $x^{2}-y^{2}=n \Longleftrightarrow(x-y)(x+y)=n$. Given $x, y \in \mathbb{Z}$ with $0 \leq y<x$ such that $x^{2}-y^{2}=n$, we can let $r=x-y$ and $s=x+y$ and then we have $0<r \leq s$ and $r s=n$ and $s-r=2 y$ so that $r=s \bmod 2$. On the other hand, given $r, s \in \mathbb{Z}$ with $0<r \leq s$ and $r s=n$ and $r=s \bmod 2$, we can let $x=\frac{s+r}{2}$ and $y=\frac{s-r}{2}$ and then we have $0<y \leq x$ and $x^{2}-y^{2}=(x-y)(x+y)=r s=n$. Thus there is a bijective correspondence between pairs $(x, y) \in \mathbb{Z}^{2}$ with $0<y \leq x$ such that $x^{2}-y^{2}=n$ and pairs $(r, s) \in \mathbb{Z}^{2}$ with $0<r \leq s$ and $r s=n$ and $r=s \bmod 2$. In the case that n is a square, the pair (x, y) with $y=0$ corresponds to the pair (r, s) with $r=s$.

When n is odd and $r s=n$, both r and s are odd so that we have $r=s \bmod 2$. When n is not a square, $\tau(n)$ is even and the number of pairs $(r, s) \in \mathbb{Z}^{2}$ with $0<r \leq s$ and $r s=n$ is equal to $\frac{\tau(n)}{2}$. In this case, the total number of solutions $(x, y) \in \mathbb{Z}^{2}$ is equal to $4 \cdot \frac{\tau(n)}{2}=2 \tau(n)$. When n is a square, $\tau(n)$ is odd and we obtain 1 pair (r, s) with $r=s$ and $\frac{\tau(n)-1}{2}$ pairs (r, s) with $r<s$. In this case, the total number of solutions $(x, y) \in \mathbb{Z}^{2}$ is $2+4 \cdot \frac{\tau(n)-1}{2}=2 \tau(n)$. In either case, the total number of solutions is $2 \tau(n)$.

When n is a multiple of 4 , say $n=4 m$, to get $r s=n$ with $r=s \bmod 2$, the factors r and s must both be even, say $r=2 k$ and $s=2 \ell$. The number of required pairs (r, s) is equal to the number of pairs $(k, \ell) \in \mathbb{Z}^{2}$ with $0<k \leq \ell$ and $k \ell=m$. As above, whether or not m is a square, the total number of solutions $(x, y) \in \mathbb{Z}^{2}$ is equal to $2 \tau(m)$.

Sums of Two Squares

8.2 Note: Our main goal in this section is to determine for which integers $n \in \mathbb{Z}$ there exists a solution $(x, y) \in \mathbb{Z}^{2}$ to the Diophantine equation $x^{2}+y^{2}=n$ and, for such n, to determine the number of solutions. In our analysis of the simpler equation $x^{2}-y^{2}=$ n we made use of the factorization $x^{2}-y^{2}=(x-y)(x+y)$. In our analysis of the equation $x^{2}+y^{2}=n$ we shall find it useful to work in the ring of Gaussian integers $\mathbb{Z}[i]=\{a+i b \mid a, b \in \mathbb{Z}\}$ and to make use of the factorization $x^{2}+y^{2}=(x-i y)(x+i y)$.

Let us recall some facts about the ring $\mathbb{Z}[i]$ from Chapter 6 . Recall that $\mathbb{Z}[i]$ is a Euclidean domain, hence a unique factorization domain, with Euclidean norm equal to the field norm N in $\mathbb{Q}[i]$. For $x, y \in \mathbb{Q}$ and $u=x+i y \in \mathbb{Q}[i]$, we have

$$
N(u)=u \bar{u}=\|u\|^{2}=x^{2}+y^{2} .
$$

The norm is multiplicative, meaning that $N(u v)=N(u) N(v)$ for all $u, v \in \mathbb{Q}[i]$. The units in $\mathbb{Z}[i]$ are the elements $u \in \mathbb{Z}[i]$ with $N(u)=1$, namely the 4 elements ± 1 and $\pm i$, and the non-zero non-units are the elements $u \in \mathbb{Z}[i]$ with $N(u)>1$. The associates of the element $u \in \mathbb{Z}[i]$ are the elements $\pm u$ and $\pm i u$. Because $\mathbb{Z}[i]$ is a unique factorization domain, the prime elements in $\mathbb{Z}[i]$ are the same as the irreducible elements in $\in \mathbb{Z}[i]$. Finally, note that for $u \in \mathbb{Z}[i]$, if $N(u)$ is a prime number in \mathbb{Z}^{+}then u must be irreducible in $\mathbb{Z}[i]$ because if we had $u=v w \in \mathbb{Z}[i]$ with v and w being nonzero nonunits, then we would have $N(u)=N(v) N(w) \in \mathbb{Z}^{+}$with $N(u)>1$ and $N(w)>1$.
8.3 Theorem: (Irreducible Elements in the Ring of Gaussian Integers) Every irreducible element in the ring $\mathbb{Z}[i]$ is an associate of exactly one of the following elements.
(1) $1+i$,
(2) p, where p is a prime number in \mathbb{Z}^{+}with $p=3 \bmod 4$,
(3) $x \pm i y$, where $x, y \in \mathbb{Z}$ with $0<y<x$ and $x^{2}+y^{2}=p$ for some prime number $p \in \mathbb{Z}^{+}$ with $p=1 \bmod 4$.

Proof: Our first claim is that for a prime number $p \in \mathbb{Z}^{+}, p$ is reducible in $\mathbb{Z}[i]$ if and only if $p=x^{2}+y^{2}$ for some $x, y \in \mathbb{Z}$. Let p be a prime number in \mathbb{Z}^{+}. Suppose first that p is reducible in $\mathbb{Z}[i]$. Choose nonzero nonunits $u, v \in \mathbb{Z}[i]$ such that $p=u v$. Since u and v are nonzero nonunits we have $N(u)>1$ and $N(v)>1$, and since $N(u) N(v)=N(u v)=$ $N(p)=p^{2}$ we must have $N(u)=p$ and $N(v)=p$. Write $u=x+i y$ with $x, y \in \mathbb{Z}$. Then we have $p=N(u)=x^{2}+y^{2}$. Suppose, conversely, that $p=x^{2}+y^{2}$ where $x, y \in \mathbb{Z}$. Let $u=x+i y$ and $v=x-i y$. Then $N(u)=N(v)=p$ so that u and v are nonzero nonuits, and we have $u v=x^{2}+y^{2}=p$ so that p is reducible.

Note that 2 is reducible in $\mathbb{Z}[i]$ with $2=(1+i)(1-i)$. Our second claim is that when p is an odd prime number in \mathbb{Z}^{+}, p is reducible in $\mathbb{Z}[i]$ if and only if $p=1 \bmod 4$. Let p be an odd prime number in \mathbb{Z}^{+}and note that (since p is odd) either $p=1 \bmod 4$ or $p=3 \bmod 4$. Since $0^{2}=2^{2}=0 \bmod 4$ and $1^{2}=3^{2}=1 \bmod 4$, for all $x \in \mathbb{Z}$ we have $x^{2} \in\{0,1\} \bmod 4$. It follows that for all $x, y \in \mathbb{Z}$ we have $x^{2}+y^{2} \in\{0+0,0+1,1+1\}=\{0,1,2\} \bmod 4$. Thus when $p=3 \bmod 4$ there do not exist $x, y \in \mathbb{Z}$ such that $x^{2}+y^{2}=p$ so, by our first claim, we know that p is irreducible. On the other hand, when $p=1 \bmod 4$ we know from Chapter 4 that $-1 \in Q_{p}$ so we can choose $x \in \mathbb{Z}^{+}$such that $x^{2}=-1 \bmod p$, say $x^{2}=-1+k p$ with $k \in \mathbb{Z}^{+}$. Then in $\mathbb{Z}[i]$ we have $k p=x^{2}+1=(x+i)(x-i)$. If p was irreducible in $\mathbb{Z}[i]$, then by unique factorization, either $p \mid(x+i)$ or $p \mid(x-i)$, but this is not the case because (working in $\mathbb{Q}[i])$ the elements $\frac{x \pm i}{p}$ do not lie in $\mathbb{Z}[i]$, so p is reducible.

Our third claim is that each element $q \in \mathbb{Z}[i]$ which is of one of the types 1,2 and 3 (in the statement of the theorem) is irreducible in $\mathbb{Z}[i]$. When q is of type 1 , that is when $q=1+i$, we have $N(q)=2$ (which is prime in \mathbb{Z}^{+}) and so q is irreducible in $\mathbb{Z}[i]$ (by the last remark in Note 8.2). When q is of type 2 , that is when $q=p$ for some prime number $p \in \mathbb{Z}^{+}$with $p=3 \bmod 4$, then we know that q is irreducible from our second claim. When q is of type 3 , that is when $q=x \pm i y$ where $x, y \in \mathbb{Z}$ with $0<y \leq x$ and $x^{2}+y^{2}=p$ for some prime number $p \in \mathbb{Z}^{+}$with $p=1 \bmod 4$, then we have $N(q)=x^{2}+y^{2}=p$, which is prime in \mathbb{Z}^{+}, so q must be irreducible in $\mathbb{Z}[i]$ (by the final remark in Note 8.2 again).

Our fourth claim is that every irreducible element $q \in \mathbb{Z}[i]$ is an associate of a unique element of one of the three types. Let q be an irreducible element in $\mathbb{Z}[i]$. Since the units in $\mathbb{Z}[i]$ are the elements ± 1 and $\pm i$, it follows that the 4 associates of q (which are also irreducible) are obtained by rotating q bout the origin by a multiple of $\frac{\pi}{2}$, and so q has a unique associate $x+i y$ which lies in the quarter-plane given by $-x<y \leq x$. When $y=x$ we have $x+i y=x(1+i)$ with $x \in \mathbb{Z}^{+}$, and for this to be irreducible we must have $x=1$ so that $x+i y=1+i$, which is of type 1 . When $y=0$ we have $x+i y=x$ with $x \in \mathbb{Z}^{+}$and, for this to be irreducible in $\mathbb{Z}[i]$, we must have x irreducible in \mathbb{Z}^{+}so that $x+i y=x=p$ for some prime number $p \in \mathbb{Z}^{+}$and, again for this to be irreducible in $\mathbb{Z}[i]$, we must have $p=3 \bmod 4$, which is of type 2 . Otherwise (that is when $y \neq x$ and $y \neq 0$) we have $-x<y<0$ or $0<y<x$, so we can say that q has a unique associate of the form $x \pm i y$ with $0<y<x$. In this case, factor $N(q)=x^{2}+y^{2}=q \bar{q}$ in \mathbb{Z}^{+}to get $q \bar{q}=p_{1} p_{2} \cdots p_{\ell}$ with each p_{k} a prime number in \mathbb{Z}^{+}. Since q is irreducible in $\mathbb{Z}[i]$, by unique factorization in $\mathbb{Z}[i]$, we must have $q \mid p_{k}$ in $\mathbb{Z}[i]$ for some index k. Say $q \mid p$ in $\mathbb{Z}[i]$ where $p=p_{k}$ is a prime number in \mathbb{Z}^{+}. Since $q \mid p$ in $\mathbb{Z}[i]$ we have $N(q) \mid N(p)$, that is $N(q) \mid p^{2}$, in \mathbb{Z}^{+}. Since $N(q)>1$ we must have $N(q)=p$ or $N(q)=p^{2}$. In the case that $N(q)=p^{2}$, since $q \mid p$ in $\mathbb{Z}[i]$ and $N(q)=N(p)=p^{2}$ it follows that $\frac{p}{q} \in \mathbb{Z}[i]$ with $N\left(\frac{p}{q}\right)=1$, and hence $\frac{p}{q}$ is a unit in $\mathbb{Z}[i]$, so q is an associate of p, which is of type 2 . In that case that $N(q)=p$ we have $p=N(q)+N(x+i y)=x^{2}+y^{2}$ so that q is an associate of $x+i y$, which is of type 3 .
8.4 Corollary: (Sums of Two Squares) Let $n \in \mathbb{Z}^{+}$factor as $n=2^{m} \cdot \prod_{\alpha} p_{\alpha}^{k_{\alpha}} \cdot \prod_{\beta} q_{\beta}^{\ell_{\beta}}$ where $m \in \mathbb{N}, k_{\alpha}, \ell_{\beta} \in \mathbb{Z}^{+}$, the p_{α} are distinct primes with $p_{\alpha}=1 \bmod 4$, and the q_{β} are distinct primes with $q_{\beta}=3 \bmod 4$. Then there exists a solution $(x, y) \in \mathbb{Z}^{2}$ to the Sum of Two Squares Equation $x^{2}+y^{2}=n$ if and only if each exponent ℓ_{β} is even, and in this case, the number of solutions $(x, y) \in \mathbb{Z}^{2}$ is equal to $4 \cdot \prod\left(k_{\alpha}+1\right)$.
Proof: Note that for $x, y \in \mathbb{Z}$, we have $x^{2}+y^{2}=n$ in \mathbb{Z} if and only if $(x+i y)(x-i y)=n$ in $\mathbb{Z}[i]$. Thus the number of pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x^{2}+y^{2}=n$ is equal to the number of elements $u=x+i y \in \mathbb{Z}[i]$ such that $n=u \bar{u}$. By the above theorem, n factors in $\mathbb{Z}[i]$ into irreducibles as

$$
n=(1+i)^{m}(1-i)^{m} \cdot \prod_{\alpha} v_{\alpha}^{k_{\alpha}} \bar{v}_{\alpha}^{k_{\alpha}} \cdot \prod_{\beta} q_{\beta}^{\ell_{\beta}}=(-i)^{m}(1+i)^{2 m} \cdot \prod_{\alpha} v_{\alpha}{ }^{k_{\alpha}} \bar{v}_{\alpha}^{k_{\alpha}} \cdot \prod_{\beta} q_{\beta}^{\ell_{\beta}}
$$

To get $n=u \bar{u}, u$ must be a factor of n in $\mathbb{Z}[i]$. The factors of n in $\mathbb{Z}[i]$ are

$$
u=e \cdot(1+i)^{a} \cdot \prod_{\alpha} v_{\alpha}^{b_{\alpha}} \bar{v}_{\alpha}^{c_{\alpha}} \cdot \prod_{\beta} q_{\beta}^{d_{\beta}}
$$

where $e \in\{ \pm 1, \pm i\}, 0 \leq a \leq m, 0 \leq b_{\alpha} \leq k_{\alpha}, 0 \leq c_{\alpha} \leq k_{\alpha}$ and $0 \leq d_{\beta} \leq \ell_{\beta}$, and for the above factor u we have $u \bar{u}=1 \cdot 2^{a} \cdot \prod_{\alpha} p_{\alpha}{ }^{b_{\alpha}+c_{\alpha}} \cdot \sum_{\beta} q_{\beta}{ }^{2 d_{\beta}}$, so in order to get $u \bar{u}=n$ we need $e \in\{ \pm 1, \pm i\}$ (there are 4 choices for $\stackrel{\alpha}{e}$), we need ${ }^{\beta}=m$ (so there are no choices for a), we need $b_{\alpha}+c_{\alpha}=k_{\alpha}$ (so there are $k_{\alpha}+1$ choices for the pair $\left(b_{\alpha}, c_{\alpha}\right)$) and we need $2 d_{\beta}=\ell_{\beta}$ (so each ℓ_{β} must be even and there are no choices for d_{α}).

Pell's Equation

8.5 Note: In this section we discuss Pell's equation, which is the Diophantine equation $x^{2}-d y^{2}=1$ where $d \in \mathbb{Z}^{+}$is a non-square. In Chapters 6 and 7 we have already done all of the work necessary to solve this equation. Let us recall some of the relevant facts.

It is useful to work in the real quadratic ring $\mathbb{Z}[\sqrt{d}]$. For $u=x+y \sqrt{d} \in \mathbb{Q}[\sqrt{d}]$ with $x, y \in \mathbb{Q}$, we write $\bar{u}=x-y \sqrt{d}$ and we use the field norm in $\mathbb{Q}[\sqrt{d}]$ given by

$$
N(u)=u \bar{u}=x^{2}-d y^{2} .
$$

The norm is multiplicative, meaning that $N(u v)=N(u) N(v)$. The units in $\mathbb{Z}[\sqrt{d}]$ are the elements $u \in \mathbb{Z}[\sqrt{d}]$ with $N(u)= \pm 1$, that is the elements $u=x+y \sqrt{d}$ with $x, y \in \mathbb{Z}$ such that $x^{2}-d y^{2}= \pm 1$ (almost, but not quite, the same as the solutions to Pell's equation). When $x, y \in \mathbb{Z}$ and $u=x+y \sqrt{d}$ is a unit in $\mathbb{Z}[\sqrt{d}]$, we have $u>1$ if and only if $x, y \in \mathbb{Z}^{+}$. There is a unique smallest unit $u \in \mathbb{Z}[\sqrt{d}]$ with $u>1$, and (all of) the units in $\mathbb{Z}[\sqrt{d}]$ are the elements of the form $\pm u^{k}$ with $k \in \mathbb{Z}$. When u is this unique smallest unit with $u>1$, either we have $N(u)=1$ or we have $N(u)=-1$. In the case that $N(u)=1$ we have $N\left(\pm u^{k}\right)=1$ for all $k \in \mathbb{Z}$ so (all of) the solutions to Pell's equation are given by $(x, y)=\left(\pm r_{k}, \pm s_{k}\right)$ where $u^{k}=r_{k}+s_{k} \sqrt{d}$. In the case that $N(u)=-1$ we have $N\left(\pm u^{k}\right)=(-1)^{k}$ so the smallest unit $v \in \mathbb{Z}[\sqrt{d}]$ with $v>1$ and with $N(v)=1$ is $v=u^{2}$ and (all of) the solutions to Pell's equation are given by $(x, y)=\left(\pm r_{2 k}, \pm s_{2 k}\right)$ where $v^{k}=u^{2 k}=r_{k}+s_{k} \sqrt{d}$.

When d is fairly small, the smallest unit $u \in \mathbb{Z}[\sqrt{d}]$ with $u>1$ can be found using trial and error (simply try values of $y \in \mathbb{Z}^{+}$until $d y^{2} \pm 1$ is a square, say $d y^{2} \pm 1=x^{2}$, and then the smallest such unit is $u=x+y \sqrt{d}$). When d is large, trial and error can become quite tedious, but we can calculate u using continued fractions. We calculate the continued fraction for \sqrt{d} and the convergents $\frac{p_{k}}{q_{k}}$. If we let $u_{k}=p_{k}+q_{k} \sqrt{d}$ then the smallest unit $u \in \mathbb{Z}[\sqrt{d}]$ with $u>1$ is $u=u_{\ell-1}$ where ℓ is the minimum period of the continued fraction.
8.6 Example: Solve Pell's equation $x^{2}-53 y^{2}=1$.

Solution: We calculate the continued fraction for $\sqrt{53}$ and the first few convergents $c_{k}=\frac{p_{k}}{q_{k}}$ along with the norms $N_{k}=N\left(p_{k}+q_{k} \sqrt{53}\right)=p_{k}^{2}-53 q_{k}^{2}$.

k	x_{k}	a_{k}	p_{k}	q_{k}	N_{k}
0	$\sqrt{53}$	7	7	1	-4
1	$\frac{1}{\sqrt{53}-7}=\frac{\sqrt{53}+7}{4}$	3	22	3	7
2	$\frac{4}{\sqrt{53}-5}=\frac{\sqrt{53}+5}{7}$	1	29	4	-7
3	$\frac{7}{\sqrt{53}-2}=\frac{\sqrt{53}+2}{7}$	1	51	7	4
4	$\frac{7}{\sqrt{53}-5}=\frac{\sqrt{53}+5}{4}$	3	182	25	-1
5	$\frac{4}{\sqrt{53}-7}=\frac{\sqrt{53}+7}{1}$	14			

We have $\sqrt{53}=[7, \overline{3,1,1,3,14}]$ with period $\ell=5$. Writing $u_{k}=p_{k}+q_{k} \sqrt{53} \in \mathbb{Z}[\sqrt{53}]$, the smallest unit in $\mathbb{Z}[\sqrt{53}]$ with $u>1$ is $u=u_{\ell-1}=u_{4}=182+25 \sqrt{53}$, and we have $N(u)=-1$. The smallest unit v in $\mathbb{Z}[\sqrt{53}]$ with $v>1$ and $N(v)=1$ is

$$
v=u^{2}=(182+25 \sqrt{53})^{2}=66249+9100 \sqrt{53}
$$

If we write $v^{k}=(66249+9100 \sqrt{53})^{k}=r_{k}+s_{k} \sqrt{53}$ for $0 \leq k \in \mathbb{Z}$, then the solutions to Pell's equation $x^{2}-53 y^{2}=1$ are given by $(x, y)=\left(\pm r_{k}, \pm s_{k}\right)$ where $0 \leq k \in \mathbb{Z}$.

Pythagorean Triples

8.7 Note: In this section we study the Diophantine equation $x^{2}+y^{2}=z^{2}$. The solutions given by $x=0$ and $z \pm y$ and by $y=0$ and $z= \pm x$ are called the trivial solutions. If (x, y, z) is a solution, then so are $(\pm x, \pm y, \pm z)$. A solution (x, y, z) with $x, y, z \in \mathbb{Z}^{+}$is called a Pythagorean triple. Note that if (x, y, z) is a Pythagorean triple and $r \in \mathbb{Z}^{+}$ then $r(x, y, z)=(r x, r y, r z)$ is also a Pythagorean triple and, likewise, if (x, y, z) is a Pythagorean triple and $d=\operatorname{gcd}(x, y, z)$, then $\frac{1}{d}(x, y, z)$ is also a Pythagorean triple. A primitive Pythagorean triple is a Pythagorean triple (x, y, z) with $\operatorname{gcd}(x, y, z)=1$. Note that when (x, y, z) is a primitive Pythagorean triple, one of the numbers x and y is even and the other is odd (if both were odd we would have $z^{2}=x^{2}+y^{2}=1+1=2 \in \mathbb{Z}_{4}$).
8.8 Theorem: (Pythagorean Triples) The Pythagorean triples (x, y, z), with x even, are of the form

$$
(x, y, z)=r\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)
$$

for some uniquely determined $r, s, t \in \mathbb{Z}^{+}$with $s>t, \operatorname{gcd}(s, t)=1$ where s and t are not both odd.
Proof: Note that when $(x, y, z) \in \mathbb{Z}^{3}$ with $x^{2}+y^{2}=z^{2}$ and $z \neq 0$, we have $\left(\frac{x}{z}\right)^{2}+\left(\frac{y}{z}\right)^{2}=1$ so that the point $\left(\frac{x}{z}, \frac{y}{z}\right)$ is a point on the unit circle with rational coordinates. Let S be the unit circle $S=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$ and let $T=S \backslash\{(0,1)\}$. The stereographic projection from T to \mathbb{R} is the function $f: T \rightarrow \mathbb{R}$ defined as follows: given $(a, b) \in T$, let $f(a, b)=u$ where u is the real number such that $(u, 0)$ lies on the line through $(0,1)$ and (a, b). The inverse map $g: \mathbb{R} \rightarrow T$ is given as follows: Given $u \in \mathbb{R}$, we let $g(u)=(a, b)$ where (a, b) is the (unique) point on T which lies on the line through $(0,1)$ and $(u, 0)$. Let us find a formula for f and a formula for its inverse g.

Given $(a, b) \in T$, the line from $(0,1)$ to (a, b) is given parametrically by $(x, y)=$ $(0,1)+t((a, b)-(0,1))=(t a, 1+t(b-1))$. We have $(t a, 1+t(b-1))=(u, 0)$ when $1+t(b-1)=0$, that is $t=\frac{1}{1-b}$, and $u=t a=\frac{a}{1-b}$. Thus the map f is given by

$$
u=f(a, b)=\frac{a}{1-b} .
$$

Given $u \in \mathbb{R}$, the line through $(0,1)$ and $(u, 0)$ is given parametrically by $(x, y)=(0,1)+$ $t((u, 0)-(0,1))=(t u, 1-t)$. The point $(a, b)=(t u, 1-t)$ lies on S when $1=a^{2}+b^{2}=$ $(t u)^{2}+(1-t)^{2}=t^{2} u^{2}+1-2 t+t^{2}$, that is when $\left(u^{2}+1\right) t^{2}=2 t$, or equivalently when $t=0$ or $t=\frac{2}{u^{2}+1}$. When $t=0$ the resulting point is $(a, b)=(t u, 1-t)=(0,1)$ and when $t=\frac{2}{u^{2}+1}$ the resulting point is $(a, b)=(t u, 1-t)=\left(\frac{2 u}{u^{2}+1}, \frac{u^{2}-1}{u^{2}+1}\right)$. Thus the inverse map g is given by

$$
(a, b)=g(u)=\left(\frac{2 u}{u^{2}+1}, \frac{u^{2}-1}{u^{2}+1}\right) .
$$

Verify that $f(g(u))=u$ for all $u \in \mathbb{R}$, and that $g(f(a, b))=(a, b)$ for all $(a, b) \in T$.
Notice that if $(a, b) \in T$ with $a, b \in \mathbb{Q}$ then $u=f(a, b) \in \mathbb{Q}$ and that, conversely, if $u \in \mathbb{Q}$ then $(a, b)=g(u) \in \mathbb{Q}^{2}$. It follows that we have a bijective correspondence between $T \cap \mathbb{Q}^{2}$ and \mathbb{Q} given by $f: T \cap \mathbb{Q}^{2} \rightarrow \mathbb{Q}$ and $g: \mathbb{Q} \rightarrow T \cap \mathbb{Q}^{2}$. Thus every element in $T \cap \mathbb{Q}^{2}$ is of the form

$$
(a, b)=g\left(\frac{s}{t}\right)=\left(\frac{2(s / t)}{(s / t)^{2}+1}, \frac{(s / t)^{2}-1}{(s / t)^{2}+1}\right)=\left(\frac{2 s t}{s^{2}+t^{2}}, \frac{s^{2}-t^{2}}{s^{2}+t^{2}}\right)
$$

for some $s, t \in \mathbb{Z}$ with $t \neq 0$ and $\operatorname{gcd}(s, t)=1$. Putting $s \neq 0$ and $t=0$ in the term on the right gives $(a, b)=(0,1)$, so we can say that every point $(a, b) \in S \cap \mathbb{Q}^{2}$ (including the point $(a, b)=(0,1))$ is of the form $a=\frac{x}{z}$ and $b=\frac{y}{z}$ with

$$
(x, y, z)=\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)
$$

for some $s, t \in \mathbb{Z}$ with $\operatorname{gcd}(s, t)=1$.

Notice that when s and t are both odd, the values of $x=2 s t, y=s^{2}-t^{2}$ and $z=s^{2}+t^{2}$ are all even so that the fractions $a=\frac{x}{z}$ and $b=\frac{y}{z}$ are not in reduced form. In this case we can divide x, y and z by 2 , or equivalently, we can interchange x and y and replace s and t by $s^{\prime}=\frac{s+t}{2}$ and $t^{\prime}=\frac{s-t}{2}$ (which are both integers) because

$$
\begin{aligned}
& x^{\prime}=2 s^{\prime} t^{\prime}=2\left(\frac{s+t}{2}\right)\left(\frac{s-t}{2}\right)=\frac{s^{2}-t^{2}}{2}=\frac{y}{2}, \\
& y^{\prime}=\left(s^{\prime}\right)^{2}-\left(t^{\prime}\right)^{2}=\left(\frac{s+t}{2}\right)^{2}-\left(\frac{s-t}{2}\right)^{2}=s t=\frac{x}{2}, \text { and } \\
& z^{\prime}=\left(s^{\prime}\right)^{2}+\left(s^{\prime}\right)^{2}=\left(\frac{s+t}{2}\right)^{2}+\left(\frac{s-t}{2}\right)^{2}=\frac{s^{2}+y^{2}}{2}=\frac{z}{2} .
\end{aligned}
$$

It follows that every Pythagorean triple (x, y, z) with x even is of the form

$$
(x, y, z)=r\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)
$$

for some $s, t \in \mathbb{Z}^{+}$with $s>t$ and $\operatorname{gcd}(s, t)=1$ where s and t are not both odd.
It remains to verify that the positive integers s and t, as above, are uniquely determined. The key fact to verify is that in the case $r=1$, so that $(x, y, z)=\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)$ with s and t as above, we must have $\operatorname{gcd}(x, y, z)=1$. Indeed, note that since $\operatorname{gcd}(s, t)=1$ so that s and t are not both even, and since s and t are not both odd, it follows that $y=s^{2}-t^{2}$ and $z=s^{2}+t^{2}$ are both odd so that 2 cannot be a factor of either y or z. And when p is an odd prime, p cannot be a common factor of both y and z because if we had $p \mid y=\left(s^{2}-t^{2}\right)$ and $p \mid z=\left(s^{2}+t^{2}\right)$ then we would have $p \mid\left(\left(s^{2}+t^{2}\right)+\left(s^{2}-t^{2}\right)\right)=4 s^{2}$ so that $p \mid s$ and we would have $p \mid\left(\left(s^{2}+t^{2}\right)-\left(s^{2}-t^{2}\right)\right)=4 t^{2}$ so that $p \mid t$, but this is not possible since $\operatorname{gcd}(s, t)=1$. Thus when $s, t \in \mathbb{Z}^{+}$with $s>t$ and $\operatorname{gcd}(s, t)=1$ and with s and t not both odd, the Pythagorean triple $\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)$ is primitive. Thus for

$$
(x, y, z)=r\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)
$$

with $r \in \mathbb{Z}^{+}$, the value of r is uniquely determined by $r=\operatorname{gcd}(x, y, z)$ and then s and t are uniquely determined by the two equations $s^{2}+t^{2}=\frac{z}{r}$ and $s^{2}-t^{2}=\frac{y}{r}$ which can be added to give $2 s^{2}=\frac{z+y}{2 r}$ and subtracted to give $2 t^{2}=\frac{z-y}{2 r}$.
8.9 Example: List all primitive pythagorean triples (x, y, z) with x even and $z \leq 100$.

Solution: We list all pairs $(s, t) \in \mathbb{Z}^{2}$ with $1 \leq t<s$ and $s^{2}+t^{2} \leq 100$, then we cross off the pairs with $\operatorname{gcd}(s, t)>1$ and the pairs with s and t both odd. We find 15 such pairs, and for each pair we calculate $(x, y, z)=\left(2 s t, s^{2}-t^{2}, s^{2}+t^{2}\right)$ and display the result in the following table (to save space we have listed the triples (x, y, z) vertically).

s	2	4	6	8	3	5	7	9	4	8	5	7	9	6	8
t	1	1	1	1	2	2	2	2	3	3	4	4	4	5	5
x	4	8	12	16	12	20	28	36	24	48	40	56	72	60	80
y	3	15	35	63	5	21	45	77	7	55	9	33	65	11	39
z	5	17	37	65	13	29	53	85	25	73	41	65	97	61	89

8.10 Example: We notice that $z=65$ occurs twice in the above table in the triples $(x, y, z)=(16,63,65),(56,33,65)$. Note that $65=5 \cdot 13$, so from the Sums of Two Squares Theorem, we know that there are $4 \cdot 3 \cdot 3=36$ pairs $(x, y) \in \mathbb{Z}^{2}$ such that $x^{2}+y^{2}=65^{2}$. Note that 4 of these pairs are given by $(x, y)=(\pm 65,0),(0, \pm 65)$ and the other 32 pairs can be grouped into sets of 4 pairs of the form $(\pm x, \pm y)$ with $x, y \in \mathbb{Z}^{+}$. Thus there should be 8 pairs (x, y) with $x, y \in \mathbb{Z}^{+}$such that $x^{2}+y^{2}=65^{2}$. There are 4 such pairs (x, y) with x even and 4 such pairs with y even. Two of the 4 pairs (x, y) with x even occur in the two primitive Pythagorean triples $(x, y, z)=(16,63,65),(56,33,65)$. The other two pairs occur in the non-primitive Pythagorean triples $(x, y, z)=13(4,3,5)$ and $5(12,5,13)$.

Fermat's Last Theorem
I may include some notes on Fermat's Last Theorem later.

