Chapter 7. Continued Fractions

7.1 Definition: Let ag,a1,a2, - € R with ax > 0. For n > 0 we write

1
lag,a1,az,- -+, a,] = ap + 1
a1 +
t 1
R
an—1 + Z
and
1 .
[a07a1,a2; .. ] = ag —+ —1 = lim [ao,al,ag, e ,an].
n— oo
a + ———
as + ...
A finite continued fraction is a rational number of the form [ag, a1, -, a,] with ag € Z
and a;, € ZT for 1 < k < n, and an infinite continued fraction is a real number of the
form [ag, a1, az, -] with ag € Z and a € Z* for k > 1.

7.2 Theorem: Every rational number is equal to a finite continued fraction.
Proof: Let x = § with a € Z and b € Z7. Use the Division Algorithm repeatedly to get
a=qb+ri, b=qri+ry, r1=qrs+r4, ", Tno2 =qnTn-1"+"Tn

with0=r, <7rp_1 < -+ <rg <ry <b. Then we have

a +T L 1 n 1 n 1 [ ]
xr=— = = = = B —— N o .. nl-

p T T M b/ =q1 Gt T 1 41,492, 4
T1 QQ—i— s
q3 + o

7.3 Remark: Note that when we write a rational number x as a continued fraction
x = [ag, a1, -, ay], the integers ay are not unique because we have

[aOaala cry Qp, 1] - [a“Oaal? o, Ap—1,0n + ]-]

7.4 Theorem: Let ag € R and let 0 < a;, € R for k > 1. For each n > 0 let ¢,, =
lag, a1, -, ay]. Define sequences {p,} and {q,} recursively by py = ag, p1 = a1ap + 1 and
Pk = aQpPr—1 + pr—o for k > 2, and qo = 1, ¢1 = a1 and q = arqe—_1 + qr_o for k > 2.

Then for all n > 0 we have ¢,, = 1;&

Proof: We have ¢y = [ag] = ap = % = Z—O and ¢; = [ao,al] =ap+ - = %‘1“ = ﬂ.

Let k£ > 1 and suppose, inductively, that for ag,a), -, a}, € R with ] > 0forl<i < k:

/
we have [ag,a}, -, a;] = §—]l: where {p/,} and {q],} satisfy the same recursion formulas as

i =Di

{pn} and {¢,}. Then using a; = a; for i < k and a) =
and ¢, = ¢; for i < k, we have
/

} _ Pr _ a1 + Pi_o

! /
A QG Oyt Qo

Cht1 = [ag, a1, -+, apy1] = [CLO;CLI; y Ak—1, Ok +

(ax + akﬂ )Pr—1 + D2 _ Ok+10kPk—1 + Pk—1 + Gkt 1Pk—2
(a;C + ak+1 )Qk—l + Qr—2 Ok+10kqQk—1 + Qk—1 + Qk+1GK—2

~ apt1(akPr—1 + Pr—2) + Pr—1  Ag11Pk + Pr—1 _ Pr+1

©apr1(akQro1 + qr—2) F Q-1 Qks1Qk + Q-1 Qri1




7.5 Theorem: Let ag € Z and let a, € Z* for k > 1. Let ¢, = [ag, a1, -, ay] for n > 0.

Let {pn} and {q,} be as in Theorem 7.4 so that ¢, = &». Then

(1) for all k > 0 we have pry1qx — qri1pr = (—1)F,
(2) for all k > 0 we have ged(pk, qr) = 1,

_\k
(3) for all k > 0 we have cx41 — ¢ = q(k+_11)qk7

(4) the sequence {c,} converges, and
(5) if we let x = [ag,a1,a2, -] = lim ¢, then we have cop, < x < cogy1 for all k > 0.
n—oo

Proof: To prove Part (1), note that p1go — g1p0 = (a1a0 + 1)(1) — (a1)(ag) = 1 and that
for k>1

Pr+1qk — Qr+1Pk = (@k+1P% + Pr—1)qk — (@k+1qk + @r—1)Pk = —(PkQr—1 — qkPr—1)-
Part (2) follows immediately from Part (1), and Part (3) also follows from Part (1) because

Pkl Pk _ Pht1dk — Qrt1Pk _ (—1)*

qk+1 qk qk+19k dk+14k '

Cr4+1 — Ck =

(=»*
—— gso Parts (4) and (5)

.
) _ (=1 -
Since ¢g = ag and cx41 — ¢ = , we have ¢, = ag + > dht1ak

1
dk+19k =0
both follow from Part (2) by the Alternating Series Test.

7.6 Definition: Let ap € Z and ay, € Z* for k > 1. Then ¢, = [ag, a1, -, ay] is called
the n'™® convergent of z = [ag,a1,as,---] and p, and ¢, are called the numerator and
denominator of ¢,. Note that ged(pg, qx) = 1 by Part (1) of the above theorem.

7.7 Theorem: Let x € R. Then x is irrational if and only if x = [ag, a1, as,- -] for some
ag € Z and ay, € Z" for k > 1. In this case we have a,, = |z, | where {x,} is given by

xo:wandxkﬂszorkzl.

Proof: First let us show that if x = [ag, a1, as, -] with ag € Z and ay € Z* for k > 1 then
we must have z € R\ Q. Let ap € Z and ay € ZT for k > 1 and let x = [ag, a1, az, -]

For each k > 0, let ¢, = [ag,a1,--,ax] = z—:. Suppose, for a contradiction, that z = %

with r € Z and s € Z™*. For each k > 0, since z lies strictly between ¢ and ciy1 we have
T # cg, that is T # Z—:, and so rqi # spi. It follows that for every k£ > 0 we have

1

qk+19k < qr2

1 —
0< a < |qu5q::0k| — |§ _ 7;_:| = |:L‘— Clc| < |Ck+1 _Ck| —
and so 0 < % < qik. But this is not possible since g — oo as k — oo, and so x € R\ Q.
Next, let us show that if z = [ag, a1, a2, -] with ag € Z and ay, € Z* for k > 1 then
the terms a,, are uniquely determined by the formula in the statement of the theorem.

Let ap € Z and let ay € Z* for k¥ > 1 and let {z,} be the sequence given by o = x

and x4 = xk——lekJ for k > 1. For all n > 1 we have [ag, a1, -, an] = ag + [(lela]
Taking the limit on both sides as n — oo we obtain [ag, a1, -] = ag + m Since
lap, a1, -] > ap and [ay,aqz,- -] > a1 (by Part 5 of Theorem 7.5) we have
1
CLO<[CLO,CL1, -]—(Io+—<a0+—§ao+1
[a17a27”'] ay
so that ag < xg < ap + 1 and hence ag = |z ]. Also, since [ag, a1, -] = ag + m, we
have [a1,az, -] = [amal}_“]_ao = xo—leoJ = x1. Repeating the above argument inductively,

we find that for all n > 1 we have a,, = |2, | and =, = [an, Gnt1, Gnio, -]



Finally, we show that if z € R\ Q and if a,, is given by the formula in the statement
of the theorem then we do indeed have = = [ag,a1,--]. Let © € R\ Q. Let g = =
and for k > 0 let ap = |zx] and xpy; = m Note that g = =z ¢ Q and that

whenever z, ¢ Q we have z, — |zx] ¢ Q and 0 < x — |zx] < 1 and hence, since

Tht1 = m, we have x11 ¢ Q and xp; > 1. It follows, by induction, that for all
k > 0 we have z, ¢ Q and for all £ > 1 we have z; > 1 and ay = |x| > 1. Since
Tht1 = xk—lL:ckJ = xkiak we have zp = ag —|—/ l,k1+1. Let aj, = a, for 0 < k < n and
apy1 = Tpt1, and let ¢ = [ag,a), -+, a)] = Z—z for 0 < k < n+ 1. Note that p}, = px

and ¢, = qi for 0 < k < n, and so p), .| = a;, 1P}, + Pj_1 = Tnt1Pn + Pn—1 and similarly
Uil = Tnt1Gn + qn—1. For 0 < k < n we have

— 1 .
[a07a17 oo 7ak!7aj]€+1] - [a07a/17 e ;ak—lﬂak + xk+1] = [a07a17 e ,ak_l,xk]
and hence
’
= = = = = _ Ppya
r = [:I:O] - [a();xl] = [a(),a/l’a',‘2] = ... = [ao’a17 e 7anaxn+1] — q;z+1 and
n
/ n—1
_ Pnpa Pn __ Tnt1PntPn—_1 Pn . Pn—19n—qn—1Pn __ (_1)
T — ¢y = Pntl o TniaPatPuoi | Pa

a1 qn Tn1qn+qn—1 qn Gn(Tnt1qn+qn-1) ~ qn(ZTnt1qn+qn-—1)"

1

o _ 1
ThuS ’x cn| o Qn($n+1Qn+Qn—1) < Qn(Qn+Qn—1)

— 0so that x = [ag, a1, a9, - - ], as required.

7.8 Note: When x = [ag, a1, as, -] with ap € Z and ay € Z" for k > 1, so that we have
ar = |z for all k > 0 where g = = and xp 1 = mkiak for k > 0, the proof of the above
theorem shows that

Ty = [an7 Ap+1,An+2, ] and = [aOv az,--- Jan—laxn]'
7.9 Example: Express v/14 as a continued fraction.
Solution: We let xg = x = v/14 then calculate some terms in the sequences {z,} and {a,}

using the recursion formulas ax = |z ] and zx41 = T —ar

k Tl Q.

0 v/ 14 3

1 1 _ /1443 1
V14-3 5

D) 5 — V1442 2)
V14—2 2

3 2 _ /1442 1
Vida—2 5

4 5 _ \/14+3 6
V14-3 1

5 1 — V1443 1
V14-3 5

We see that the values of zj, begin to repeat with period 4 so that x4 = z and ag4 = ai
for all £ > 1. Thus we have

V14 =[3,1,2,1,6,1,2,1,6,-- ] = [3,1,2,1,6].
7.10 Note: Let z € R\ Q with > 1. Say = = [ag, a1, as, -] with ap € Z and a;, € Z7.
Since x > 1 we have ag = || > 1. For all n > 0, note that [0, ap, a1, -, a,] = m
By taking the limit on both sides we obtain [0, ag, a1, as, - | = m It follows that
% = [0, ap, a1, a9, --]. Also note that the convergents of x, given by ¢, = [ag, a1, -, ay],
and the convergents of %, given by d,, = [0,a9,a1,--,a,—_1], are related by dy = 0 and

dpi1 = é for all n > 0.



7.11 Theorem: Let x = [ag, a1, a2, -] with ag € Z and ay, € Z" for k > 1. For n > 0,

let ¢, = [ag, a1, - ,an] = 5—:. Letr € Z and s € Z*. Then

(1) for all k > 0, if |sx — r| < |gxx — px| then s > g1,
(2) for all k > 0, if!:)s - g‘ < ‘l‘— 12—:| then s > g, and
(3) if‘x— §| < 5tz then L = ¢, for some k > 0.

Proof: To prove Part 1 let k > 0, suppose that |szy — 7| < |gxx — px| and suppose, for a
contradiction, that s < gx41. Note that to get (r,s) = u(pg, qx) + v(Pk+1, qx+1) We need

<U):(pk: pk+1)_1<7”): 1 (ka+1 —pk+1> (7“)
v 4k Qk+1 s Pkqk+1 — qkPr+1 \ — 9k Pk s

— (—1)F <_Qk+1 pk+1) (T’> — (—1)F (—Qk+17“ +pk+18) _

dk  —Pk s —qk+17 + Dk+15

Thus we choose u = (—1)¥(—qxy17 + pry15) and v = (—1)¥(—qpy17 + pry15). Note that
u € Z and v € Z and we have r = upy + vpg41 and s = uqx + vqr+1. We claim that
u # 0. Suppose, for a contradiction, that u = 0. Then we have s = vqry; which implies
that v > 0 (since s > 0 and gx4+1 > 0) and hence that s > ¢x41. This contradicts our
assumption that s < gx41, and so we have u # 0, as claimed. We claim that v # 0.
Suppose, for a contradiction, that v = 0. Then we have r = upy and s = ugqg, and so
|sz — r| = |lugrr — upk| = |ullggx — pr| > |gex — pr|- This contradicts our assumption
that |sx — r| < |grz — pk|, and so we have v # 0, as claimed. Note that u and v have
opposite signs (that is uv < 0) because if we had v > 0 and v > 0 then we would
have s = uqr + vqr+1 > qr+1, and if we have v < 0 and v < 0 then we would have
s = uqg +vqr+1 < 0. Note that (gxx — px) and (gr4+12 — pr+1) have opposite signs because
x lies between ¢, = f]’—: and cpyq = Z:ﬁ so that x — ¢x and x — ci41 have opposite signs.
Thus, since (gxx — px)u and (qx+17 — pr+1)v have the same sign, we have

sz — r| = |(ugr + vqes1)® — (upr + vprt1)| = |(@z — Pr)u + (Gr1® — Prs1)V]
= |gxx — prllul + |gr+12 — prsal|v] > lgpx — prl-

This contradicts the fact that |sx — 7| < |gxz — pr| and completes the proof of Part 1.
To prove Part 2 let k& > 0, suppose that |x — %! < ’90 — 2’—:’ and suppose, for a
contradiction, that s < gi. Then we have

s 1l = sho = £ <sfo = 2| < aufo — 2| = awz —

But then, by Part 2, we have s > g;41 so that s > qi, giving the desired contradiction.
To prove Part 3, suppose that ‘x — g’ < ﬁ Since gop = 1 and {q, } is increasing with
Gn — 00 as n — 00, we can choose k > 0 so that g, < s < qx+1. We claim that g = Cp.
Suppose, for a contradiction, that = # cp. Since s < gry1 it follows from Part (1) that
avo—pi| < Jsz—r], andso [o— 2| = Liguz—py| < Llso—r| = 2[z—2| < 2.0 = 1

S —
qr 2s? T 2sqy”
= lrae—spe| 5 1

Sqk — sqr’

3 r 3 r Pk r Pk
Since T # ¢y, that is £ # o, we have rqi — spr # 0 and so ’g — q—k’
Thus we have

1 Z_Jﬂ‘ ‘£_| ‘_P_k‘ 1 1
S%S s gk S e i qx <252+25%'

Subtracting ﬁ from both sides gives ﬁ < ﬁ so that s < qr. This contradicts the fact
that g < s, and so we have = = ¢, as claimed.



7.12 Corollary: Let d € Z* be a non-square and let r,s € ZF. If |r?> — ds?| < V/d then

* Is equal to one of the convergents of V.
Proof: Suppose that |r? — ds?| < v/d. We consider two cases. Case 1: suppose that
0 < 2 —ds? < V/d. Since (r+svd)(r — sv/d) = r> — ds® > 0, we have r — s3/d > 0, that is

T _ r=svd _ _r%—ds? Vd Vd _ 1
r > sv/d. It follows that 0 < . Vd = S T e < A < oVeravD) = 257

By Part 3 of the above theorem, = must be equal to one of the convergents of V.
Case 2: suppose that —v/d < r? — ds? < 0. Since (r 4+ sv/d)(r — sv/d) =12 — ds®> < 0
we have 7 — sv/d < 0 so that r < sv/d. It follows that
s 1 _ svd—r __ s2d—r? Vd Vd _ 1
0<% Vd  rV/d o rVd(sVd+r) < rVd(sVd+r) < rVd(r+r) — 2r?°

By Part 3 of the above theorem, # must be equal to one of the convergents of \/LE' It then

follows from Note 7.10, that % is equal to one of the convergents of V.

7.13 Corollary: Let d € Z™ be a non-square and let ¢, = Z—: be the convergents of Vd.

The smallest unit u > 1 in Z[\/d] is equal to u = pj, + qi.v/d where k is the smallest index
for which p? — dqi = +1.

Proof: Suppose that v is a unit in Z[v/d] with v > 1. Recall, from Theorem 6.10, that
v =r+ sVd for some r,s € Z* with r? — ds* = N(v) = £1. Since |r? —ds*| =1 < Vd
it follows, from the above corollary, that * = ’q’—: for some index k. Since 7, s, pr,qr € Z"
and £ = 5—: and ged(pg, qx) = 1, we must have r = tpy and s = tqy for some t € ZT. Since
1= |r2 — d52| = !tQpi — dt*q}
s = qx. This shows that every unit v in Z[\/E] with v > 1 is equal to uy, = py + gz V/d for
some index k for which p? — dqi = +1.

On the other hand, if k is an index for which p7 — dgid = +1 then the element

up = pr + qVd € Z[\/E] is a unit because N(ug) = £1.
7.14 Example: Find the smallest unit v € Z[v/19] with u > 1.

= t?|p? — dq|, we must have ¢ = 1 so that r = p; and

Solution: We find some terms in the sequences {z,,} and {a, } using the recursion formulas
ro = =419 and ay = |z | and x4 1 = xkiak for £ > 0, and we find some terms in the
sequences {p,} and {g¢,} using the recursion formulas py = ag, p1 = a1a9 + 1, go = 1 and
q1 = a1 and pr = agpr—1 + pr—2 and qx = arqr_1 + qr—o for k > 2, and we calculate the

norms Ny = N(py, + qxVd) = pi.? — dgi..

k T ar Pk Gk Nk
0 V19 4 4 1 -3
1 A=Y 2 9 2 5
2 Ao =YIH2 1 13 3 -2
3 =Y 3 48 11 5
4 2o = 1 61 14 -3
5o =2 2 170 39 1
6 2 =Y g

By the above corollary, the smallest unit v in Z[v/19] with v > 1 is u = 170 + 39+/19.



7.15 Definition: A quadratic irrational is an irrational number which is a root of a
quadratic polynomial with coefficients in Z.

N

r+

S

7.16 Theorem: The quadratic irrational numbers are the numbers of the form x =
for some non-square d € Z and some r, s € Z with s # 0 and s|(r* — d).

Proof: Suppose that z = %E where d € Z™ is a non-square and r,s € Z with s # 0 and
s|(7“2 —d). Then z is irrational and we have sz — r = V/d so that sz — 2rsx + 12 = d,
and so x is a root of f(z) = sz? — 2rx + ’QT_d € Z[z).

Conversely, let x be an irrational number which is a root of f(z) = ax? + bz + ¢

where a,b, ¢ € Z with a # 0. By the Quadratic Formula, we have g = =bEvbi—dac 322_4“. Let
d = b?> — 4ac € Z. Since z is irrational number, d > 0 and d is not a square. When
x = —btvbi-dac VQb;_‘lacwehavem:%ﬁforr:—bands:Za. When g = =b=vb-—dac V2l;2_4acwe

have z = %& for r = b and s = —2a. In either case, s # 0, r? — d = 4ac and s‘(r2 —d).

7.17 Theorem: Let x = %& where d € 7% is a nonsquare and r,s € Z with s # 0

2 1
and s|(d — r?). When we let g = x, ar = |xx]) and T4 = z—ar for k > 0 so that
x = [ag,a1,az,- |, we have xj = %ﬁ where ri, and sy are given recursively by ro = r,

d—r2 .
S0 = S, Tk+1 = apSg — Tk and Sg11 = 5:+1’ and we have ry, sy € Z with s # 0 and
2

Proof: Let ry and s; be defined by the given recursion formula. If we suppose, inductively,
that rg, sk € Z with s, # 0 and sk‘(d — r2) then we have ryy1 = agsy — 7x € Z, and

d—r2 . .

Spa1 = s:“ = (0 since d is a nonsquare, and
_ d_ri+1 o d—(aksk—rk)2 o 2 d—?“i
Skl = —%, 0 = o = 2aiTr — apsp + 5 € 7
d—r?

: 2 E+1 2 :
since sk|(d —r;), and i = Sk € Z so that skH}(d — Tjep1). Also, if we suppose,
inductively, that zp = %ﬁ then we have

z _ _ 1 _ Sk _ Vid+(aksk—rk) _ re41+Vd

k+1 T —ak rk+\/g_ak \/a_(akvsk_"’k) (d—(aksk—"Tk)2)/sk Sk4+1

Sk

7.18 Theorem: Let x = [ag,a1,as, | with ap € Z* for all k > 0. Let ¢; = Z—: by the

k'™ convergent of x. Then [ay,a)_1,---,a1,a0] = pf: and [ag,ak—1, -+ ,a2,a1] = q:’fl.
Proof: Since pyg = ag and p; = ajag + 1 we have g—; = a; + % = [a1,a0]. Suppose,
inductively, that % = [ag—1, -, a1,a0]. Then since pr = axpr_1 + pr—2, we have
Dk Dk—2 1 1
= ay + =ay + 5 = ar + = [ak, ag—1, -+, a1, a0).
Dk—1 Pk—1 DPh—z [ag—1,- -+, a1, a0]
Also, since qo = 1 and ¢ = a1 we have Z—; = a1 = [a1]. Suppose, inductively, that
Zl’:—:; = [ag—1, -+, az2,a1]. Then since qx = arar—1 + qr—2 we have
qk qr—2 1 1
=ar + = Qi + g = 0k + = [ak, a1, -, az,a1].
Q-1 Q-1 P [ak—1,- -+, az, a1]



7.19 Theorem: (Lagrange) Let x = [ag, a1, a2, | where ag € Z and ay, € Z for k > 1.
Then the sequence {a,} is eventually periodic if and only if x is a quadratic irrational.

Proof: Suppose that {a,} is eventually periodic, say x = [ag, a1, ", an—1,0n, ;5 Cptm)-

Let Yy = [a'm e ;an—i—m]- Note t}}at Yy = [C/Ln7 / Yy Antm, Qny * 7an+m] = [a'm e ;am+n>y]~
By o

Pt — Pt here ¢}, = 2t is the k' convergent of

qm+1 qu+qm—1 qk:

y. It follows that ¢/, v* + (¢\,_1 — Pln)y — Phu1 = 0 and so y is a quadratic irrational.

Also, note that © = [ag, a1, *,an-1,0n, ", Gntm] = [G0,a1, ", an_1,y] SO, again from

Theorem 7.4, we have z = Bn = YPno1fPn2 whope ¢f = B is the kth convergent of .

dn Yqn—-1+qn—2
Verify, as an exercise, that since y is a quadratic irrational and z = ¥2n=1tPn=2
yqn71+qn72

By Theorem 7.4, we have y =

, it follows
that x is a quadratic irrational.
Suppose, conversely, that = is a quadratic irrational, say x = %ﬁ where d € Z7 is a

non-square and 7, s € Z with s # 0 and s|(d—r?). Recall that the conjugate of z in Q[Vd)]
r—vd re+vd
Sk

s , where

. From Theorem 7.17, we have a, = |xx| with zj =

2
d—rlﬂ_1

is given by * =

. Recall from
TEPk—1+TPk—2
_OSka—1+Qk—2
TrpPr—1+DPr—2
Tpqr—1+qr—2"

rr and s are given by rg =1, S9 = S, k41 = xSk — T and Sk =
Note 7.8 that = [ag, a1, -, ar—1,x] and so from Theorem 7.4 we have x =

where ¢, = f]’—: is the k' convergent of x. Taking the conjugate gives T =
Solving for T gives
— P2 @raT _ e2(T — ck-2)

Qk—1T — Pr—1 Qk—1(T — cp—1)

T — Ck— T—x
Since lim — k=2 = — = 1, it follows that the right hand side is eventually negative,
k—oo  — Ci—1 r—

so we can choose m > 1 such that Zp < 0 for all £ > m. We also note that x; > 0 for all

k > 1 (since xy = [ag,ar11, -] with each a; € Z™) and so, for all k& > m, we have
— _ rgtVd  rm—Vd _ 2Vd
0<.’L’k—$k— ksk — ksk —?
d—rz

so that d — ?“]% = SkSk+1, it follows that for all £ > m

and hence s; > 0. Since siy1 = o

we have 0 < s < SgSpy1 = d — 7“,% < d and also, since 0 < d — ri we have 12 < d so
that |r| < Vd. Since 0 < s, < d and Ir| < Vd, we see that for k > m there are only
finitely many possibilities for the pair (7, sx), hence only finitely many possibilities for

xTp = %E. Thus the sequence {xy}, hence also the sequence {ay}, is eventually periodic.



7.20 Theorem: Let x = [ag,a1,aq, -] where ag € Z and a,, € ZT for k > 1. Then
the sequence {a,} is purely periodic if and only if x is a quadratic irrational with = > 1

and —1 < T < 0. In this case, if v = [ag, a1, -, ar—1) and y = [az_1, -, a1, ag] we have
= 1
T=—-—.

y

Proof: We shall prove only one direction of the theorem. Suppose that {ax} is purely
periodic, say x = [ag, a1, -, ar—1) and let y = [ag_1, -, a1, a0). Let ¢ = Z—: be the kP

convergent for = and let ¢j = 7;—2“ be the k" convergent for y. By Theorems 7.4 and 7.18
k

we know that

/ /
D1 _ _ Di—1 Do Qi1
— = a1, a1,a0) = —— and == = [ai-1,- a2, a1] = ——.
91 DPi1—2 q;_o qr—2
From the formula prqr_1 — qepr—1 = (—1)*~1, we see that ged(pr, qx) = ged(pr, pr_1) =
ged(qr, qr—1 = 1 for all k, and so the fact that 2=t = P=L apd P=2 — @1 jpplieg that
91 Pr—2 q,_o qi—2

Pl =DPi—1: Q1 =Pi—2, Plo=q—1 and ¢_o=qi_2.

. _ _ _ Tpi—1tpi—2

Since = = [ag, a1, -+, a1-1,00,01, -, a_1] = [ag, a1, -, a-1,7] = Tq_1tq_z W€ have
22q_ 1+ 2(qi_2 — p1_2) — p1—2 = 0, so x is a root of the polynomial

2
9g@)=q 12"+ (@-2—pi-1)T—pr—2.
yp,_1+p;
. -1 1—2
Since y = [a;—1,---,a1,a0,a01-1, -, 01,00] = [a1—1,---,a1,a0,Yy] = va_ td_, we have

v2a—1 T y(a_y — Piy) — Pl = 0, that is ¢”pis + y(q-2 — pr—1) — @1 = 0. Multiply
through by —y—12 to get —p;_o — i(Ql—z —pi-1) + y% qi—1 = 0, and so —i is also a root of
g(x). Since |z] =ap =a; > 1 and |y] =a;—1 > 1 we have x > 1 and y > 1. Since y > 1
we have —% € (—1,0). Since z > 1 and y € (—1,0) we have x # —% and so z and —i are
the two distinct roots of g(x). Since g(x) has coefficients in Z, its two roots are conjugates

so we have T = —% € (—1,0).



7.21 Theorem: Let d € Z™ be a non-square. Let Vd = lag, a1, a9, -] with ay € Z and

ar € Z* for k > 1. Let £ be the minimum period of {a,}. Let ¢, = [ag, a1, -, a,] = Z—:.
Let zo = Vd and Thy1 = m for k > 0. Write x, = %ﬁ' Then

(1) we have ay = 2ag so that Vd = [ao,al,ag, e ,a4_1,2a0],
(2) for all k > 0 we have p? — d qx% = (—1)*T1sp 11, and
(3) the smallest unit u in Z[v/d] with u > 1 is equal to u = py_1 + q¢—1V/d and we have

uF = pre_y + Qké—l\/a for all k € Z".

Proof: Let us prove Part 1. We have v/d = [ag, a1, as, - - -] with ag = |V/d]. For any ¢ € Z we
have c+Vd = [c+ag, a1, as,---|. Let z = |Vd]+vd = ag++/d = [2a9, a1, az, as, - --]. Then
z>1andZ = |Vd] —Vd € (—1,0) so, by the previous theorem, the continued fraction for

x is purely periodic. Thus we have x = [2ag, a1, a9, -+, ap—1,a¢, -] = [2a0,a1,a2, -+, ap_1]
with ay = 2a¢ and hence v/d = [ag, a1, -, ag] with a; = 2a.
Let us prove Part 2. Let 2 = V/d = [ag, a1, as,-- -] and z3 = [ak, ary1,--]. We have
\/C_Z = [CL(), at,---,ag, I‘k+1]
Tk+1+\/g
_ Tk+1Pk + Pr—1 _ _ sk41 Pk + Pr—1 _ (e \/g)pk + Sk4+1Pk—1
Thi1qk + Qr—1 %/3 Qe + Q1 (rg+1 + V)G + Ska1qr-1

and hence

dar, + (rk41qk + sk1qk-1)Vd = (rksapr + skrape—1) + prVd.
It follows that qu = Tk+1Pk + Sk+1DPk—1 (1) and Pk = Tk+1qk + Sk+1Qk—1 (2) Multjp]y
Equation (1) by —¢x and Equation (2) by px and add to get
Pk — dgi = sk1(De@r—1 — QePE—1)-

Recall from Part 1 of Theorem 7.5 that prgr—1 — qxpr—1 = (—1)
p: —dgi = (—1)**1s; 41 as required.

k+1 " and so we have



