Chapter 8. Some Diophantine Equations

Differences of Two Squares

8.1 Theorem: (Differences of Two Squares) Let n € Z7.

(1) There exists a solution (z,y) € Z? to the Diophantine equation x? —y* = n if and only
if n is odd or n is a multiple of 4.

(2) In the case that n is odd, the number of solutions is equal to 2 7(n) and the solutions
are given by (x,y) = (:I: 4T :l:sgr) where n = rs with 0 < r < s.

(3) In the case that n is a multiple of 4, the number of solutions is 2 T(%) , and the solutions
are given by (z,y) = (£ ({+ k), £(¢ — k)) where n = 4k( with 0 < k < .

Proof: For z,y € Z4 we have 22 € {0,1} and y* € {0,1}, and so ? — y? € {0,1,3}. Thus
for n € Z, if n = 22 — y? for some x,y € Z then n € {0, 1,3} mod 4, that is either n is odd
or n is a multiple of 4. When n is odd, say n = 2k + 1, we can take x = k+ 1 and y = k
to get 22 —y? = (k+1)? — k> = 2k + 1 = n. When n is a multiple of 4, say n = 4k, we
cantake z =k +1and y = k — 1 to get 22 —y? = (k+1)? — (k — 1)? = 4k = n. Thus for
n € Z, the Diophantine equation 22 — y? = n has a solution if and only if either n is odd
or n is a multiple of 4.

When n =0 we have 22 —y? =n <= 22 —9y? =0 <= 22 =9? <= y =4z and
so there are infinitely many solutions, namely (z,y) = (r,7), r € Z.

Since 22 — y? = —n <= y? — 22 = n, it follows that the number of solutions to the
equation 22 — y? = —n is equal to the number of solutions to the equations z? — y? = n,
so it suffices to consider the case that n > 0. Also note that if 22 — y? = n then we also
have (£x)? — (£y)? = n so it suffices to count the number of solutions (x,y) € Z? with
0 <y < x. We must multiply the number of solutions with 0 < y < x by 4 and, in the
case that n is a square, we also have the 2 solutions (z,y) = (£ /n,0).

Suppose that n € Z* and that either n is odd or n is a multiple of 4. Note that
22 —y?=n < (v—y)(z+y) =n. Given z,y € Z with 0 < y < x such that 2% —y? = n,
we can let r = x —y and s = 4+ y and then we have 0 <r < sand rs =n and s —r = 2y
so that » = s mod 2. On the other hand, given r,s € Z with 0 < r < s and rs = n
and 7 = s mod 2, we can let x = % and y = “5- and then we have 0 < y < x and
2?2 —y? = (x —y)(x +y) = rs = n. Thus there is a bijective correspondence between pairs
(z,y) € Z% with 0 < y < x such that 22 — y? = n and pairs (r,s) € Z? with 0 < r < s
and rs = n and r = s mod 2. In the case that n is a square, the pair (z,y) with y = 0
corresponds to the pair (r,s) with r = s.

When n is odd and rs = n, both r and s are odd so that we have r = s mod 2. When
n is not a square, 7(n) is even and the number of pairs (r,s) € Z? with 0 < r < s and

2 2

rs = n is equal to @ In this case, the total number of solutions (z,y) € Z? is equal to
4. @ = 27(n). When n is a square, 7(n) is odd and we obtain 1 pair (r,s) with r = s
and % pairs (r,s) with 7 < s. In this case, the total number of solutions (z,y) € Z?

is244- % = 27(n). In either case, the total number of solutions is 27(n).

When n is a multiple of 4, say n = 4m, to get rs = n with » = s mod 2, the factors
r and s must both be even, say r = 2k and s = 2¢. The number of required pairs (r, s) is
equal to the number of pairs (k, /) € Z? with 0 < k < £ and k¢ = m. As above, whether
or not m is a square, the total number of solutions (x,y) € Z? is equal to 27(m).



Sums of Two Squares

8.2 Note: Our main goal in this section is to determine for which integers n € Z there
exists a solution (z,y) € Z? to the Diophantine equation x? + 2> = n and, for such n,
to determine the number of solutions. In our analysis of the simpler equation z? — y? =
n we made use of the factorization z? — y?> = (z — y)(z + y). In our analysis of the
equation 22 + y?> = n we shall find it useful to work in the ring of Gaussian integers
Z[i) = {a+ib|a,b € Z} and to make use of the factorization z* + y* = (z — iy)(z + iy).

Let us recall some facts about the ring Z[i] from Chapter 6. Recall that Z[i] is a
Fuclidean domain, hence a unique factorization domain, with Euclidean norm equal to the

field norm N in Q[i]. For z,y € Q and u = x + iy € Q[i], we have
N(u) = vt = |Jul” = 2* + y*.

The norm is multiplicative, meaning that N(uv) = N(u)N(v) for all u,v € Q[i]. The units
in Z[i] are the elements v € Z[i] with N(u) = 1, namely the 4 elements +1 and +i, and the
non-zero non-units are the elements u € Z[i] with N(u) > 1. The associates of the element
u € Z[i] are the elements +u and +iu. Because Z][i] is a unique factorization domain, the
prime elements in Z[i] are the same as the irreducible elements in € Z[i]. Finally, note
that for u € Z[i], if N(u) is a prime number in Z* then u must be irreducible in Z]i]
because if we had v = vw € Z[i] with v and w being nonzero nonunits, then we would
have N(u) = N(v)N(w) € Z* with N(u) > 1 and N(w) > 1.

8.3 Theorem: (Irreducible Elements in the Ring of Gaussian Integers) Every irreducible
element in the ring Z[i] is an associate of exactly one of the following elements.

(1) 1414,

(2) p, where p is a prime number in Z* with p = 3 mod 4,

(3) x £ iy, where z,y € Z with 0 < y < x and 22 + y* = p for some prime number p € Z*
with p = 1 mod 4.

Proof: Our first claim is that for a prime number p € Z*, p is reducible in Z[i] if and only
if p = 22 4+ y? for some z,y € Z. Let p be a prime number in ZT. Suppose first that p
is reducible in Z[i]. Choose nonzero nonunits u,v € Z[i] such that p = uv. Since v and v
are nonzero nonunits we have N(u) > 1 and N(v) > 1, and since N(u)N(v) = N(uv) =
N(p) = p* we must have N(u) = p and N(v) = p. Write u = x + iy with z,y € Z. Then
we have p = N(u) = 22 + y2. Suppose, conversely, that p = 22 + y? where x,y € Z. Let
u=2x+1iy and v = x — iy. Then N(u) = N(v) = p so that v and v are nonzero nonuits,
and we have uv = z? + 3% = p so that p is reducible.

Note that 2 is reducible in Z[i] with 2 = (14-4)(1—14). Our second claim is that when p
is an odd prime number in ZT, p is reducible in Z[i] if and only if p = 1 mod 4. Let p be an
odd prime number in Z* and note that (since p is odd) either p = 1 mod 4 or p = 3 mod 4.
Since 0?2 = 22 = 0 mod 4 and 12 = 3% = 1 mod 4, for all z € Z we have z? € {0,1} mod 4.
It follows that for all x,y € Z we have 22 + 3% € {0+0,0+ 1,1+ 1} = {0,1,2} mod 4.
Thus when p = 3 mod 4 there do not exist =,y € Z such that 22 + y?> = p so, by our
first claim, we know that p is irreducible. On the other hand, when p = 1 mod 4 we know
from Chapter 4 that —1 € @, so we can choose x € ZT such that 22 = —1 mod p, say
2% = —1 + kp with k € Z*. Then in Z[i] we have kp = 22 + 1 = (z +i)(z — ). If p was
irreducible in Z[i], then by unique factorization, either p| (x+1) or p| (x —1), but this is not
the case because (working in Q[é]) the elements mTﬂ do not lie in Z[i], so p is reducible.



Our third claim is that each element ¢ € Z[i] which is of one of the types 1, 2 and 3
(in the statement of the theorem) is irreducible in Z[i|. When ¢ is of type 1, that is when
q =1+ i, we have N(q) = 2 (which is prime in Z*) and so ¢ is irreducible in Z[i] (by the
last remark in Note 8.2). When ¢ is of type 2, that is when ¢ = p for some prime number
p € Z+ with p = 3 mod 4, then we know that g is irreducible from our second claim. When
q is of type 3, that is when ¢ = z + iy where 2,y € Z with 0 < y < z and z? + y? = p for
some prime number p € ZT with p = 1 mod 4, then we have N(q) = 22 + y* = p, which is
prime in Z*, so ¢ must be irreducible in Z[i] (by the final remark in Note 8.2 again).

Our fourth claim is that every irreducible element ¢ € Z[i] is an associate of a unique
element of one of the three types. Let ¢ be an irreducible element in Z[i]. Since the units
in Z[i] are the elements £1 and =i, it follows that the 4 associates of ¢ (which are also
irreducible) are obtained by rotating ¢ bout the origin by a multiple of 7, and so ¢ has a
unique associate x 4 iy which lies in the quarter-plane given by —z < y < x. When y =«
we have z + iy = z(1 + i) with € ZT, and for this to be irreducible we must have x = 1
so that x + iy = 141, which is of type 1. When y = 0 we have x + iy = x with € Z* and,
for this to be irreducible in Z[i], we must have z irreducible in Z* so that x +iy =x =p
for some prime number p € ZT and, again for this to be irreducible in Z[i], we must have
p = 3 mod 4, which is of type 2. Otherwise (that is when y # z and y # 0) we have
—r<y<0or0<y<ux, sowe can say that g has a unique associate of the form x + iy
with 0 < y < . In this case, factor N(q) = 22 +y?> = qg in Z* to get ¢q = pip2 - pe
with each py a prime number in Z*. Since q is irreducible in Z[i], by unique factorization
in Z[i], we must have q}pk in Z[i] for some index k. Say q|p in Z[i] where p = py is a
prime number in Z*. Since q‘p in Z[i] we have N(q)‘N(p), that is N(q)‘p2, in ZT. Since
N(q) > 1 we must have N(q) = p or N(q) = p. In the case that N(q) = p?, since q|p in
Z[i] and N(q) = N(p) = p? it follows that £ € Z[i] with N(%’) =1, and hence L is a unit
in Z[i], so ¢ is an associate of p, which is of type 2. In that case that N(¢) = p we have
p= N(q) + N(z +iy) = 22 + y? so that ¢ is an associate of = + iy, which is of type 3.

8.4 Corollary: (Sums of Two Squares) Let n € Z* factor as n = 2™ - []pf - [T qz"

where m € N, ky, g € ZT, the p, are distinct primes with p, = 1 mod 4,aand the %5 are
distinct primes with gz = 3 mod 4. Then there exists a solution (z,y) € Z* to the Sum
of Two Squares Equation z* + y?> = n if and only if each exponent {g is even, and in this
case, the number of solutions (z,y) € Z? is equal to 4 - [[(ka+ 1).

Proof: Note that for z,y € Z, we have 22 +y? = n in 7.t and only if (z +iy)(x —iy) =n
in Z[i]. Thus the number of pairs (z,y) € Z? such that 22 +y? = n is equal to the number
of elements u = x + iy € Z[i] such that n = uu. By the above theorem, n factors in Z[i]
into irreducibles as

n— (1 + Z)m(l . ,L)m i H,Uak:a Eaka . Hqﬁég — (—Z)m(l + Z)Qm . Hvaka gaka . qugzﬂ.
@ B o B
To get n = uw, u must be a factor of n in Z[i]. The factors of n in Z[i] are

u=-¢e-(1+4)* [Tva v, - []qs
a [

where e € {£1,+i}, 0 < a < m, 0 < by < ko, 0 < ¢y < ko and 0 < dg < {3, and for

the above factor u we have ut = 1-2%-J] po 22+ 3" 5298, so in order to get ui = n we need
o B
e € {£1,+:} (there are 4 choices for e), we need a = m (so there are no choices for a), we

need by + co = ko (so there are k, + 1 choices for the pair (bq, o)) and we need 2dg = {3
(so each 3 must be even and there are no choices for d).
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Pell’s Equation

8.5 Note: In this section we discuss Pell’s equation, which is the Diophantine equation
2?2 — dy? = 1 where d € Z7 is a non-square. In Chapters 6 and 7 we have already done all
of the work necessary to solve this equation. Let us recall some of the relevant facts.

It is useful to work in the real quadratic ring Z[\/E] For u =z +yvVd € Q[\/E] with
z,y € Q, we write @ = z — yv/d and we use the field norm in Q[\/E] given by

N(u) = v = 2% — dy?.

The norm is multiplicative, meaning that N(uv) = N(u)N(v). The units in Z[v/d] are the
elements u € Z[v/d] with N(u) = %1, that is the elements u = z 4 y+v/d with z,y € Z such
that 22 — dy? = £1 (almost, but not quite, the same as the solutions to Pell’s equation).
When z,y € Z and v = &+ y+/d is a unit in Z[v/d], we have u > 1 if and only if z,y € Z".
There is a unique smallest unit u € Z[v/d] with v > 1, and (all of) the units in Z[v/d]
are the elements of the form +u* with k € Z. When v is this unique smallest unit with
u > 1, either we have N(u) = 1 or we have N(u) = —1. In the case that N(u) = 1
we have N(du®) = 1 for all k € Z so (all of) the solutions to Pell’s equation are given
by (z,y) = (£rk, £sk) where uF = r + spv/d. In the case that N(u) = —1 we have
N(£u*) = (=1)* so the smallest unit v € Z[vd] with v > 1 and with N(v) = 1 is
v = u? and (all of) the solutions to Pell’s equation are given by (z,y) = (£rak, £sox)
where v = w2 = r, + spV/d.

When d is fairly small, the smallest unit v € Z[v/d] with u > 1 can be found using
trial and error (simply try values of y € Z* until dy? & 1 is a square, say dy® £ 1 = 22,
and then the smallest such unit is u = z + yv/d). When d is large, trial and error can
become quite tedious, but we can calculate u using continued fractions. We calculate the
continued fraction for v/d and the convergents 2—:. If we let up = pi + grV/d then the

smallest unit v € Z[v/d] with v > 1 is u = u,_; where £ is the minimum period of the
continued fraction.

8.6 Example: Solve Pell’s equation 2% — 53y? = 1.

Solution: We calculate the continued fraction for /53 and the first few convergents ¢ = Z—:
along with the norms Ny = N(px + qxV/53) = p7 — 53 ¢3.

k Ty, ar Pk Gk Nk
0 V53 7T 7 1 —4
1 A=Y 3 22 3 7
2 Ao =B 1 29 4 7
3 A=Y 1 51 7 4
4 Ao =Y 3 182 25 -1
b =BT 1y

We have /53 = [7,3,1,1, 3, 14] with period £ = 5. Writing ux = px + qx V53 € Z[v53],
the smallest unit in Z[v/53] with u > 1 is u = uy—1 = ug = 182 + 25+/53, and we have
N(u) = —1. The smallest unit v in Z[v/53] with v > 1 and N(v) =1 is

v = = (182 + 25v/53)2 = 66 249 + 9 100v/53.
If we write v* = (66249 + 9100v/53)% = 74 + s/53 for 0 < k € Z, then the solutions to
Pell’s equation 22 — 53y? = 1 are given by (z,y) = (£, £sx) where 0 < k € Z.
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Pythagorean Triples

8.7 Note: In this section we study the Diophantine equation z? + y? = 22. The solutions
given by x = 0 and z &+ y and by y = 0 and z = +x are called the trivial solutions. If
(x,y,2) is a solution, then so are (+z,+y,+z). A solution (z,y,z) with z,y,z € ZT is
called a Pythagorean triple. Note that if (z,y, z) is a Pythagorean triple and r € Z*
then r(z,y,z) = (rz,ry,rz) is also a Pythagorean triple and, likewise, if (x,y,z) is a
Pythagorean triple and d = ged(z,y,z), then X(z,y,2) is also a Pythagorean triple. A
primitive Pythagorean triple is a Pythagorean triple (z,y,z) with ged(z,y,2) = 1.
Note that when (z,y, z) is a primitive Pythagorean triple, one of the numbers = and y is
even and the other is odd (if both were odd we would have 22 = 22 +y* = 1+1 =2 € Zy).

8.8 Theorem: (Pythagorean Triples) The Pythagorean triples (x,y, z), with x even, are
of the form (r,y,2) = 7’(23t, s — 2% + t2)
for some uniquely determined r,s,t € Z+ with s > t, gcd(s,t) = 1 where s and t are not
both odd.
Proof: Note that when (x,vy, 2) € Z3 with 22 +y* = 22 and 2 # 0, we have (§)2+ (%)2 =1
so that the point (f, %) is a point on the unit circle with rational coordinates. Let S be
the unit circle S = {(x,y) € R? |22 +y? = 1} and let T = S\ {(0,1)}. The stereographic
projection from 7 to R is the function f : T'— R defined as follows: given (a,b) € T, let
f(a,b) = u where u is the real number such that (u,0) lies on the line through (0,1) and
(a,b). The inverse map g : R — T is given as follows: Given u € R, we let g(u) = (a,b)
where (a, b) is the (unique) point on 7" which lies on the line through (0,1) and (u,0). Let
us find a formula for f and a formula for its inverse g.

Given (a,b) € T, the line from (0,1) to (a,b) is given parametrically by (z,y) =
(0,1) + t((a,b) — (0,1)) = (ta,1 + t(b —1)). We have (ta,1 + t(b — 1)) = (u,0) when
14+tb—1) =0, that is t = ﬁ, and u = ta = %5. Thus the map f is given by

u= f(a,b) = % .
Given u € R, the line through (0, 1) and (u,0) is given parametrically by (x,y) = (0,1) +
t((u,0) — (0,1)) = (tu,1 —t). The point (a,b) = (tu,1 —t) lies on S when 1 = a? + b* =
(tu)? + (1 — t)? = t2u® + 1 — 2t + t2, that is when (u? + 1)t = 2t, or equivalently when
t=0ort=—2-. When ¢ = 0 the resulting point is (a,b) = (tu,1 —t) = (0,1) and when

raNg
t= UQLH the resulting point is (a,b) = (tu,1 —t) = (ugip ﬁiﬁ) Thus the inverse map g
is given by

(a,0) = g(u) = (F7. 4251) -
Verify that f(g(u)) = u for all u € R, and that g(f(a,b)) = (a,b) for all (a,b) € T'.
Notice that if (a,b) € T with a,b € Q then u = f(a,b) € Q and that, conversely, if

u € Q then (a,b) = g(u) € Q%. It follows that we have a bijective correspondence between
TNQ? and Q given by f: TNQ? = Q and g : Q — T'NQ?. Thus every element in T'NQ?

is of the form 6t (o)1) .
o s . 2(s/t s/t)—1 . 2st s“—t
(a,b) - g(?) - ((S/t)2+1’ (S/t)2—|—1> — <52+t2’ 52+t2>
for some s,t € Z with t # 0 and ged(s,t) = 1. Putting s # 0 and ¢ = 0 in the term on
the right gives (a,b) = (0,1), so we can say that every point (a,b) € SNQ? (including the
point (a,b) = (0,1)) is of the form a = £ and b = ¥ with

(r,y,2) = (28t, s — 2, 8% + t2)
for some s,t € Z with ged(s,t) = 1.




Notice that when s and ¢ are both odd, the values of z = 2st, y = s> — ¢ and
2z = 8% +t2 are all even so that the fractions a = 2 and b = £ are not in reduced form. In
this case we can divide z, y and z by 2, or equivalently, we can interchange x and y and

replace s and t by s’ = =3 and ¢’ = =5* (which are both integers) because

A H e
v = ()2 = ()= (541)" ~ (°5)" = , and
F= ()4 ()2 = (1) + (551)" = =3
It follows that every Pythagorean triple (z,y, z) with x even is of the form
(r,y,2) = 7“(2.9t, s — 2, 8% + t2)

for some s,t € Z* with s >t and ged(s,t) = 1 where s and ¢ are not both odd.

It remains to verify that the positive integers s and t, as above, are uniquely deter-
mined. The key fact to verify is that in the case r = 1, so that (z,y, 2) = (25t, s2—t2, 82—|—t2)
with s and ¢ as above, we must have ged(z,y, z) = 1. Indeed, note that since ged(s,t) =1
so that s and t are not both even, and since s and ¢ are not both odd, it follows that
y = 52 —t? and z = s? 4 t? are both odd so that 2 cannot be a factor of either y or z.
And when p is an odd prime, p cannot be a common factor of both y and z because if we
had ply = (s*> — t?) and p|z = (s? + t2) then we would have p|((s? + t?) + (s* — t?)) = 4s?
so that p’s and we would have p!((s2 +12) — (%2 — 12)) = 4t? is not
possible since ged(s,t) = 1. Thus when s,t € Z* with s > t and ged(s,t) = 1 and with s
and t not both odd, the Pythagorean triple (2515, s2—t2, 52+ t2) is primitive. Thus for

(x,y,2) = 7“(2375, s — 12, 5% + t2)

zZ

with r € ZT, the value of r is uniquely determined by r = ged(z,y, z) and then s and ¢
are uniquely determined by the two equations s2 4+ t? = Z and s — t? = 4 which can be

Za
added to give 252 = z2+—Ty and subtracted to give 2t? = ¥

8.9 Example: List all primitive pythagorean triples (z,y, z) with x even and z < 100.

Solution: We list all pairs (s,t) € Z? with 1 <t < s and s + t? < 100, then we cross off
the pairs with ged(s,t) > 1 and the pairs with s and ¢ both odd. We find 15 such pairs,
and for each pair we calculate (x,y, z) = (2st, s2—t2, 52+ t2) and display the result in the
following table (to save space we have listed the triples (x,y, z) vertically).

4 6 8 3 S5 7 9 4 8 5 7T 9 6 8
T 1 1 2 2 2 2 3 3 4 4 4 5 5

8§ 12 16 12 20 28 36 24 48 40 56 72 60 80
15 35 63 5 21 45 77 7 55 9 33 65 11 39
17 37 65 13 29 53 8 25 73 41 65 97 61 89

8.10 Example: We notice that z = 65 occurs twice in the above table in the triples
(x,y,2) = (16,63,65), (56,33,65). Note that 65 = 5-13, so from the Sums of Two Squares
Theorem, we know that there are 4 - 3 -3 = 36 pairs (z,y) € Z? such that x? + y* = 652
Note that 4 of these pairs are given by (x,y) = (£65,0), (0, £65) and the other 32 pairs
can be grouped into sets of 4 pairs of the form (+x, +y) with z,y € Z*. Thus there should
be 8 pairs (z,y) with z,y € Z* such that 22 +y? = 652. There are 4 such pairs (z,y) with
x even and 4 such pairs with y even. Two of the 4 pairs (z,y) with = even occur in the
two primitive Pythagorean triples (z,vy, z) = (16,63, 65), (56,33,65). The other two pairs
occur in the non-primitive Pythagorean triples (z,y, z) = 13(4, 3,5) and 5(12,5,13).
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Fermat’s Last Theorem

I may include some notes on Fermat’s Last Theorem later.



