
Chapter 7. Continued Fractions

7.1 Definition: Let a0, a1, a2, · · · ∈ R with ak > 0. For n ≥ 0 we write

[a0, a1, a2, · · · , an] = a0 +
1

a1 +
1

. . . +
1

an−1 + 1
an

and

[a0, a1, a2, · · ·] = a0 +
1

a1 +
1

a2 + . . .

= lim
n→∞

[a0, a1, a2, · · · , an].

A finite continued fraction is a rational number of the form [a0, a1, · · · , an] with a0 ∈ Z
and ak ∈ Z+ for 1 ≤ k ≤ n, and an infinite continued fraction is a real number of the
form [a0, a1, a2, · · ·] with a0 ∈ Z and ak ∈ Z+ for k ≥ 1.

7.2 Theorem: Every rational number is equal to a finite continued fraction.

Proof: Let x = a
b with a ∈ Z and b ∈ Z+. Use the Division Algorithm repeatedly to get

a = q1b + r1 , b = q2r1 + r2 , r1 = q3r3 + r4 , · · · , rn−2 = qnrn−1 + rn

with 0 = rn < rn−1 < · · · < r2 < r1 < b. Then we have

x =
a

b
= q1 +

r1
b

= q1 +
1

b/r1
= q1 +

1

q2 + r2
r1

= q1 +
1

q2 +
1

q3 + r3
r2

= · · · = [q1, q2, · · · , qn].

7.3 Remark: Note that when we write a rational number x as a continued fraction
x = [a0, a1, · · · , an], the integers ak are not unique because we have

[a0, a1, · · · , an, 1] = [a0, a1, · · · , an−1, an + 1].

7.4 Theorem: Let a0 ∈ R and let 0 < ak ∈ R for k ≥ 1. For each n ≥ 0 let cn =
[a0, a1, · · · , an]. Define sequences {pn} and {qn} recursively by p0 = a0, p1 = a1a0 + 1 and
pk = akpk−1 + pk−2 for k ≥ 2, and q0 = 1, q1 = a1 and qk = akqk−1 + qk−2 for k ≥ 2.
Then for all n ≥ 0 we have cn = pn

qn
.

Proof: We have c0 = [a0] = a0 = a0

1 = p0

q0
and c1 = [a0, a1] = a0 + 1

a1
= a1a0+1

a1
= p1

q1
.

Let k ≥ 1 and suppose, inductively, that for a′0, a
′
1, · · · , a′k ∈ R with a′i > 0 for 1 ≤ i ≤ k

we have [a′0, a
′
1, · · · , a′k] =

p′k
q′
k

where {p′n} and {q′n} satisfy the same recursion formulas as

{pn} and {qn}. Then using a′i = ai for i < k and a′k = ak + 1
ak+1

, and noting that p′i = pi
and q′i = qi for i < k, we have

ck+1 = [a0, a1, · · · , ak+1] =
[
a0, a1, · · · , ak−1, ak + 1

ak+1

]
=

p′k
q′k

=
a′kp
′
k−1 + p′k−2

a′kq
′
k−1 + q′k−2

=

(
ak + 1

ak+1

)
pk−1 + pk−2(

ak + 1
ak+1

)
qk−1 + qk−2

=
ak+1akpk−1 + pk−1 + ak+1pk−2
ak+1akqk−1 + qk−1 + ak+1qk−2

=
ak+1(akpk−1 + pk−2) + pk−1
ak+1(akqk−1 + qk−2) + qk−1

=
ak+1pk + pk−1
ak+1qk + qk−1

=
pk+1

qk+1
.
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7.5 Theorem: Let a0 ∈ Z and let ak ∈ Z+ for k ≥ 1. Let cn = [a0, a1, · · · , an] for n ≥ 0.
Let {pn} and {qn} be as in Theorem 7.4 so that cn = pn

qn
. Then

(1) for all k ≥ 0 we have pk+1qk − qk+1pk = (−1)k,
(2) for all k ≥ 0 we have gcd(pk, qk) = 1,

(3) for all k ≥ 0 we have ck+1 − ck = (−1)k
qk+1qk

,

(4) the sequence {cn} converges, and
(5) if we let x = [a0, a1, a2, · · ·] = lim

n→∞
cn then we have c2k < x < c2k+1 for all k ≥ 0.

Proof: To prove Part (1), note that p1q0 − q1p0 = (a1a0 + 1)(1) − (a1)(a0) = 1 and that
for k ≥ 1

pk+1qk − qk+1pk = (ak+1pk + pk−1)qk − (ak+1qk + qk−1)pk = −(pkqk−1 − qkpk−1).

Part (2) follows immediately from Part (1), and Part (3) also follows from Part (1) because

ck+1 − ck =
pk+1

qk+1
− pk

qk
=

pk+1qk − qk+1pk
qk+1qk

=
(−1)k

qk+1qk
.

Since c0 = a0 and ck+1 − ck = (−1)k
qk+1qk

, we have cn = a0 +
n−1∑
k=0

(−1)k
qk+1qk

so Parts (4) and (5)

both follow from Part (2) by the Alternating Series Test.

7.6 Definition: Let a0 ∈ Z and ak ∈ Z+ for k ≥ 1. Then cn = [a0, a1, · · · , an] is called
the nth convergent of x = [a0, a1, a2, · · ·] and pn and qn are called the numerator and
denominator of cn. Note that gcd(pk, qk) = 1 by Part (1) of the above theorem.

7.7 Theorem: Let x ∈ R. Then x is irrational if and only if x = [a0, a1, a2, · · ·] for some
a0 ∈ Z and ak ∈ Z+ for k ≥ 1. In this case we have an = bxnc where {xn} is given by

x0 = x and xk+1 = 1
xk−bxkc for k ≥ 1.

Proof: First let us show that if x = [a0, a1, a2, · · ·] with a0 ∈ Z and ak ∈ Z+ for k ≥ 1 then
we must have x ∈ R \ Q. Let a0 ∈ Z and ak ∈ Z+ for k ≥ 1 and let x = [a0, a1, a2, · · ·].
For each k ≥ 0, let ck = [a0, a1, · · · , ak] = pk

qk
. Suppose, for a contradiction, that x = r

s

with r ∈ Z and s ∈ Z+. For each k ≥ 0, since x lies strictly between ck and ck+1 we have
x 6= ck, that is r

s 6=
pk

qk
, and so rqk 6= spk. It follows that for every k ≥ 0 we have

0 < 1
sqk
≤ |rqk−spk|

sqk
=
∣∣ r
s −

pk

qk

∣∣ = |x− ck| < |ck+1 − ck| = 1
qk+1qk

< 1
qk2

and so 0 < 1
s < 1

qk
. But this is not possible since qk →∞ as k →∞, and so x ∈ R \Q.

Next, let us show that if x = [a0, a1, a2, · · ·] with a0 ∈ Z and ak ∈ Z+ for k ≥ 1 then
the terms an are uniquely determined by the formula in the statement of the theorem.
Let a0 ∈ Z and let ak ∈ Z+ for k ≥ 1 and let {xn} be the sequence given by x0 = x
and xk+1 = 1

xk−bxkc for k ≥ 1. For all n ≥ 1 we have [a0, a1, · · · , an] = a0 + 1
[a1,a2,···,an]

.

Taking the limit on both sides as n → ∞ we obtain [a0, a1, · · ·] = a0 + 1
[a1,a2,···] . Since

[a0, a1, · · ·] > a0 and [a1, a2, · · ·] > a1 (by Part 5 of Theorem 7.5) we have

a0 < [a0, a1, · · ·] = a0 +
1

[a1, a2, · · ·]
< a0 +

1

a1
≤ a0 + 1

so that a0 < x0 < a0 + 1 and hence a0 = bx0c. Also, since [a0, a1, · · ·] = a0 + 1
[a1,a2,···] , we

have [a1, a2, · · ·] = 1
[a0,a1,···]−a0

= 1
x0−bx0c = x1. Repeating the above argument inductively,

we find that for all n ≥ 1 we have an = bxnc and xn = [an, an+1, an+2, · · ·].
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Finally, we show that if x ∈ R \Q and if an is given by the formula in the statement
of the theorem then we do indeed have x = [a0, a1, · · ·]. Let x ∈ R \ Q. Let x0 = x
and for k ≥ 0 let ak = bxkc and xk+1 = 1

xk−bxkc . Note that x0 = x /∈ Q and that

whenever xk /∈ Q we have xk − bxkc /∈ Q and 0 < xk − bxkc < 1 and hence, since
xk+1 = 1

xk−bxkc , we have xk+1 /∈ Q and xk+1 > 1. It follows, by induction, that for all

k ≥ 0 we have xk /∈ Q and for all k ≥ 1 we have xk > 1 and ak = bxkc ≥ 1. Since
xk+1 = 1

xk−bxkc = 1
xk−ak

we have xk = ak + 1
xk+1

. Let a′k = ak for 0 ≤ k ≤ n and

a′n+1 = xn+1, and let c′k = [a′0, a
′
1, · · · , a′k] =

p′k
q′
k

for 0 ≤ k ≤ n + 1. Note that p′k = pk

and q′k = qk for 0 ≤ k ≤ n, and so p′n+1 = a′n+1p
′
n + p′n−1 = xn+1pn + pn−1 and similarly

q′n+1 = xn+1qn + qn−1. For 0 ≤ k ≤ n we have

[a0, a1, · · · , ak, xk+1] = [a0, a1, · · · , ak−1, ak + 1
xk+1

] = [a0, a1, · · · , ak−1, xk]

and hence

x = [x0] = [a0, x1] = [a0, a1, x2] = · · · = [a0, a1, · · · , an, xn+1] =
p′n+1

q′
n+1

and

x− cn =
p′n+1

q′
n+1
− pn

qn
= xn+1pn+pn−1

xn+1qn+qn−1
− pn

qn
= pn−1qn−qn−1pn

qn(xn+1qn+qn−1)
= (−1)n−1

qn(xn+1qn+qn−1)
.

Thus |x−cn| = 1
qn(xn+1qn+qn−1)

< 1
qn(qn+qn−1)

−→ 0 so that x = [a0, a1, a2, · · ·], as required.

7.8 Note: When x = [a0, a1, a2, · · ·] with a0 ∈ Z and ak ∈ Z+ for k ≥ 1, so that we have
ak = bxkc for all k ≥ 0 where x0 = x and xk+1 = 1

xk−ak
for k ≥ 0, the proof of the above

theorem shows that

xn = [an, an+1, an+2, · · ·] and x = [a0, a1, · · · , an−1, xn].

7.9 Example: Express
√

14 as a continued fraction.

Solution: We let x0 = x =
√

14 then calculate some terms in the sequences {xn} and {an}
using the recursion formulas ak = bxkc and xk+1 = 1

xk−ak
.

k xk ak

0
√

14 3

1 1√
14−3 =

√
14+3
5 1

2 5√
14−2 =

√
14+2
2 2

3 2√
14−2 =

√
14+2
5 1

4 5√
14−3 =

√
14+3
1 6

5 1√
14−3 =

√
14+3
5 1

We see that the values of xk begin to repeat with period 4 so that xk+4 = xk and ak+4 = ak
for all k ≥ 1. Thus we have

√
14 = [3, 1, 2, 1, 6, 1, 2, 1, 6, · · ·] =

[
3, 1, 2, 1, 6

]
.

7.10 Note: Let x ∈ R \Q with x > 1. Say x = [a0, a1, a2, · · ·] with a0 ∈ Z and ak ∈ Z+.
Since x > 1 we have a0 = bxc ≥ 1. For all n ≥ 0, note that [0, a0, a1, · · · , an] = 1

[a0,a1,···,an]
.

By taking the limit on both sides we obtain [0, a0, a1, a2, · · ·] = 1
[a0,a1,a2,···] . It follows that

1
x = [0, a0, a1, a2, · · ·]. Also note that the convergents of x, given by cn = [a0, a1, · · · , an],
and the convergents of 1

x , given by dn = [0, a0, a1, · · · , an−1], are related by d0 = 0 and
dn+1 = 1

cn
for all n ≥ 0.
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7.11 Theorem: Let x = [a0, a1, a2, · · ·] with a0 ∈ Z and ak ∈ Z+ for k ≥ 1. For n ≥ 0,
let cn = [a0, a1, · · · , an] = pn

qn
. Let r ∈ Z and s ∈ Z+. Then

(1) for all k ≥ 0, if |sx− r| < |qkx− pk| then s ≥ qk+1,
(2) for all k ≥ 0, if

∣∣x− r
s

∣∣ < ∣∣x− pk

qk

∣∣ then s > qk, and

(3) if
∣∣x− r

s

∣∣ < 1
2s2 then r

s = ck for some k ≥ 0.

Proof: To prove Part 1 let k ≥ 0, suppose that |sxk − r| < |qkx − pk| and suppose, for a
contradiction, that s < qk+1. Note that to get (r, s) = u(pk, qk) + v(pk+1, qk+1) we need(

u
v

)
=

(
pk pk+1

qk qk+1

)−1(
r
s

)
=

1

pkqk+1 − qkpk+1

(
qk+1 −pk+1

−qk pk

)(
r
s

)
= (−1)k

(
−qk+1 pk+1

qk −pk

)(
r
s

)
= (−1)k

(
−qk+1r + pk+1s
−qk+1r + pk+1s

)
.

Thus we choose u = (−1)k(−qk+1r + pk+1s) and v = (−1)k(−qk+1r + pk+1s). Note that
u ∈ Z and v ∈ Z and we have r = upk + vpk+1 and s = uqk + vqk+1. We claim that
u 6= 0. Suppose, for a contradiction, that u = 0. Then we have s = vqk+1 which implies
that v > 0 (since s > 0 and qk+1 > 0) and hence that s ≥ qk+1. This contradicts our
assumption that s < qk+1, and so we have u 6= 0, as claimed. We claim that v 6= 0.
Suppose, for a contradiction, that v = 0. Then we have r = upk and s = uqk, and so
|sx − r| = |uqkx − upk| = |u||qkx − pk| ≥ |qkx − pk|. This contradicts our assumption
that |sx − r| < |qkx − pk|, and so we have v 6= 0, as claimed. Note that u and v have
opposite signs (that is uv < 0) because if we had u > 0 and v > 0 then we would
have s = uqk + vqk+1 > qk+1, and if we have u < 0 and v < 0 then we would have
s = uqk + vqk+1 < 0. Note that (qkx−pk) and (qk+1x−pk+1) have opposite signs because
x lies between ck = pk

qk
and ck+1 = pk+1

qk+1
so that x− ck and x− ck+1 have opposite signs.

Thus, since (qkx− pk)u and (qk+1x− pk+1)v have the same sign, we have

|sx− r| =
∣∣(uqk + vqk+1)x− (upk + vpk+1)

∣∣ =
∣∣(qkx− pk)u + (qk+1x− pk+1)v

∣∣
= |qkx− pk||u|+ |qk+1x− pk+1||v| > |qkx− pk|.

This contradicts the fact that |sx− r| < |qkx− pk| and completes the proof of Part 1.
To prove Part 2 let k ≥ 0, suppose that

∣∣x − r
s

∣∣ <
∣∣x − pk

qk

∣∣ and suppose, for a
contradiction, that s ≤ qk. Then we have

|sx− r| = s
∣∣x− r

s

∣∣ < s
∣∣x− pk

qk

∣∣ ≤ qk
∣∣x− pk

qk

∣∣ = |qkx− pk|.
But then, by Part 2, we have s ≥ qk+1 so that s > qk, giving the desired contradiction.

To prove Part 3, suppose that
∣∣x− r

s

∣∣ < 1
2s2 . Since q0 = 1 and {qn} is increasing with

qn −→ ∞ as n → ∞, we can choose k ≥ 0 so that qk ≤ s < qk+1. We claim that r
s = ck.

Suppose, for a contradiction, that r
s 6= ck. Since s < qk+1 it follows from Part (1) that

|qkx−pk| ≤ |sx−r|, and so
∣∣x− pk

qk

∣∣ = 1
qk
|qkx−pk| ≤ 1

qk
|sx−r| = s

qk

∣∣x− r
s

∣∣ < s
qk
· 1
2s2 = 1

2sqk
.

Since r
s 6= ck, that is r

s 6=
pk

qk
, we have rqk − spk 6= 0 and so

∣∣ r
s −

pk

qk

∣∣ = |rqk−spk|
sqk

≥ 1
sqk

.
Thus we have

1
sqk
≤
∣∣ r
s −

pk

qk

∣∣ ≤ ∣∣ rs − x
∣∣+
∣∣x− pk

qk

∣∣ < 1
2s2 + 1

2sqk
.

Subtracting 1
2sqk

from both sides gives 1
2sqk

< 1
2s2 so that s < qk. This contradicts the fact

that qk ≤ s, and so we have r
s = ck, as claimed.
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7.12 Corollary: Let d ∈ Z+ be a non-square and let r, s ∈ Z+. If |r2 − ds2| ≤
√
d then

r
s is equal to one of the convergents of

√
d.

Proof: Suppose that |r2 − ds2| ≤
√
d. We consider two cases. Case 1: suppose that

0 < r2− ds2 ≤
√
d. Since (r+ s

√
d)(r− s

√
d) = r2− ds2 > 0, we have r− s

√
d > 0, that is

r > s
√
d. It follows that 0 < r

s −
√
d = r−s

√
d

s = r2−ds2
s(r+s

√
d)
≤

√
d

s(r+s
√
d)

<
√
d

s(s
√
d+s
√
d)

= 1
2s2 .

By Part 3 of the above theorem, r
s must be equal to one of the convergents of

√
d.

Case 2: suppose that −
√
d < r2 − ds2 < 0. Since (r + s

√
d)(r − s

√
d) = r2 − ds2 < 0

we have r − s
√
d < 0 so that r < s

√
d. It follows that

0 < s
r −

1√
d

= s
√
d−r

r
√
d

= s2d−r2
r
√
d(s
√
d+r)

<
√
d

r
√
d(s
√
d+r)

<
√
d

r
√
d(r+r)

= 1
2r2 .

By Part 3 of the above theorem, s
r must be equal to one of the convergents of 1√

d
. It then

follows from Note 7.10, that r
s is equal to one of the convergents of

√
d.

7.13 Corollary: Let d ∈ Z+ be a non-square and let ck = pk

qk
be the convergents of

√
d.

The smallest unit u > 1 in Z[
√
d] is equal to u = pk + qk

√
d where k is the smallest index

for which p2k − dq2k = ±1.

Proof: Suppose that v is a unit in Z[
√
d ] with v > 1. Recall, from Theorem 6.10, that

v = r + s
√
d for some r, s ∈ Z+ with r2 − ds2 = N(v) = ±1. Since

∣∣r2 − ds2
∣∣ = 1 ≤

√
d

it follows, from the above corollary, that r
s = pk

qk
for some index k. Since r, s, pk, qk ∈ Z+

and r
s = pk

qk
and gcd(pk, qk) = 1, we must have r = tpk and s = tqk for some t ∈ Z+. Since

1 =
∣∣r2 − ds2

∣∣ =
∣∣t2p2k − dt2q2k

∣∣ = t2
∣∣p2k − dq2k

∣∣, we must have t = 1 so that r = pk and

s = qk. This shows that every unit v in Z[
√
d ] with v > 1 is equal to uk = pk + qk

√
d for

some index k for which p2k − dq2k = ±1.
On the other hand, if k is an index for which p2k − dq2kd = ±1 then the element

uk = pk + qk
√
d ∈ Z[

√
d ] is a unit because N(uk) = ±1.

7.14 Example: Find the smallest unit u ∈ Z[
√

19 ] with u > 1.

Solution: We find some terms in the sequences {xn} and {an} using the recursion formulas
x0 = x =

√
19 and ak = bxkc and xk+1 = 1

xk−ak
for k ≥ 0, and we find some terms in the

sequences {pn} and {qn} using the recursion formulas p0 = a0, p1 = a1a0 + 1, q0 = 1 and
q1 = a1 and pk = akpk−1 + pk−2 and qk = akqk−1 + qk−2 for k ≥ 2, and we calculate the
norms Nk = N(pk + qk

√
d) = pk

2 − dqk
2.

k xk ak pk qk Nk

0
√

19 4 4 1 −3

1 1√
19−4 =

√
19+4
3 2 9 2 5

2 3√
19−2 =

√
19+2
5 1 13 3 −2

3 5√
19−3 =

√
19+3
2 3 48 11 5

4 2√
19−3 =

√
19+3
5 1 61 14 −3

5 5√
19−2 =

√
19+2
3 2 170 39 1

6 3√
19−4 =

√
19+4
1 8

By the above corollary, the smallest unit u in Z[
√

19 ] with u > 1 is u = 170 + 39
√

19.
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7.15 Definition: A quadratic irrational is an irrational number which is a root of a
quadratic polynomial with coefficients in Z.

7.16 Theorem: The quadratic irrational numbers are the numbers of the form x = r+
√
d

s
for some non-square d ∈ Z+ and some r, s ∈ Z with s 6= 0 and s

∣∣(r2 − d).

Proof: Suppose that x = r+
√
d

s where d ∈ Z+ is a non-square and r, s ∈ Z with s 6= 0 and

s
∣∣(r2 − d). Then x is irrational and we have sx − r =

√
d so that s2x2 − 2 rs x + r2 = d,

and so x is a root of f(x) = sx2 − 2rx + r2−d
s ∈ Z[x].

Conversely, let x be an irrational number which is a root of f(x) = ax2 + bx + c

where a, b, c ∈ Z with a 6= 0. By the Quadratic Formula, we have x = −b±
√
b2−4ac
2a . Let

d = b2 − 4ac ∈ Z. Since x is irrational number, d ≥ 0 and d is not a square. When

x = −b+
√
b2−4ac
2a we have x = r+

√
d

s for r = −b and s = 2a. When x = −b−
√
b2−4ac
2a we

have x = r+
√
d

s for r = b and s = −2a. In either case, s 6= 0, r2 − d = 4ac and s
∣∣(r2 − d).

7.17 Theorem: Let x = r+
√
d

s where d ∈ Z+ is a nonsquare and r, s ∈ Z with s 6= 0
and s

∣∣(d − r2). When we let x0 = x, ak = bxkc and xk+1 = 1
xk−ak

for k ≥ 0 so that

x = [a0, a1, a2, · · ·], we have xk = rk+
√
d

sk
where rk and sk are given recursively by r0 = r,

s0 = s, rk+1 = aksk − rk and sk+1 =
d−r2k+1

sk
, and we have rk, sk ∈ Z with sk 6= 0 and

sk
∣∣(d− r2k).

Proof: Let rk and sk be defined by the given recursion formula. If we suppose, inductively,
that rk, sk ∈ Z with sk 6= 0 and sk

∣∣(d − r2k) then we have rk+1 = aksk − rk ∈ Z, and

sk+1 =
d−r2k+1

sk
6= 0 since d is a nonsquare, and

sk+1 =
d−r2k+1

sk
= d−(aksk−rk)2

sk
= 2akrk − a2ksk +

d−r2k
sk
∈ Z

since sk
∣∣(d − r2k), and

d−r2k+1

sk+1
= sk ∈ Z so that sk+1

∣∣(d − r2k+1). Also, if we suppose,

inductively, that xk = rk+
√
d

sk
then we have

xk+1 = 1
xk−ak

= 1
rk+
√

d

sk
−ak

=
sk√

d−(aksk−rk)
=

√
d+(aksk−rk)

(d−(aksk−rk)2)/sk
=

rk+1+
√
d

sk+1
.

7.18 Theorem: Let x = [a0, a1, a3, · · ·] with ak ∈ Z+ for all k ≥ 0. Let ck = pk

qk
by the

kth convergent of x. Then [ak, ak−1, · · · , a1, a0] = pk

pk−1
and [ak, ak−1, · · · , a2, a1] = qk

qk−1
.

Proof: Since p0 = a0 and p1 = a1a0 + 1 we have p1

p0
= a1 + 1

a0
= [a1, a0]. Suppose,

inductively, that pk−1

pk−2
= [ak−1, · · · , a1, a0]. Then since pk = akpk−1 + pk−2, we have

pk
pk−1

= ak +
pk−2
pk−1

= ak +
1

pk−1

pk−2

= ak +
1

[ak−1, · · · , a1, a0]
= [ak, ak−1, · · · , a1, a0].

Also, since q0 = 1 and q1 = a1 we have q1
q0

= a1 = [a1]. Suppose, inductively, that
qk−1

qk−2
= [ak−1, · · · , a2, a1]. Then since qk = akak−1 + qk−2 we have

qk
qk−1

= ak +
qk−2
qk−1

= ak +
1

qk−1

qk−2

= ak +
1

[ak−1, · · · , a2, a1]
= [ak, ak−1, · · · , a2, a1].
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7.19 Theorem: (Lagrange) Let x = [a0, a1, a2, · · ·] where a0 ∈ Z and ak ∈ Z+ for k ≥ 1.
Then the sequence {an} is eventually periodic if and only if x is a quadratic irrational.

Proof: Suppose that {an} is eventually periodic, say x = [a0, a1, · · · , an−1, an, · · · , an+m].
Let y = [an, · · · , an+m]. Note that y = [an, · · · , an+m, an, · · · , an+m] = [an, · · · , am+n, y].

By Theorem 7.4, we have y =
p′m+1

q′
m+1

=
yp′m+p′m−1

yq′m+q′
m−1

where c′k =
p′k
q′
k

is the kth convergent of

y. It follows that q′m y2 + (q′m−1 − p′m)y − p′m−1 = 0 and so y is a quadratic irrational.
Also, note that x = [a0, a1, · · · , an−1, an, · · · , an+m] = [a0, a1, · · · , an−1, y] so, again from
Theorem 7.4, we have x = pn

qn
= ypn−1+pn−2

yqn−1+qn−2
where ck = pk

qk
is the kth convergent of x.

Verify, as an exercise, that since y is a quadratic irrational and x = ypn−1+pn−2

yqn−1+qn−2
, it follows

that x is a quadratic irrational.

Suppose, conversely, that x is a quadratic irrational, say x = r+
√
d

s where d ∈ Z+ is a

non-square and r, s ∈ Z with s 6= 0 and s
∣∣(d−r2). Recall that the conjugate of x in Q[

√
d ]

is given by x = r−
√
d

s . From Theorem 7.17, we have ak = bxkc with xk = rk+
√
d

sk
, where

rk and sk are given by r0 = r, s0 = s, rk+1 = aksk − rk and sk+1 =
d−r2k+1

sk
. Recall from

Note 7.8 that x = [a0, a1, · · · , ak−1, xk] and so from Theorem 7.4 we have x = xkpk−1+pk−2

xkqk−1+qk−2

where ck = pk

qk
is the kth convergent of x. Taking the conjugate gives x = xkpk−1+pk−2

xkqk−1+qk−2
.

Solving for xk gives

xk =
pk−2 − qk−2x

qk−1x− pk−1
= − qk−2(x− ck−2)

qk−1(x− ck−1)
.

Since lim
k→∞

x− ck−2
x− ck−1

=
x− x

x− x
= 1, it follows that the right hand side is eventually negative,

so we can choose m ≥ 1 such that xk < 0 for all k ≥ m. We also note that xk > 0 for all
k ≥ 1 (since xk = [ak, ak+1, · · ·] with each ai ∈ Z+) and so, for all k ≥ m, we have

0 < xk − xk = rk+
√
d

sk
− rk−

√
d

sk
= 2
√
d

sk

and hence sk > 0. Since sk+1 =
d−r2k
sk

so that d− r2k = sksk+1, it follows that for all k ≥ m

we have 0 < sk ≤ sksk+1 = d − r2k ≤ d and also, since 0 < d − r2k we have r2 < d so

that |r| ≤
√
d. Since 0 < sk ≤ d and |r| ≤

√
d, we see that for k ≥ m there are only

finitely many possibilities for the pair (rk, sk), hence only finitely many possibilities for

xk = rk+
√
d

sk
. Thus the sequence {xk}, hence also the sequence {ak}, is eventually periodic.
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7.20 Theorem: Let x = [a0, a1, a2, · · ·] where a0 ∈ Z and ak ∈ Z+ for k ≥ 1. Then
the sequence {an} is purely periodic if and only if x is a quadratic irrational with x > 1
and −1 < x < 0. In this case, if x = [a0, a1, · · · , a`−1] and y = [a`−1, · · · , a1, a0] we have
x = − 1

y .

Proof: We shall prove only one direction of the theorem. Suppose that {ak} is purely
periodic, say x = [a0, a1, · · · , a`−1] and let y = [a`−1, · · · , a1, a0]. Let ck = pk

qk
be the kth

convergent for x and let c′k =
p′k
q′
k

be the kth convergent for y. By Theorems 7.4 and 7.18

we know that

p′l−1
q′l−1

= [al−1, · · · , a1, a0] =
pl−1
pl−2

and
p′l−2
q′l−2

= [al−1, · · · , a2, a1] =
ql−1
ql−2

.

From the formula pkqk−1 − qkpk−1 = (−1)k−1, we see that gcd(pk, qk) = gcd(pk, pk−1) =

gcd(qk, qk−1 = 1 for all k, and so the fact that
p′l−1

q′
l−1

= pl−1

pl−2
and

p′l−2

q′
l−2

= ql−1

ql−2
implies that

p′l−1 = pl−1 , q′l−1 = pl−2 , p′l−2 = ql−1 and q′l−2 = ql−2 .

Since x = [a0, a1, · · · , al−1, a0, a1, · · · , al−1 ] = [a0, a1, · · · , al−1, x] = x pl−1+pl−2

x ql−1+ql−2
we have

x2ql−1 + x(ql−2 − pl−2)− pl−2 = 0, so x is a root of the polynomial

g(x) = ql−1 x
2 + (ql−2 − pl−1)x− pl−2 .

Since y = [al−1, · · · , a1, a0, al−1, · · · , a1, a0 ] = [al−1, · · · , a1, a0, y] =
y p′l−1+p′l−2

y q′
l−1

+q′
l−2

we have

y2q′l−1 + y(q′l−2 − p′l−1) − p′l−2 = 0, that is y2pl−2 + y(ql−2 − pl−1) − ql−1 = 0. Multiply

through by − 1
y2 to get −pl−2 − 1

y (ql−2 − pl−1) + 1
y2 ql−1 = 0, and so − 1

y is also a root of

g(x). Since bxc = a0 = al ≥ 1 and byc = al−1 ≥ 1 we have x > 1 and y > 1. Since y > 1
we have − 1

y ∈ (−1, 0). Since x > 1 and y ∈ (−1, 0) we have x 6= − 1
y and so x and − 1

y are

the two distinct roots of g(x). Since g(x) has coefficients in Z, its two roots are conjugates
so we have x = − 1

y ∈ (−1, 0).
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7.21 Theorem: Let d ∈ Z+ be a non-square. Let
√
d = [a0, a1, a2, · · ·] with a0 ∈ Z and

ak ∈ Z+ for k ≥ 1. Let ` be the minimum period of {an}. Let cn = [a0, a1, · · · , an] = pn

qn
.

Let x0 =
√
d and xk+1 = 1

xk−bxkc for k ≥ 0. Write xk = rk+
√
d

sk
. Then

(1) we have a` = 2a0 so that
√
d =

[
a0, a1, a2, · · · , a`−1, 2a0

]
,

(2) for all k ≥ 0 we have pk
2 − d qk

2 = (−1)k+1sk+1, and
(3) the smallest unit u in Z[

√
d] with u > 1 is equal to u = p`−1 + q`−1

√
d and we have

uk = pk`−1 + qk`−1
√
d for all k ∈ Z+.

Proof: Let us prove Part 1. We have
√
d = [a0, a1, a2, · · ·] with a0 = b

√
dc. For any c ∈ Z we

have c+
√
d = [c+a0, a1, a2, · · ·]. Let x = b

√
dc+
√
d = a0+

√
d = [2a0, a1, a2, a3, · · ·]. Then

x > 1 and x = b
√
dc−
√
d ∈ (−1, 0) so, by the previous theorem, the continued fraction for

x is purely periodic. Thus we have x = [2a0, a1, a2, · · · , a`−1, a`, · · ·] = [2a0, a1, a2, · · · , a`−1]
with a` = 2a0 and hence

√
d = [a0, a1, · · · , a`] with a` = 2a0.

Let us prove Part 2. Let x =
√
d = [a0, a1, a2, · · ·] and xk = [ak, ak+1, · · ·]. We have

√
d = [a0, a1, · · · , ak, xk+1]

=
xk+1pk + pk−1
xk+1qk + qk−1

=

rk+1+
√
d

sk+1
pk + pk−1

rk+1+
√
d

sk+1
qk + qk−1

=
(rk+1 +

√
d)pk + sk+1pk−1

(rk+1 +
√
d)qk + sk+1qk−1

.

and hence

dqk + (rk+1qk + sk+1qk−1)
√
d = (rk+1pk + sk+1pk−1) + pk

√
d.

It follows that dqk = rk+1pk + sk+1pk−1 (1) and pk = rk+1qk + sk+1qk−1 (2). Multiply
Equation (1) by −qk and Equation (2) by pk and add to get

p2k − dq2k = sk+1(pkqk−1 − qkpk−1).

Recall from Part 1 of Theorem 7.5 that pkqk−1 − qkpk−1 = (−1)k+1, and so we have
p2k − dq2k = (−1)k+1sk+1 as required.
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