Chapter 7. Continued Fractions

7.1 Definition: Let $a_{0}, a_{1}, a_{2}, \cdots \in \mathbb{R}$ with $a_{k}>0$. For $n \geq 0$ we write

$$
\left[a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots+\frac{1}{a_{n-1}+\frac{1}{a_{n}}}}}
$$

and

$$
\left[a_{0}, a_{1}, a_{2}, \cdots\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\ldots}}=\lim _{n \rightarrow \infty}\left[a_{0}, a_{1}, a_{2}, \cdots, a_{n}\right]
$$

A finite continued fraction is a rational number of the form $\left[a_{0}, a_{1}, \cdots, a_{n}\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $1 \leq k \leq n$, and an infinite continued fraction is a real number of the form $\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$.
7.2 Theorem: Every rational number is equal to a finite continued fraction.

Proof: Let $x=\frac{a}{b}$ with $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^{+}$. Use the Division Algorithm repeatedly to get

$$
a=q_{1} b+r_{1}, b=q_{2} r_{1}+r_{2}, r_{1}=q_{3} r_{3}+r_{4}, \cdots, r_{n-2}=q_{n} r_{n-1}+r_{n}
$$

with $0=r_{n}<r_{n-1}<\cdots<r_{2}<r_{1}<b$. Then we have

$$
x=\frac{a}{b}=q_{1}+\frac{r_{1}}{b}=q_{1}+\frac{1}{b / r_{1}}=q_{1}+\frac{1}{q_{2}+\frac{r_{2}}{r_{1}}}=q_{1}+\frac{1}{q_{2}+\frac{1}{q_{3}+\frac{r_{3}}{r_{2}}}}=\cdots=\left[q_{1}, q_{2}, \cdots, q_{n}\right] .
$$

7.3 Remark: Note that when we write a rational number x as a continued fraction $x=\left[a_{0}, a_{1}, \cdots, a_{n}\right]$, the integers a_{k} are not unique because we have

$$
\left[a_{0}, a_{1}, \cdots, a_{n}, 1\right]=\left[a_{0}, a_{1}, \cdots, a_{n-1}, a_{n}+1\right] .
$$

7.4 Theorem: Let $a_{0} \in \mathbb{R}$ and let $0<a_{k} \in \mathbb{R}$ for $k \geq 1$. For each $n \geq 0$ let $c_{n}=$ [$a_{0}, a_{1}, \cdots, a_{n}$]. Define sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ recursively by $p_{0}=a_{0}, p_{1}=a_{1} a_{0}+1$ and $p_{k}=a_{k} p_{k-1}+p_{k-2}$ for $k \geq 2$, and $q_{0}=1, q_{1}=a_{1}$ and $q_{k}=a_{k} q_{k-1}+q_{k-2}$ for $k \geq 2$. Then for all $n \geq 0$ we have $c_{n}=\frac{p_{n}}{q_{n}}$.
Proof: We have $c_{0}=\left[a_{0}\right]=a_{0}=\frac{a_{0}}{1}=\frac{p_{0}}{q_{0}}$ and $c_{1}=\left[a_{0}, a_{1}\right]=a_{0}+\frac{1}{a_{1}}=\frac{a_{1} a_{0}+1}{a_{1}}=\frac{p_{1}}{q_{1}}$. Let $k \geq 1$ and suppose, inductively, that for $a_{0}^{\prime}, a_{1}^{\prime}, \cdots, a_{k}^{\prime} \in \mathbb{R}$ with $a_{i}^{\prime}>0$ for $1 \leq i \leq k$ we have $\left[a_{0}^{\prime}, a_{1}^{\prime}, \cdots, a_{k}^{\prime}\right]=\frac{p_{k}^{\prime}}{q_{k}^{\prime}}$ where $\left\{p_{n}^{\prime}\right\}$ and $\left\{q_{n}^{\prime}\right\}$ satisfy the same recursion formulas as $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$. Then using $a_{i}^{\prime}=a_{i}$ for $i<k$ and $a_{k}^{\prime}=a_{k}+\frac{1}{a_{k+1}}$, and noting that $p_{i}^{\prime}=p_{i}$ and $q_{i}^{\prime}=q_{i}$ for $i<k$, we have

$$
\begin{aligned}
c_{k+1} & =\left[a_{0}, a_{1}, \cdots, a_{k+1}\right]=\left[a_{0}, a_{1}, \cdots, a_{k-1}, a_{k}+\frac{1}{a_{k+1}}\right]=\frac{p_{k}^{\prime}}{q_{k}^{\prime}}=\frac{a_{k}^{\prime} p_{k-1}^{\prime}+p_{k-2}^{\prime}}{a_{k}^{\prime} q_{k-1}^{\prime}+q_{k-2}^{\prime}} \\
& =\frac{\left(a_{k}+\frac{1}{a_{k+1}}\right) p_{k-1}+p_{k-2}}{\left(a_{k}+\frac{1}{a_{k+1}}\right) q_{k-1}+q_{k-2}}=\frac{a_{k+1} a_{k} p_{k-1}+p_{k-1}+a_{k+1} p_{k-2}}{a_{k+1} a_{k} q_{k-1}+q_{k-1}+a_{k+1} q_{k-2}} \\
& =\frac{a_{k+1}\left(a_{k} p_{k-1}+p_{k-2}\right)+p_{k-1}}{a_{k+1}\left(a_{k} q_{k-1}+q_{k-2}\right)+q_{k-1}}=\frac{a_{k+1} p_{k}+p_{k-1}}{a_{k+1} q_{k}+q_{k-1}}=\frac{p_{k+1}}{q_{k+1}} .
\end{aligned}
$$

7.5 Theorem: Let $a_{0} \in \mathbb{Z}$ and let $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$. Let $c_{n}=\left[a_{0}, a_{1}, \cdots, a_{n}\right]$ for $n \geq 0$. Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be as in Theorem 7.4 so that $c_{n}=\frac{p_{n}}{q_{n}}$. Then
(1) for all $k \geq 0$ we have $p_{k+1} q_{k}-q_{k+1} p_{k}=(-1)^{k}$,
(2) for all $k \geq 0$ we have $\operatorname{gcd}\left(p_{k}, q_{k}\right)=1$,
(3) for all $k \geq 0$ we have $c_{k+1}-c_{k}=\frac{(-1)^{k}}{q_{k+1} q_{k}}$,
(4) the sequence $\left\{c_{n}\right\}$ converges, and
(5) if we let $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]=\lim _{n \rightarrow \infty} c_{n}$ then we have $c_{2 k}<x<c_{2 k+1}$ for all $k \geq 0$.

Proof: To prove Part (1), note that $p_{1} q_{0}-q_{1} p_{0}=\left(a_{1} a_{0}+1\right)(1)-\left(a_{1}\right)\left(a_{0}\right)=1$ and that for $k \geq 1$

$$
p_{k+1} q_{k}-q_{k+1} p_{k}=\left(a_{k+1} p_{k}+p_{k-1}\right) q_{k}-\left(a_{k+1} q_{k}+q_{k-1}\right) p_{k}=-\left(p_{k} q_{k-1}-q_{k} p_{k-1}\right)
$$

Part (2) follows immediately from Part (1), and Part (3) also follows from Part (1) because

$$
c_{k+1}-c_{k}=\frac{p_{k+1}}{q_{k+1}}-\frac{p_{k}}{q_{k}}=\frac{p_{k+1} q_{k}-q_{k+1} p_{k}}{q_{k+1} q_{k}}=\frac{(-1)^{k}}{q_{k+1} q_{k}} .
$$

Since $c_{0}=a_{0}$ and $c_{k+1}-c_{k}=\frac{(-1)^{k}}{q_{k+1} q_{k}}$, we have $c_{n}=a_{0}+\sum_{k=0}^{n-1} \frac{(-1)^{k}}{q_{k+1} q_{k}}$ so Parts (4) and (5) both follow from Part (2) by the Alternating Series Test.
7.6 Definition: Let $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$. Then $c_{n}=\left[a_{0}, a_{1}, \cdots, a_{n}\right]$ is called the $n^{\text {th }}$ convergent of $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ and p_{n} and q_{n} are called the numerator and denominator of c_{n}. Note that $\operatorname{gcd}\left(p_{k}, q_{k}\right)=1$ by Part (1) of the above theorem.
7.7 Theorem: Let $x \in \mathbb{R}$. Then x is irrational if and only if $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ for some $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$. In this case we have $a_{n}=\left\lfloor x_{n}\right\rfloor$ where $\left\{x_{n}\right\}$ is given by

$$
x_{0}=x \text { and } x_{k+1}=\frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor} \text { for } k \geq 1
$$

Proof: First let us show that if $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$ then we must have $x \in \mathbb{R} \backslash \mathbb{Q}$. Let $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$ and let $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$. For each $k \geq 0$, let $c_{k}=\left[a_{0}, a_{1}, \cdots, a_{k}\right]=\frac{p_{k}}{q_{k}}$. Suppose, for a contradiction, that $x=\frac{r}{s}$ with $r \in \mathbb{Z}$ and $s \in \mathbb{Z}^{+}$. For each $k \geq 0$, since x lies strictly between c_{k} and c_{k+1} we have $x \neq c_{k}$, that is $\frac{r}{s} \neq \frac{p_{k}}{q_{k}}$, and so $r q_{k} \neq s p_{k}$. It follows that for every $k \geq 0$ we have

$$
0<\frac{1}{s q_{k}} \leq \frac{\left|r q_{k}-s p_{k}\right|}{s q_{k}}=\left|\frac{r}{s}-\frac{p_{k}}{q_{k}}\right|=\left|x-c_{k}\right|<\left|c_{k+1}-c_{k}\right|=\frac{1}{q_{k+1} q_{k}}<\frac{1}{q_{k}^{2}}
$$

and so $0<\frac{1}{s}<\frac{1}{q_{k}}$. But this is not possible since $q_{k} \rightarrow \infty$ as $k \rightarrow \infty$, and so $x \in \mathbb{R} \backslash \mathbb{Q}$.
Next, let us show that if $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$ then the terms a_{n} are uniquely determined by the formula in the statement of the theorem. Let $a_{0} \in \mathbb{Z}$ and let $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$ and let $\left\{x_{n}\right\}$ be the sequence given by $x_{0}=x$ and $x_{k+1}=\frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor}$ for $k \geq 1$. For all $n \geq 1$ we have $\left[a_{0}, a_{1}, \cdots, a_{n}\right]=a_{0}+\frac{1}{\left[a_{1}, a_{2}, \cdots, a_{n}\right]}$. Taking the limit on both sides as $n \rightarrow \infty$ we obtain $\left[a_{0}, a_{1}, \cdots\right]=a_{0}+\frac{1}{\left[a_{1}, a_{2}, \cdots\right]}$. Since $\left[a_{0}, a_{1}, \cdots\right]>a_{0}$ and $\left[a_{1}, a_{2}, \cdots\right]>a_{1}$ (by Part 5 of Theorem 7.5) we have

$$
a_{0}<\left[a_{0}, a_{1}, \cdots\right]=a_{0}+\frac{1}{\left[a_{1}, a_{2}, \cdots\right]}<a_{0}+\frac{1}{a_{1}} \leq a_{0}+1
$$

so that $a_{0}<x_{0}<a_{0}+1$ and hence $a_{0}=\left\lfloor x_{0}\right\rfloor$. Also, since $\left[a_{0}, a_{1}, \cdots\right]=a_{0}+\frac{1}{\left[a_{1}, a_{2}, \cdots\right]}$, we have $\left[a_{1}, a_{2}, \cdots\right]=\frac{1}{\left[a_{0}, a_{1}, \cdots\right]-a_{0}}=\frac{1}{x_{0}-\left\lfloor x_{0}\right\rfloor}=x_{1}$. Repeating the above argument inductively, we find that for all $n \geq 1$ we have $a_{n}=\left\lfloor x_{n}\right\rfloor$ and $x_{n}=\left[a_{n}, a_{n+1}, a_{n+2}, \cdots\right]$.

Finally, we show that if $x \in \mathbb{R} \backslash \mathbb{Q}$ and if a_{n} is given by the formula in the statement of the theorem then we do indeed have $x=\left[a_{0}, a_{1}, \cdots\right]$. Let $x \in \mathbb{R} \backslash \mathbb{Q}$. Let $x_{0}=x$ and for $k \geq 0$ let $a_{k}=\left\lfloor x_{k}\right\rfloor$ and $x_{k+1}=\frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor}$. Note that $x_{0}=x \notin \mathbb{Q}$ and that whenever $x_{k} \notin \mathbb{Q}$ we have $x_{k}-\left\lfloor x_{k}\right\rfloor \notin \mathbb{Q}$ and $0<x_{k}-\left\lfloor x_{k}\right\rfloor<1$ and hence, since $x_{k+1}=\frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor}$, we have $x_{k+1} \notin \mathbb{Q}$ and $x_{k+1}>1$. It follows, by induction, that for all $k \geq 0$ we have $x_{k} \notin \mathbb{Q}$ and for all $k \geq 1$ we have $x_{k}>1$ and $a_{k}=\left\lfloor x_{k}\right\rfloor \geq 1$. Since $x_{k+1}=\frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor}=\frac{1}{x_{k}-a_{k}}$ we have $x_{k}=a_{k}+\frac{1}{x_{k+1}}$. Let $a_{k}^{\prime}=a_{k}$ for $0 \leq k \leq n$ and $a_{n+1}^{\prime}=x_{n+1}$, and let $c_{k}^{\prime}=\left[a_{0}^{\prime}, a_{1}^{\prime}, \cdots, a_{k}^{\prime}\right]=\frac{p_{k}^{\prime}}{q_{k}^{\prime}}$ for $0 \leq k \leq n+1$. Note that $p_{k}^{\prime}=p_{k}$ and $q_{k}^{\prime}=q_{k}$ for $0 \leq k \leq n$, and so $p_{n+1}^{\prime}=a_{n+1}^{\prime} p_{n}^{\prime}+p_{n-1}^{\prime}=x_{n+1} p_{n}+p_{n-1}$ and similarly $q_{n+1}^{\prime}=x_{n+1} q_{n}+q_{n-1}$. For $0 \leq k \leq n$ we have

$$
\left[a_{0}, a_{1}, \cdots, a_{k}, x_{k+1}\right]=\left[a_{0}, a_{1}, \cdots, a_{k-1}, a_{k}+\frac{1}{x_{k+1}}\right]=\left[a_{0}, a_{1}, \cdots, a_{k-1}, x_{k}\right]
$$

and hence

$$
\begin{aligned}
x & =\left[x_{0}\right]=\left[a_{0}, x_{1}\right]=\left[a_{0}, a_{1}, x_{2}\right]=\cdots=\left[a_{0}, a_{1}, \cdots, a_{n}, x_{n+1}\right]=\frac{p_{n+1}^{\prime}}{q_{n+1}^{\prime}} \text { and } \\
x-c_{n} & =\frac{p_{n+1}^{\prime}}{q_{n+1}^{\prime}}-\frac{p_{n}}{q_{n}}=\frac{x_{n+1} p_{n}+p_{n-1}}{x_{n+1} q_{n}+q_{n-1}}-\frac{p_{n}}{q_{n}}=\frac{p_{n-1} q_{n}-q_{n-1} p_{n}}{q_{n}\left(x_{n+1} q_{n}+q_{n-1}\right)}=\frac{(-1)^{n-1}}{q_{n}\left(x_{n+1} q_{n}+q_{n-1}\right)} .
\end{aligned}
$$

Thus $\left|x-c_{n}\right|=\frac{1}{q_{n}\left(x_{n+1} q_{n}+q_{n-1}\right)}<\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)} \longrightarrow 0$ so that $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$, as required.
7.8 Note: When $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$, so that we have $a_{k}=\left\lfloor x_{k}\right\rfloor$ for all $k \geq 0$ where $x_{0}=x$ and $x_{k+1}=\frac{1}{x_{k}-a_{k}}$ for $k \geq 0$, the proof of the above theorem shows that

$$
x_{n}=\left[a_{n}, a_{n+1}, a_{n+2}, \cdots\right] \text { and } x=\left[a_{0}, a_{1}, \cdots, a_{n-1}, x_{n}\right] .
$$

7.9 Example: Express $\sqrt{14}$ as a continued fraction.

Solution: We let $x_{0}=x=\sqrt{14}$ then calculate some terms in the sequences $\left\{x_{n}\right\}$ and $\left\{a_{n}\right\}$ using the recursion formulas $a_{k}=\left\lfloor x_{k}\right\rfloor$ and $x_{k+1}=\frac{1}{x_{k}-a_{k}}$.

k	x_{k}	a_{k}
0	$\sqrt{14}$	3
1	$\frac{1}{\sqrt{14}-3}=\frac{\sqrt{14}+3}{5}$	1
2	$\frac{5}{\sqrt{14}-2}=\frac{\sqrt{14}+2}{2}$	2
3	$\frac{2}{\sqrt{14}-2}=\frac{\sqrt{14}+2}{5}$	1
4	$\frac{5}{\sqrt{14}-3}=\frac{\sqrt{14}+3}{1}$	6
5	$\frac{1}{\sqrt{14}-3}=\frac{\sqrt{14}+3}{5}$	1

We see that the values of x_{k} begin to repeat with period 4 so that $x_{k+4}=x_{k}$ and $a_{k+4}=a_{k}$ for all $k \geq 1$. Thus we have

$$
\sqrt{14}=[3,1,2,1,6,1,2,1,6, \cdots]=[3, \overline{1,2,1,6}]
$$

7.10 Note: Let $x \in \mathbb{R} \backslash \mathbb{Q}$ with $x>1$. Say $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$. Since $x>1$ we have $a_{0}=\lfloor x\rfloor \geq 1$. For all $n \geq 0$, note that $\left[0, a_{0}, a_{1}, \cdots, a_{n}\right]=\frac{1}{\left[a_{0}, a_{1}, \cdots, a_{n}\right]}$. By taking the limit on both sides we obtain $\left[0, a_{0}, a_{1}, a_{2}, \cdots\right]=\frac{1}{\left[a_{0}, a_{1}, a_{2}, \cdots\right]}$. It follows that $\frac{1}{x}=\left[0, a_{0}, a_{1}, a_{2}, \cdots\right]$. Also note that the convergents of x, given by $c_{n}=\left[a_{0}, a_{1}, \cdots, a_{n}\right]$, and the convergents of $\frac{1}{x}$, given by $d_{n}=\left[0, a_{0}, a_{1}, \cdots, a_{n-1}\right]$, are related by $d_{0}=0$ and $d_{n+1}=\frac{1}{c_{n}}$ for all $n \geq 0$.
7.11 Theorem: Let $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$. For $n \geq 0$, let $c_{n}=\left[a_{0}, a_{1}, \cdots, a_{n}\right]=\frac{p_{n}}{q_{n}}$. Let $r \in \mathbb{Z}$ and $s \in \mathbb{Z}^{+}$. Then
(1) for all $k \geq 0$, if $|s x-r|<\left|q_{k} x-p_{k}\right|$ then $s \geq q_{k+1}$,
(2) for all $k \geq 0$, if $\left|x-\frac{r}{s}\right|<\left|x-\frac{p_{k}}{q_{k}}\right|$ then $s>\bar{q}_{k}$, and
(3) if $\left|x-\frac{r}{s}\right|<\frac{1}{2 s^{2}}$ then $\frac{r}{s}=c_{k}$ for some $k \geq 0$.

Proof: To prove Part 1 let $k \geq 0$, suppose that $\left|s x_{k}-r\right|<\left|q_{k} x-p_{k}\right|$ and suppose, for a contradiction, that $s<q_{k+1}$. Note that to get $(r, s)=u\left(p_{k}, q_{k}\right)+v\left(p_{k+1}, q_{k+1}\right)$ we need

$$
\begin{aligned}
\binom{u}{v} & =\left(\begin{array}{cc}
p_{k} & p_{k+1} \\
q_{k} & q_{k+1}
\end{array}\right)^{-1}\binom{r}{s}=\frac{1}{p_{k} q_{k+1}-q_{k} p_{k+1}}\left(\begin{array}{cc}
q_{k+1} & -p_{k+1} \\
-q_{k} & p_{k}
\end{array}\right)\binom{r}{s} \\
& =(-1)^{k}\left(\begin{array}{cc}
-q_{k+1} & p_{k+1} \\
q_{k} & -p_{k}
\end{array}\right)\binom{r}{s}=(-1)^{k}\binom{-q_{k+1} r+p_{k+1} s}{-q_{k+1} r+p_{k+1} s} .
\end{aligned}
$$

Thus we choose $u=(-1)^{k}\left(-q_{k+1} r+p_{k+1} s\right)$ and $v=(-1)^{k}\left(-q_{k+1} r+p_{k+1} s\right)$. Note that $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$ and we have $r=u p_{k}+v p_{k+1}$ and $s=u q_{k}+v q_{k+1}$. We claim that $u \neq 0$. Suppose, for a contradiction, that $u=0$. Then we have $s=v q_{k+1}$ which implies that $v>0$ (since $s>0$ and $q_{k+1}>0$) and hence that $s \geq q_{k+1}$. This contradicts our assumption that $s<q_{k+1}$, and so we have $u \neq 0$, as claimed. We claim that $v \neq 0$. Suppose, for a contradiction, that $v=0$. Then we have $r=u p_{k}$ and $s=u q_{k}$, and so $|s x-r|=\left|u q_{k} x-u p_{k}\right|=|u|\left|q_{k} x-p_{k}\right| \geq\left|q_{k} x-p_{k}\right|$. This contradicts our assumption that $|s x-r|<\left|q_{k} x-p_{k}\right|$, and so we have $v \neq 0$, as claimed. Note that u and v have opposite signs (that is $u v<0$) because if we had $u>0$ and $v>0$ then we would have $s=u q_{k}+v q_{k+1}>q_{k+1}$, and if we have $u<0$ and $v<0$ then we would have $s=u q_{k}+v q_{k+1}<0$. Note that $\left(q_{k} x-p_{k}\right)$ and $\left(q_{k+1} x-p_{k+1}\right)$ have opposite signs because x lies between $c_{k}=\frac{p_{k}}{q_{k}}$ and $c_{k+1}=\frac{p_{k+1}}{q_{k+1}}$ so that $x-c_{k}$ and $x-c_{k+1}$ have opposite signs. Thus, since $\left(q_{k} x-p_{k}\right) u$ and $\left(q_{k+1} x-p_{k+1}\right) v$ have the same sign, we have

$$
\begin{aligned}
|s x-r| & =\left|\left(u q_{k}+v q_{k+1}\right) x-\left(u p_{k}+v p_{k+1}\right)\right|=\left|\left(q_{k} x-p_{k}\right) u+\left(q_{k+1} x-p_{k+1}\right) v\right| \\
& =\left|q_{k} x-p_{k}\right||u|+\left|q_{k+1} x-p_{k+1}\right||v|>\left|q_{k} x-p_{k}\right| .
\end{aligned}
$$

This contradicts the fact that $|s x-r|<\left|q_{k} x-p_{k}\right|$ and completes the proof of Part 1.
To prove Part 2 let $k \geq 0$, suppose that $\left|x-\frac{r}{s}\right|<\left|x-\frac{p_{k}}{q_{k}}\right|$ and suppose, for a contradiction, that $s \leq q_{k}$. Then we have

$$
|s x-r|=s\left|x-\frac{r}{s}\right|<s\left|x-\frac{p_{k}}{q_{k}}\right| \leq q_{k}\left|x-\frac{p_{k}}{q_{k}}\right|=\left|q_{k} x-p_{k}\right| .
$$

But then, by Part 2, we have $s \geq q_{k+1}$ so that $s>q_{k}$, giving the desired contradiction.
To prove Part 3, suppose that $\left|x-\frac{r}{s}\right|<\frac{1}{2 s^{2}}$. Since $q_{0}=1$ and $\left\{q_{n}\right\}$ is increasing with $q_{n} \longrightarrow \infty$ as $n \rightarrow \infty$, we can choose $k \geq 0$ so that $q_{k} \leq s<q_{k+1}$. We claim that $\frac{r}{s}=c_{k}$. Suppose, for a contradiction, that $\frac{r}{s} \neq c_{k}$. Since $s<q_{k+1}$ it follows from Part (1) that $\left|q_{k} x-p_{k}\right| \leq|s x-r|$, and so $\left|x-\frac{p_{k}}{q_{k}}\right|=\frac{1}{q_{k}}\left|q_{k} x-p_{k}\right| \leq \frac{1}{q_{k}}|s x-r|=\frac{s}{q_{k}}\left|x-\frac{r}{s}\right|<\frac{s}{q_{k}} \cdot \frac{1}{2 s^{2}}=\frac{1}{2 s q_{k}}$. Since $\frac{r}{s} \neq c_{k}$, that is $\frac{r}{s} \neq \frac{p_{k}}{q_{k}}$, we have $r q_{k}-s p_{k} \neq 0$ and so $\left|\frac{r}{s}-\frac{p_{k}}{q_{k}}\right|=\frac{\left|r q_{k}-s p_{k}\right|}{s q_{k}} \geq \frac{1}{s q_{k}}$. Thus we have

$$
\frac{1}{s q_{k}} \leq\left|\frac{r}{s}-\frac{p_{k}}{q_{k}}\right| \leq\left|\frac{r}{s}-x\right|+\left|x-\frac{p_{k}}{q_{k}}\right|<\frac{1}{2 s^{2}}+\frac{1}{2 s q_{k}} .
$$

Subtracting $\frac{1}{2 s q_{k}}$ from both sides gives $\frac{1}{2 s q_{k}}<\frac{1}{2 s^{2}}$ so that $s<q_{k}$. This contradicts the fact that $q_{k} \leq s$, and so we have $\frac{r}{s}=c_{k}$, as claimed.
7.12 Corollary: Let $d \in \mathbb{Z}^{+}$be a non-square and let $r, s \in \mathbb{Z}^{+}$. If $\left|r^{2}-d s^{2}\right| \leq \sqrt{d}$ then $\frac{r}{s}$ is equal to one of the convergents of \sqrt{d}.

Proof: Suppose that $\left|r^{2}-d s^{2}\right| \leq \sqrt{d}$. We consider two cases. Case 1: suppose that $0<r^{2}-d s^{2} \leq \sqrt{d}$. Since $(r+s \sqrt{d})(r-s \sqrt{d})=r^{2}-d s^{2}>0$, we have $r-s \sqrt{d}>0$, that is $r>s \sqrt{d}$. It follows that $0<\frac{r}{s}-\sqrt{d}=\frac{r-s \sqrt{d}}{s}=\frac{r^{2}-d s^{2}}{s(r+s \sqrt{d})} \leq \frac{\sqrt{d}}{s(r+s \sqrt{d})}<\frac{\sqrt{d}}{s(s \sqrt{d}+s \sqrt{d})}=\frac{1}{2 s^{2}}$. By Part 3 of the above theorem, $\frac{r}{s}$ must be equal to one of the convergents of \sqrt{d}.

Case 2: suppose that $-\sqrt{d}<r^{2}-d s^{2}<0$. Since $(r+s \sqrt{d})(r-s \sqrt{d})=r^{2}-d s^{2}<0$ we have $r-s \sqrt{d}<0$ so that $r<s \sqrt{d}$. It follows that

$$
0<\frac{s}{r}-\frac{1}{\sqrt{d}}=\frac{s \sqrt{d}-r}{r \sqrt{d}}=\frac{s^{2} d-r^{2}}{r \sqrt{d}(s \sqrt{d}+r)}<\frac{\sqrt{d}}{r \sqrt{d}(s \sqrt{d}+r)}<\frac{\sqrt{d}}{r \sqrt{d}(r+r)}=\frac{1}{2 r^{2}}
$$

By Part 3 of the above theorem, $\frac{s}{r}$ must be equal to one of the convergents of $\frac{1}{\sqrt{d}}$. It then follows from Note 7.10, that $\frac{r}{s}$ is equal to one of the convergents of \sqrt{d}.
7.13 Corollary: Let $d \in \mathbb{Z}^{+}$be a non-square and let $c_{k}=\frac{p_{k}}{q_{k}}$ be the convergents of \sqrt{d}. The smallest unit $u>1$ in $\mathbb{Z}[\sqrt{d}]$ is equal to $u=p_{k}+q_{k} \sqrt{d}$ where k is the smallest index for which $p_{k}^{2}-d q_{k}^{2}= \pm 1$.

Proof: Suppose that v is a unit in $\mathbb{Z}[\sqrt{d}]$ with $v>1$. Recall, from Theorem 6.10 , that $v=r+s \sqrt{d}$ for some $r, s \in \mathbb{Z}^{+}$with $r^{2}-d s^{2}=N(v)= \pm 1$. Since $\left|r^{2}-d s^{2}\right|=1 \leq \sqrt{d}$ it follows, from the above corollary, that $\frac{r}{s}=\frac{p_{k}}{q_{k}}$ for some index k. Since $r, s, p_{k}, q_{k} \in \mathbb{Z}^{+}$ and $\frac{r}{s}=\frac{p_{k}}{q_{k}}$ and $\operatorname{gcd}\left(p_{k}, q_{k}\right)=1$, we must have $r=t p_{k}$ and $s=t q_{k}$ for some $t \in \mathbb{Z}^{+}$. Since $1=\left|r^{2}-d s^{2}\right|=\left|t^{2} p_{k}^{2}-d t^{2} q_{k}^{2}\right|=t^{2}\left|p_{k}^{2}-d q_{k}^{2}\right|$, we must have $t=1$ so that $r=p_{k}$ and $s=q_{k}$. This shows that every unit v in $\mathbb{Z}[\sqrt{d}]$ with $v>1$ is equal to $u_{k}=p_{k}+q_{k} \sqrt{d}$ for some index k for which $p_{k}^{2}-d q_{k}^{2}= \pm 1$.

On the other hand, if k is an index for which $p_{k}^{2}-d q_{k}^{2} d= \pm 1$ then the element $u_{k}=p_{k}+q_{k} \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ is a unit because $N\left(u_{k}\right)= \pm 1$.
7.14 Example: Find the smallest unit $u \in \mathbb{Z}[\sqrt{19}]$ with $u>1$.

Solution: We find some terms in the sequences $\left\{x_{n}\right\}$ and $\left\{a_{n}\right\}$ using the recursion formulas $x_{0}=x=\sqrt{19}$ and $a_{k}=\left\lfloor x_{k}\right\rfloor$ and $x_{k+1}=\frac{1}{x_{k}-a_{k}}$ for $k \geq 0$, and we find some terms in the sequences $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ using the recursion formulas $p_{0}=a_{0}, p_{1}=a_{1} a_{0}+1, q_{0}=1$ and $q_{1}=a_{1}$ and $p_{k}=a_{k} p_{k-1}+p_{k-2}$ and $q_{k}=a_{k} q_{k-1}+q_{k-2}$ for $k \geq 2$, and we calculate the norms $N_{k}=N\left(p_{k}+q_{k} \sqrt{d}\right)=p_{k}^{2}-d q_{k}{ }^{2}$.

k	x_{k}	a_{k}	p_{k}	q_{k}	N_{k}
0	$\sqrt{19}$	4	4	1	-3
1	$\frac{1}{\sqrt{19}-4}=\frac{\sqrt{19}+4}{3}$	2	9	2	5
2	$\frac{3}{\sqrt{19}-2}=\frac{\sqrt{19}+2}{5}$	1	13	3	-2
3	$\frac{5}{\sqrt{19}-3}=\frac{\sqrt{19}+3}{2}$	3	48	11	5
4	$\frac{2}{\sqrt{19}-3}=\frac{\sqrt{19}+3}{5}$	1	61	14	-3
5	$\frac{5}{\sqrt{19}-2}=\frac{\sqrt{19}+2}{3}$	2	170	39	1
6	$\frac{3}{\sqrt{19}-4}=\frac{\sqrt{19}+4}{1}$	8			

By the above corollary, the smallest unit u in $\mathbb{Z}[\sqrt{19}]$ with $u>1$ is $u=170+39 \sqrt{19}$.
7.15 Definition: A quadratic irrational is an irrational number which is a root of a quadratic polynomial with coefficients in \mathbb{Z}.
7.16 Theorem: The quadratic irrational numbers are the numbers of the form $x=\frac{r+\sqrt{d}}{s}$ for some non-square $d \in \mathbb{Z}^{+}$and some $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid\left(r^{2}-d\right)$.

Proof: Suppose that $x=\frac{r+\sqrt{d}}{s}$ where $d \in \mathbb{Z}^{+}$is a non-square and $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid\left(r^{2}-d\right)$. Then x is irrational and we have $s x-r=\sqrt{d}$ so that $s^{2} x^{2}-2 r s x+r^{2}=d$, and so x is a root of $f(x)=s x^{2}-2 r x+\frac{r^{2}-d}{s} \in \mathbb{Z}[x]$.

Conversely, let x be an irrational number which is a root of $f(x)=a x^{2}+b x+c$ where $a, b, c \in \mathbb{Z}$ with $a \neq 0$. By the Quadratic Formula, we have $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$. Let $d=b^{2}-4 a c \in \mathbb{Z}$. Since x is irrational number, $d \geq 0$ and d is not a square. When $x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ we have $x=\frac{r+\sqrt{d}}{s}$ for $r=-b$ and $s=2 a$. When $x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ we have $x=\frac{r+\sqrt{d}}{s}$ for $r=b$ and $s=-2 a$. In either case, $s \neq 0, r^{2}-d=4 a c$ and $s \mid\left(r^{2}-d\right)$.
7.17 Theorem: Let $x=\frac{r+\sqrt{d}}{s}$ where $d \in \mathbb{Z}^{+}$is a nonsquare and $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid\left(d-r^{2}\right)$. When we let $x_{0}=x, a_{k}=\left\lfloor x_{k}\right\rfloor$ and $x_{k+1}=\frac{1}{x_{k}-a_{k}}$ for $k \geq 0$ so that $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$, we have $x_{k}=\frac{r_{k}+\sqrt{d}}{s_{k}}$ where r_{k} and s_{k} are given recursively by $r_{0}=r$, $s_{0}=s, r_{k+1}=a_{k} s_{k}-r_{k}$ and $s_{k+1}=\frac{d-r_{k+1}^{2}}{s_{k}}$, and we have $r_{k}, s_{k} \in \mathbb{Z}$ with $s_{k} \neq 0$ and $s_{k} \mid\left(d-r_{k}^{2}\right)$.
Proof: Let r_{k} and s_{k} be defined by the given recursion formula. If we suppose, inductively, that $r_{k}, s_{k} \in \mathbb{Z}$ with $s_{k} \neq 0$ and $s_{k} \mid\left(d-r_{k}^{2}\right)$ then we have $r_{k+1}=a_{k} s_{k}-r_{k} \in \mathbb{Z}$, and $s_{k+1}=\frac{d-r_{k+1}^{2}}{s_{k}} \neq 0$ since d is a nonsquare, and

$$
s_{k+1}=\frac{d-r_{k+1}^{2}}{s_{k}}=\frac{d-\left(a_{k} s_{k}-r_{k}\right)^{2}}{s_{k}}=2 a_{k} r_{k}-a_{k}^{2} s_{k}+\frac{d-r_{k}^{2}}{s_{k}} \in \mathbb{Z}
$$

since $s_{k} \mid\left(d-r_{k}^{2}\right)$, and $\frac{d-r_{k+1}^{2}}{s_{k+1}}=s_{k} \in \mathbb{Z}$ so that $s_{k+1} \mid\left(d-r_{k+1}^{2}\right)$. Also, if we suppose, inductively, that $x_{k}=\frac{r_{k}+\sqrt{d}}{s_{k}}$ then we have

$$
x_{k+1}=\frac{1}{x_{k}-a_{k}}=\frac{1}{\frac{r_{k}+\sqrt{d}}{s_{k}}-a_{k}}=\frac{s_{k}}{\sqrt{d}-\left(a_{k} s_{k}-r_{k}\right)}=\frac{\sqrt{d}+\left(a_{k} s_{k}-r_{k}\right)}{\left(d-\left(a_{k} s_{k}-r_{k}\right)^{2}\right) / s_{k}}=\frac{r_{k+1}+\sqrt{d}}{s_{k+1}} .
$$

7.18 Theorem: Let $x=\left[a_{0}, a_{1}, a_{3}, \cdots\right]$ with $a_{k} \in \mathbb{Z}^{+}$for all $k \geq 0$. Let $c_{k}=\frac{p_{k}}{q_{k}}$ by the $k^{\text {th }}$ convergent of x. Then $\left[a_{k}, a_{k-1}, \cdots, a_{1}, a_{0}\right]=\frac{p_{k}}{p_{k-1}}$ and $\left[a_{k}, a_{k-1}, \cdots, a_{2}, a_{1}\right]=\frac{q_{k}}{q_{k-1}}$.
Proof: Since $p_{0}=a_{0}$ and $p_{1}=a_{1} a_{0}+1$ we have $\frac{p_{1}}{p_{0}}=a_{1}+\frac{1}{a_{0}}=\left[a_{1}, a_{0}\right]$. Suppose, inductively, that $\frac{p_{k-1}}{p_{k-2}}=\left[a_{k-1}, \cdots, a_{1}, a_{0}\right]$. Then since $p_{k}=a_{k} p_{k-1}+p_{k-2}$, we have

$$
\frac{p_{k}}{p_{k-1}}=a_{k}+\frac{p_{k-2}}{p_{k-1}}=a_{k}+\frac{1}{\frac{p_{k-1}}{p_{k-2}}}=a_{k}+\frac{1}{\left[a_{k-1}, \cdots, a_{1}, a_{0}\right]}=\left[a_{k}, a_{k-1}, \cdots, a_{1}, a_{0}\right] .
$$

Also, since $q_{0}=1$ and $q_{1}=a_{1}$ we have $\frac{q_{1}}{q_{0}}=a_{1}=\left[a_{1}\right]$. Suppose, inductively, that $\frac{q_{k-1}}{q_{k-2}}=\left[a_{k-1}, \cdots, a_{2}, a_{1}\right]$. Then since $q_{k}=a_{k} a_{k-1}+q_{k-2}$ we have

$$
\frac{q_{k}}{q_{k-1}}=a_{k}+\frac{q_{k-2}}{q_{k-1}}=a_{k}+\frac{1}{\frac{q_{k-1}}{q_{k-2}}}=a_{k}+\frac{1}{\left[a_{k-1}, \cdots, a_{2}, a_{1}\right]}=\left[a_{k}, a_{k-1}, \cdots, a_{2}, a_{1}\right] .
$$

7.19 Theorem: (Lagrange) Let $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ where $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$. Then the sequence $\left\{a_{n}\right\}$ is eventually periodic if and only if x is a quadratic irrational.

Proof: Suppose that $\left\{a_{n}\right\}$ is eventually periodic, say $x=\left[a_{0}, a_{1}, \cdots, a_{n-1}, \overline{a_{n}, \cdots, a_{n+m}}\right]$. Let $y=\left[\overline{a_{n}, \cdots, a_{n+m}}\right]$. Note that $y=\left[a_{n}, \cdots, a_{n+m}, \overline{a_{n}, \cdots, a_{n+m}}\right]=\left[a_{n}, \cdots, a_{m+n}, y\right]$. By Theorem 7.4, we have $y=\frac{p_{m+1}^{\prime}}{q_{m+1}^{\prime}}=\frac{y p_{m}^{\prime}+p_{m-1}^{\prime}}{y q_{m}^{\prime}+q_{m-1}^{\prime}}$ where $c_{k}^{\prime}=\frac{p_{k}^{\prime}}{q_{k}^{\prime}}$ is the $k^{\text {th }}$ convergent of y. It follows that $q_{m}^{\prime} y^{2}+\left(q_{m-1}^{\prime}-p_{m}^{\prime}\right) y-p_{m-1}^{\prime}=0$ and so y is a quadratic irrational. Also, note that $x=\left[a_{0}, a_{1}, \cdots, a_{n-1}, \overline{a_{n}, \cdots, a_{n+m}}\right]=\left[a_{0}, a_{1}, \cdots, a_{n-1}, y\right]$ so, again from Theorem 7.4, we have $x=\frac{p_{n}}{q_{n}}=\frac{y p_{n-1}+p_{n-2}}{y q_{n-1}+q_{n-2}}$ where $c_{k}=\frac{p_{k}}{q_{k}}$ is the $k^{\text {th }}$ convergent of x. Verify, as an exercise, that since y is a quadratic irrational and $x=\frac{y p_{n-1}+p_{n-2}}{y q_{n-1}+q_{n-2}}$, it follows that x is a quadratic irrational.

Suppose, conversely, that x is a quadratic irrational, say $x=\frac{r+\sqrt{d}}{s}$ where $d \in \mathbb{Z}^{+}$is a non-square and $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid\left(d-r^{2}\right)$. Recall that the conjugate of x in $\mathbb{Q}[\sqrt{d}]$ is given by $\bar{x}=\frac{r-\sqrt{d}}{s}$. From Theorem 7.17, we have $a_{k}=\left\lfloor x_{k}\right\rfloor$ with $x_{k}=\frac{r_{k}+\sqrt{d}}{s_{k}}$, where r_{k} and s_{k} are given by $r_{0}=r, s_{0}=s, r_{k+1}=a_{k} s_{k}-r_{k}$ and $s_{k+1}=\frac{d-r_{k+1}^{2}}{s_{k}}$. Recall from Note 7.8 that $x=\left[a_{0}, a_{1}, \cdots, a_{k-1}, x_{k}\right]$ and so from Theorem 7.4 we have $x=\frac{x_{k} p_{k-1}+p_{k-2}}{x_{k} q_{k-1}+q_{k-2}}$ where $c_{k}=\frac{p_{k}}{q_{k}}$ is the $k^{\text {th }}$ convergent of x. Taking the conjugate gives $\bar{x}=\frac{\bar{x}_{k} p_{k-1}+p_{k-2}}{\bar{x}_{k} q_{k-1}+q_{k-2}}$. Solving for \bar{x}_{k} gives

$$
\bar{x}_{k}=\frac{p_{k-2}-q_{k-2} \bar{x}}{q_{k-1} \bar{x}-p_{k-1}}=-\frac{q_{k-2}\left(\bar{x}-c_{k-2}\right)}{q_{k-1}\left(\bar{x}-c_{k-1}\right)} .
$$

Since $\lim _{k \rightarrow \infty} \frac{\bar{x}-c_{k-2}}{\bar{x}-c_{k-1}}=\frac{\bar{x}-x}{\bar{x}-x}=1$, it follows that the right hand side is eventually negative, so we can choose $m \geq 1$ such that $\bar{x}_{k}<0$ for all $k \geq m$. We also note that $x_{k}>0$ for all $k \geq 1$ (since $x_{k}=\left[a_{k}, a_{k+1}, \cdots\right]$ with each $a_{i} \in \mathbb{Z}^{+}$) and so, for all $k \geq m$, we have

$$
0<x_{k}-\bar{x}_{k}=\frac{r_{k}+\sqrt{d}}{s_{k}}-\frac{r_{k}-\sqrt{d}}{s_{k}}=\frac{2 \sqrt{d}}{s_{k}}
$$

and hence $s_{k}>0$. Since $s_{k+1}=\frac{d-r_{k}^{2}}{s_{k}}$ so that $d-r_{k}^{2}=s_{k} s_{k+1}$, it follows that for all $k \geq m$ we have $0<s_{k} \leq s_{k} s_{k+1}=d-r_{k}^{2} \leq d$ and also, since $0<d-r_{k}^{2}$ we have $r^{2}<d$ so that $|r| \leq \sqrt{d}$. Since $0<s_{k} \leq d$ and $|r| \leq \sqrt{d}$, we see that for $k \geq m$ there are only finitely many possibilities for the pair $\left(r_{k}, s_{k}\right)$, hence only finitely many possibilities for $x_{k}=\frac{r_{k}+\sqrt{d}}{s_{k}}$. Thus the sequence $\left\{x_{k}\right\}$, hence also the sequence $\left\{a_{k}\right\}$, is eventually periodic.
7.20 Theorem: Let $x=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ where $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$. Then the sequence $\left\{a_{n}\right\}$ is purely periodic if and only if x is a quadratic irrational with $x>1$ and $-1<\bar{x}<0$. In this case, if $x=\left[\overline{a_{0}, a_{1}, \cdots, a_{\ell-1}}\right]$ and $y=\left[\overline{a_{\ell-1}, \cdots, a_{1}, a_{0}}\right]$ we have $\bar{x}=-\frac{1}{y}$.

Proof: We shall prove only one direction of the theorem. Suppose that $\left\{a_{k}\right\}$ is purely periodic, say $x=\left[\overline{a_{0}, a_{1}, \cdots, a_{\ell-1}}\right]$ and let $y=\left[\overline{a_{\ell-1}, \cdots, a_{1}, a_{0}}\right]$. Let $c_{k}=\frac{p_{k}}{q_{k}}$ be the $k^{\text {th }}$ convergent for x and let $c_{k}^{\prime}=\frac{p_{k}^{\prime}}{q_{k}^{\prime}}$ be the $k^{\text {th }}$ convergent for y. By Theorems 7.4 and 7.18 we know that

$$
\frac{p_{l-1}^{\prime}}{q_{l-1}^{\prime}}=\left[a_{l-1}, \cdots, a_{1}, a_{0}\right]=\frac{p_{l-1}}{p_{l-2}} \text { and } \frac{p_{l-2}^{\prime}}{q_{l-2}^{\prime}}=\left[a_{l-1}, \cdots, a_{2}, a_{1}\right]=\frac{q_{l-1}}{q_{l-2}} .
$$

From the formula $p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k-1}$, we see that $\operatorname{gcd}\left(p_{k}, q_{k}\right)=\operatorname{gcd}\left(p_{k}, p_{k-1}\right)=$ $\operatorname{gcd}\left(q_{k}, q_{k-1}=1\right.$ for all k, and so the fact that $\frac{p_{l-1}^{\prime}}{q_{l-1}^{\prime}}=\frac{p_{l-1}}{p_{l-2}}$ and $\frac{p_{l-2}^{\prime}}{q_{l-2}^{\prime}}=\frac{q_{l-1}}{q_{l-2}}$ implies that

$$
p_{l-1}^{\prime}=p_{l-1}, q_{l-1}^{\prime}=p_{l-2}, p_{l-2}^{\prime}=q_{l-1} \quad \text { and } \quad q_{l-2}^{\prime}=q_{l-2} .
$$

Since $x=\left[a_{0}, a_{1}, \cdots, a_{l-1}, \overline{a_{0}, a_{1}, \cdots, a_{l-1}}\right]=\left[a_{0}, a_{1}, \cdots, a_{l-1}, x\right]=\frac{x p_{l-1}+p_{l-2}}{x q_{l-1}+q_{l-2}}$ we have $x^{2} q_{l-1}+x\left(q_{l-2}-p_{l-2}\right)-p_{l-2}=0$, so x is a root of the polynomial

$$
g(x)=q_{l-1} x^{2}+\left(q_{l-2}-p_{l-1}\right) x-p_{l-2} .
$$

Since $y=\left[a_{l-1}, \cdots, a_{1}, a_{0}, \overline{a_{l-1}, \cdots, a_{1}, a_{0}}\right]=\left[a_{l-1}, \cdots, a_{1}, a_{0}, y\right]=\frac{y p_{l-1}^{\prime}+p_{l-2}^{\prime}}{y q_{l-1}^{\prime}+q_{l-2}^{\prime}}$ we have $y^{2} q_{l-1}^{\prime}+y\left(q_{l-2}^{\prime}-p_{l-1}^{\prime}\right)-p_{l-2}^{\prime}=0$, that is $y^{2} p_{l-2}+y\left(q_{l-2}-p_{l-1}\right)-q_{l-1}=0$. Multiply through by $-\frac{1}{y^{2}}$ to get $-p_{l-2}-\frac{1}{y}\left(q_{l-2}-p_{l-1}\right)+\frac{1}{y^{2}} q_{l-1}=0$, and so $-\frac{1}{y}$ is also a root of $g(x)$. Since $\lfloor x\rfloor=a_{0}=a_{l} \geq 1$ and $\lfloor y\rfloor=a_{l-1} \geq 1$ we have $x>1$ and $y>1$. Since $y>1$ we have $-\frac{1}{y} \in(-1,0)$. Since $x>1$ and $y \in(-1,0)$ we have $x \neq-\frac{1}{y}$ and so x and $-\frac{1}{y}$ are the two distinct roots of $g(x)$. Since $g(x)$ has coefficients in \mathbb{Z}, its two roots are conjugates so we have $\bar{x}=-\frac{1}{y} \in(-1,0)$.
7.21 Theorem: Let $d \in \mathbb{Z}^{+}$be a non-square. Let $\sqrt{d}=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0} \in \mathbb{Z}$ and $a_{k} \in \mathbb{Z}^{+}$for $k \geq 1$. Let ℓ be the minimum period of $\left\{a_{n}\right\}$. Let $c_{n}=\left[a_{0}, a_{1}, \cdots, a_{n}\right]=\frac{p_{n}}{q_{n}}$. Let $x_{0}=\sqrt{d}$ and $x_{k+1}=\frac{1}{x_{k}-\left\lfloor x_{k}\right\rfloor}$ for $k \geq 0$. Write $x_{k}=\frac{r_{k}+\sqrt{d}}{s_{k}}$. Then
(1) we have $a_{\ell}=2 a_{0}$ so that $\sqrt{d}=\left[a_{0}, \overline{a_{1}, a_{2}, \cdots, a_{\ell-1}, 2 a_{0}}\right]$,
(2) for all $k \geq 0$ we have $p_{k}{ }^{2}-d q_{k}{ }^{2}=(-1)^{k+1} s_{k+1}$, and
(3) the smallest unit u in $\mathbb{Z}[\sqrt{d}]$ with $u>1$ is equal to $u=p_{\ell-1}+q_{\ell-1} \sqrt{d}$ and we have

$$
u^{k}=p_{k \ell-1}+q_{k \ell-1} \sqrt{d} \text { for all } k \in \mathbb{Z}^{+}
$$

Proof: Let us prove Part 1. We have $\sqrt{d}=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ with $a_{0}=\lfloor\sqrt{d}\rfloor$. For any $c \in \mathbb{Z}$ we have $c+\sqrt{d}=\left[c+a_{0}, a_{1}, a_{2}, \cdots\right]$. Let $x=\lfloor\sqrt{d}\rfloor+\sqrt{d}=a_{0}+\sqrt{d}=\left[2 a_{0}, a_{1}, a_{2}, a_{3}, \cdots\right]$. Then $x>1$ and $\bar{x}=\lfloor\sqrt{d}\rfloor-\sqrt{d} \in(-1,0)$ so, by the previous theorem, the continued fraction for x is purely periodic. Thus we have $x=\left[2 a_{0}, a_{1}, a_{2}, \cdots, a_{\ell-1}, a_{\ell}, \cdots\right]=\left[\overline{2 a_{0}, a_{1}, a_{2}, \cdots, a_{\ell-1}}\right]$ with $a_{\ell}=2 a_{0}$ and hence $\sqrt{d}=\left[a_{0}, \overline{a_{1}, \cdots, a_{\ell}}\right]$ with $a_{\ell}=2 a_{0}$.

Let us prove Part 2. Let $x=\sqrt{d}=\left[a_{0}, a_{1}, a_{2}, \cdots\right]$ and $x_{k}=\left[a_{k}, a_{k+1}, \cdots\right]$. We have

$$
\begin{aligned}
\sqrt{d} & =\left[a_{0}, a_{1}, \cdots, a_{k}, x_{k+1}\right] \\
& =\frac{x_{k+1} p_{k}+p_{k-1}}{x_{k+1} q_{k}+q_{k-1}}=\frac{\frac{r_{k+1}+\sqrt{d}}{s_{k+1}} p_{k}+p_{k-1}}{\frac{r_{k+1}+\sqrt{d}}{s_{k+1}} q_{k}+q_{k-1}}=\frac{\left(r_{k+1}+\sqrt{d}\right) p_{k}+s_{k+1} p_{k-1}}{\left(r_{k+1}+\sqrt{d}\right) q_{k}+s_{k+1} q_{k-1}} .
\end{aligned}
$$

and hence

$$
d q_{k}+\left(r_{k+1} q_{k}+s_{k+1} q_{k-1}\right) \sqrt{d}=\left(r_{k+1} p_{k}+s_{k+1} p_{k-1}\right)+p_{k} \sqrt{d}
$$

It follows that $d q_{k}=r_{k+1} p_{k}+s_{k+1} p_{k-1}$ (1) and $p_{k}=r_{k+1} q_{k}+s_{k+1} q_{k-1}$ (2). Multiply Equation (1) by $-q_{k}$ and Equation (2) by p_{k} and add to get

$$
p_{k}^{2}-d q_{k}^{2}=s_{k+1}\left(p_{k} q_{k-1}-q_{k} p_{k-1}\right)
$$

Recall from Part 1 of Theorem 7.5 that $p_{k} q_{k-1}-q_{k} p_{k-1}=(-1)^{k+1}$, and so we have $p_{k}^{2}-d q_{k}^{2}=(-1)^{k+1} s_{k+1}$ as required.

