Chapter 7. Continued Fractions

7.1 Definition: Let $a_0, a_1, a_2, \dots \in \mathbb{R}$ with $a_k > 0$. For $n \ge 0$ we write

$$[a_0, a_1, a_2, \cdots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{\frac{1}{\cdots + \frac{1}{a_{n-1} + \frac{1}{a_n}}}}}$$

and

$$[a_0, a_1, a_2, \cdots] = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}} = \lim_{n \to \infty} [a_0, a_1, a_2, \cdots, a_n]$$

A finite continued fraction is a rational number of the form $[a_0, a_1, \dots, a_n]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $1 \leq k \leq n$, and an **infinite continued fraction** is a real number of the form $[a_0, a_1, a_2, \dots]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \geq 1$.

7.2 Theorem: Every rational number is equal to a finite continued fraction.

Proof: Let $x = \frac{a}{b}$ with $a \in \mathbb{Z}$ and $b \in \mathbb{Z}^+$. Use the Division Algorithm repeatedly to get

$$a = q_1b + r_1$$
, $b = q_2r_1 + r_2$, $r_1 = q_3r_3 + r_4$, \cdots , $r_{n-2} = q_nr_{n-1} + r_n$

with $0 = r_n < r_{n-1} < \cdots < r_2 < r_1 < b$. Then we have

$$x = \frac{a}{b} = q_1 + \frac{r_1}{b} = q_1 + \frac{1}{b/r_1} = q_1 + \frac{1}{q_2 + \frac{r_2}{r_1}} = q_1 + \frac{1}{q_2 + \frac{1}{q_3 + \frac{r_3}{r_2}}} = \dots = [q_1, q_2, \dots, q_n].$$

7.3 Remark: Note that when we write a rational number x as a continued fraction $x = [a_0, a_1, \dots, a_n]$, the integers a_k are not unique because we have

$$[a_0, a_1, \cdots, a_n, 1] = [a_0, a_1, \cdots, a_{n-1}, a_n + 1].$$

7.4 Theorem: Let $a_0 \in \mathbb{R}$ and let $0 < a_k \in \mathbb{R}$ for $k \ge 1$. For each $n \ge 0$ let $c_n = [a_0, a_1, \dots, a_n]$. Define sequences $\{p_n\}$ and $\{q_n\}$ recursively by $p_0 = a_0, p_1 = a_1a_0 + 1$ and $p_k = a_kp_{k-1} + p_{k-2}$ for $k \ge 2$, and $q_0 = 1$, $q_1 = a_1$ and $q_k = a_kq_{k-1} + q_{k-2}$ for $k \ge 2$. Then for all $n \ge 0$ we have $c_n = \frac{p_n}{q_n}$.

Proof: We have $c_0 = [a_0] = a_0 = \frac{a_0}{1} = \frac{p_0}{q_0}$ and $c_1 = [a_0, a_1] = a_0 + \frac{1}{a_1} = \frac{a_1a_0+1}{a_1} = \frac{p_1}{q_1}$. Let $k \ge 1$ and suppose, inductively, that for $a'_0, a'_1, \dots, a'_k \in \mathbb{R}$ with $a'_i > 0$ for $1 \le i \le k$ we have $[a'_0, a'_1, \dots, a'_k] = \frac{p'_k}{q'_k}$ where $\{p'_n\}$ and $\{q'_n\}$ satisfy the same recursion formulas as $\{p_n\}$ and $\{q_n\}$. Then using $a'_i = a_i$ for i < k and $a'_k = a_k + \frac{1}{a_{k+1}}$, and noting that $p'_i = p_i$ and $q'_i = q_i$ for i < k, we have

$$c_{k+1} = [a_0, a_1, \cdots, a_{k+1}] = [a_0, a_1, \cdots, a_{k-1}, a_k + \frac{1}{a_{k+1}}] = \frac{p'_k}{q'_k} = \frac{a'_k p'_{k-1} + p'_{k-2}}{a'_k q'_{k-1} + q'_{k-2}}$$
$$= \frac{\left(a_k + \frac{1}{a_{k+1}}\right) p_{k-1} + p_{k-2}}{\left(a_k + \frac{1}{a_{k+1}}\right) q_{k-1} + q_{k-2}} = \frac{a_{k+1} a_k p_{k-1} + p_{k-1} + a_{k+1} p_{k-2}}{a_{k+1} a_k q_{k-1} + q_{k-1} + a_{k+1} q_{k-2}}$$
$$= \frac{a_{k+1} (a_k p_{k-1} + p_{k-2}) + p_{k-1}}{a_{k+1} (a_k q_{k-1} + q_{k-2}) + q_{k-1}} = \frac{a_{k+1} p_k + p_{k-1}}{a_{k+1} q_k + q_{k-1}} = \frac{p_{k+1}}{q_{k+1}}.$$

7.5 Theorem: Let $a_0 \in \mathbb{Z}$ and let $a_k \in \mathbb{Z}^+$ for $k \ge 1$. Let $c_n = [a_0, a_1, \dots, a_n]$ for $n \ge 0$. Let $\{p_n\}$ and $\{q_n\}$ be as in Theorem 7.4 so that $c_n = \frac{p_n}{q_n}$. Then

- (1) for all $k \ge 0$ we have $p_{k+1}q_k q_{k+1}p_k = (-1)^k$,
- (2) for all $k \ge 0$ we have $gcd(p_k, q_k) = 1$,
- (3) for all $k \ge 0$ we have $c_{k+1} c_k = \frac{(-1)^k}{q_{k+1}q_k}$,
- (4) the sequence $\{c_n\}$ converges, and

(5) if we let $x = [a_0, a_1, a_2, \cdots] = \lim_{n \to \infty} c_n$ then we have $c_{2k} < x < c_{2k+1}$ for all $k \ge 0$.

Proof: To prove Part (1), note that $p_1q_0 - q_1p_0 = (a_1a_0 + 1)(1) - (a_1)(a_0) = 1$ and that for $k \ge 1$

 $p_{k+1}q_k - q_{k+1}p_k = (a_{k+1}p_k + p_{k-1})q_k - (a_{k+1}q_k + q_{k-1})p_k = -(p_kq_{k-1} - q_kp_{k-1}).$

Part (2) follows immediately from Part (1), and Part (3) also follows from Part (1) because

$$c_{k+1} - c_k = \frac{p_{k+1}}{q_{k+1}} - \frac{p_k}{q_k} = \frac{p_{k+1}q_k - q_{k+1}p_k}{q_{k+1}q_k} = \frac{(-1)^{\kappa}}{q_{k+1}q_k}$$

Since $c_0 = a_0$ and $c_{k+1} - c_k = \frac{(-1)^k}{q_{k+1}q_k}$, we have $c_n = a_0 + \sum_{k=0}^{n-1} \frac{(-1)^k}{q_{k+1}q_k}$ so Parts (4) and (5) both follow from Part (2) by the Alternating Series Test.

7.6 Definition: Let $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$. Then $c_n = [a_0, a_1, \dots, a_n]$ is called the n^{th} convergent of $x = [a_0, a_1, a_2, \dots]$ and p_n and q_n are called the **numerator** and **denominator** of c_n . Note that $gcd(p_k, q_k) = 1$ by Part (1) of the above theorem.

7.7 Theorem: Let $x \in \mathbb{R}$. Then x is irrational if and only if $x = [a_0, a_1, a_2, \cdots]$ for some $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$. In this case we have $a_n = \lfloor x_n \rfloor$ where $\{x_n\}$ is given by

$$x_0 = x \text{ and } x_{k+1} = \frac{1}{x_k - \lfloor x_k \rfloor} \text{ for } k \ge 1.$$

Proof: First let us show that if $x = [a_0, a_1, a_2, \cdots]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$ then we must have $x \in \mathbb{R} \setminus \mathbb{Q}$. Let $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$ and let $x = [a_0, a_1, a_2, \cdots]$. For each $k \ge 0$, let $c_k = [a_0, a_1, \cdots, a_k] = \frac{p_k}{q_k}$. Suppose, for a contradiction, that $x = \frac{r}{s}$ with $r \in \mathbb{Z}$ and $s \in \mathbb{Z}^+$. For each $k \ge 0$, since x lies strictly between c_k and c_{k+1} we have $x \ne c_k$, that is $\frac{r}{s} \ne \frac{p_k}{q_k}$, and so $rq_k \ne sp_k$. It follows that for every $k \ge 0$ we have

$$0 < \frac{1}{sq_k} \le \frac{|rq_k - sp_k|}{sq_k} = \left|\frac{r}{s} - \frac{p_k}{q_k}\right| = |x - c_k| < |c_{k+1} - c_k| = \frac{1}{q_{k+1}q_k} < \frac{1}{q_k^2}$$

and so $0 < \frac{1}{s} < \frac{1}{a_k}$. But this is not possible since $q_k \to \infty$ as $k \to \infty$, and so $x \in \mathbb{R} \setminus \mathbb{Q}$.

Next, let us show that if $x = [a_0, a_1, a_2, \cdots]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$ then the terms a_n are uniquely determined by the formula in the statement of the theorem. Let $a_0 \in \mathbb{Z}$ and let $a_k \in \mathbb{Z}^+$ for $k \ge 1$ and let $\{x_n\}$ be the sequence given by $x_0 = x$ and $x_{k+1} = \frac{1}{x_k - \lfloor x_k \rfloor}$ for $k \ge 1$. For all $n \ge 1$ we have $[a_0, a_1, \cdots, a_n] = a_0 + \frac{1}{[a_1, a_2, \cdots, a_n]}$. Taking the limit on both sides as $n \to \infty$ we obtain $[a_0, a_1, \cdots] = a_0 + \frac{1}{[a_1, a_2, \cdots]}$. Since $[a_0, a_1, \cdots] > a_0$ and $[a_1, a_2, \cdots] > a_1$ (by Part 5 of Theorem 7.5) we have

$$a_0 < [a_0, a_1, \cdots] = a_0 + \frac{1}{[a_1, a_2, \cdots]} < a_0 + \frac{1}{a_1} \le a_0 + 1$$

so that $a_0 < x_0 < a_0 + 1$ and hence $a_0 = \lfloor x_0 \rfloor$. Also, since $[a_0, a_1, \cdots] = a_0 + \frac{1}{[a_1, a_2, \cdots]}$, we have $[a_1, a_2, \cdots] = \frac{1}{[a_0, a_1, \cdots] - a_0} = \frac{1}{x_0 - \lfloor x_0 \rfloor} = x_1$. Repeating the above argument inductively, we find that for all $n \ge 1$ we have $a_n = \lfloor x_n \rfloor$ and $x_n = [a_n, a_{n+1}, a_{n+2}, \cdots]$.

Finally, we show that if $x \in \mathbb{R} \setminus \mathbb{Q}$ and if a_n is given by the formula in the statement of the theorem then we do indeed have $x = [a_0, a_1, \cdots]$. Let $x \in \mathbb{R} \setminus \mathbb{Q}$. Let $x_0 = x$ and for $k \ge 0$ let $a_k = \lfloor x_k \rfloor$ and $x_{k+1} = \frac{1}{x_k - \lfloor x_k \rfloor}$. Note that $x_0 = x \notin \mathbb{Q}$ and that whenever $x_k \notin \mathbb{Q}$ we have $x_k - \lfloor x_k \rfloor \notin \mathbb{Q}$ and $0 < x_k - \lfloor x_k \rfloor < 1$ and hence, since $x_{k+1} = \frac{1}{x_k - \lfloor x_k \rfloor}$, we have $x_{k+1} \notin \mathbb{Q}$ and $x_{k+1} > 1$. It follows, by induction, that for all $k \ge 0$ we have $x_k \notin \mathbb{Q}$ and for all $k \ge 1$ we have $x_k > 1$ and $a_k = \lfloor x_k \rfloor \ge 1$. Since $x_{k+1} = \frac{1}{x_k - \lfloor x_k \rfloor} = \frac{1}{x_k - a_k}$ we have $x_k = a_k + \frac{1}{x_{k+1}}$. Let $a'_k = a_k$ for $0 \le k \le n$ and $a'_{n+1} = x_{n+1}$, and let $c'_k = [a'_0, a'_1, \cdots, a'_k] = \frac{p'_k}{q'_k}$ for $0 \le k \le n + 1$. Note that $p'_k = p_k$ and $q'_k = q_k$ for $0 \le k \le n$, and so $p'_{n+1} = a'_{n+1}p'_n + p'_{n-1} = x_{n+1}p_n + p_{n-1}$ and similarly $q'_{n+1} = x_{n+1}q_n + q_{n-1}$. For $0 \le k \le n$ we have

$$[a_0, a_1, \cdots, a_k, x_{k+1}] = [a_0, a_1, \cdots, a_{k-1}, a_k + \frac{1}{x_{k+1}}] = [a_0, a_1, \cdots, a_{k-1}, x_k]$$

and hence

$$x = [x_0] = [a_0, x_1] = [a_0, a_1, x_2] = \dots = [a_0, a_1, \dots, a_n, x_{n+1}] = \frac{p'_{n+1}}{q'_{n+1}} \text{ and }$$
$$x - c_n = \frac{p'_{n+1}}{q'_{n+1}} - \frac{p_n}{q_n} = \frac{x_{n+1}p_n + p_{n-1}}{x_{n+1}q_n + q_{n-1}} - \frac{p_n}{q_n} = \frac{p_{n-1}q_n - q_{n-1}p_n}{q_n(x_{n+1}q_n + q_{n-1})} = \frac{(-1)^{n-1}}{q_n(x_{n+1}q_n + q_{n-1})}.$$

Thus $|x-c_n| = \frac{1}{q_n(x_{n+1}q_n+q_{n-1})} < \frac{1}{q_n(q_n+q_{n-1})} \longrightarrow 0$ so that $x = [a_0, a_1, a_2, \cdots]$, as required.

7.8 Note: When $x = [a_0, a_1, a_2, \cdots]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$, so that we have $a_k = \lfloor x_k \rfloor$ for all $k \ge 0$ where $x_0 = x$ and $x_{k+1} = \frac{1}{x_k - a_k}$ for $k \ge 0$, the proof of the above theorem shows that

$$x_n = [a_n, a_{n+1}, a_{n+2}, \cdots]$$
 and $x = [a_0, a_1, \cdots, a_{n-1}, x_n].$

7.9 Example: Express $\sqrt{14}$ as a continued fraction.

Solution: We let $x_0 = x = \sqrt{14}$ then calculate some terms in the sequences $\{x_n\}$ and $\{a_n\}$ using the recursion formulas $a_k = \lfloor x_k \rfloor$ and $x_{k+1} = \frac{1}{x_k - a_k}$.

$$k \qquad x_k \qquad a_k \\ 0 \qquad \sqrt{14} \qquad 3 \\ 1 \qquad \frac{1}{\sqrt{14}-3} = \frac{\sqrt{14}+3}{5} \qquad 1 \\ 2 \qquad \frac{5}{\sqrt{14}-2} = \frac{\sqrt{14}+2}{2} \qquad 2 \\ 3 \qquad \frac{2}{\sqrt{14}-2} = \frac{\sqrt{14}+2}{5} \qquad 1 \\ 4 \qquad \frac{5}{\sqrt{14}-3} = \frac{\sqrt{14}+3}{1} \qquad 6 \\ 5 \qquad \frac{1}{\sqrt{14}-3} = \frac{\sqrt{14}+3}{5} \qquad 1 \\ \end{cases}$$

We see that the values of x_k begin to repeat with period 4 so that $x_{k+4} = x_k$ and $a_{k+4} = a_k$ for all $k \ge 1$. Thus we have

$$\sqrt{14} = [3, 1, 2, 1, 6, 1, 2, 1, 6, \cdots] = [3, \overline{1, 2, 1, 6}].$$

7.10 Note: Let $x \in \mathbb{R} \setminus \mathbb{Q}$ with x > 1. Say $x = [a_0, a_1, a_2, \cdots]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$. Since x > 1 we have $a_0 = \lfloor x \rfloor \ge 1$. For all $n \ge 0$, note that $[0, a_0, a_1, \cdots, a_n] = \frac{1}{[a_0, a_1, \cdots, a_n]}$. By taking the limit on both sides we obtain $[0, a_0, a_1, a_2, \cdots] = \frac{1}{[a_0, a_1, a_2, \cdots]}$. It follows that $\frac{1}{x} = [0, a_0, a_1, a_2, \cdots]$. Also note that the convergents of x, given by $c_n = [a_0, a_1, \cdots, a_n]$, and the convergents of $\frac{1}{x}$, given by $d_n = [0, a_0, a_1, \cdots, a_{n-1}]$, are related by $d_0 = 0$ and $d_{n+1} = \frac{1}{c_n}$ for all $n \ge 0$. **7.11 Theorem:** Let $x = [a_0, a_1, a_2, \cdots]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$. For $n \ge 0$, let $c_n = [a_0, a_1, \cdots, a_n] = \frac{p_n}{q_n}$. Let $r \in \mathbb{Z}$ and $s \in \mathbb{Z}^+$. Then (1) for all $k \ge 0$, if $|sx - r| < |q_kx - p_k|$ then $s \ge q_{k+1}$, (2) for all $k \ge 0$, if $|x - \frac{r}{s}| < |x - \frac{p_k}{q_k}|$ then $s > q_k$, and (3) if $|x - \frac{r}{s}| < \frac{1}{2s^2}$ then $\frac{r}{s} = c_k$ for some $k \ge 0$.

Proof: To prove Part 1 let $k \ge 0$, suppose that $|sx_k - r| < |q_kx - p_k|$ and suppose, for a contradiction, that $s < q_{k+1}$. Note that to get $(r, s) = u(p_k, q_k) + v(p_{k+1}, q_{k+1})$ we need

$$\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} p_k & p_{k+1} \\ q_k & q_{k+1} \end{pmatrix}^{-1} \begin{pmatrix} r \\ s \end{pmatrix} = \frac{1}{p_k q_{k+1} - q_k p_{k+1}} \begin{pmatrix} q_{k+1} & -p_{k+1} \\ -q_k & p_k \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix}$$
$$= (-1)^k \begin{pmatrix} -q_{k+1} & p_{k+1} \\ q_k & -p_k \end{pmatrix} \begin{pmatrix} r \\ s \end{pmatrix} = (-1)^k \begin{pmatrix} -q_{k+1} r + p_{k+1} s \\ -q_{k+1} r + p_{k+1} s \end{pmatrix}.$$

Thus we choose $u = (-1)^k (-q_{k+1}r + p_{k+1}s)$ and $v = (-1)^k (-q_{k+1}r + p_{k+1}s)$. Note that $u \in \mathbb{Z}$ and $v \in \mathbb{Z}$ and we have $r = up_k + vp_{k+1}$ and $s = uq_k + vq_{k+1}$. We claim that $u \neq 0$. Suppose, for a contradiction, that u = 0. Then we have $s = vq_{k+1}$ which implies that v > 0 (since s > 0 and $q_{k+1} > 0$) and hence that $s \ge q_{k+1}$. This contradicts our assumption that $s < q_{k+1}$, and so we have $u \neq 0$, as claimed. We claim that $v \neq 0$. Suppose, for a contradiction, that v = 0. Then we have $r = up_k$ and $s = uq_k$, and so $|sx - r| = |uq_kx - up_k| = |u||q_kx - p_k| \ge |q_kx - p_k|$. This contradicts our assumption that $|sx - r| < |q_kx - p_k|$, and so we have $v \neq 0$, as claimed. Note that u and v have opposite signs (that is uv < 0) because if we had u > 0 and v > 0 then we would have $s = uq_k + vq_{k+1} > q_{k+1}$, and if we have u < 0 and v < 0 then we would have $s = uq_k + vq_{k+1} < 0$. Note that $(q_kx - p_k)$ and $(q_{k+1}x - p_{k+1})$ have opposite signs because x lies between $c_k = \frac{p_k}{q_k}$ and $c_{k+1} = \frac{p_{k+1}}{q_{k+1}}$ so that $x - c_k$ and $x - c_{k+1}$ have opposite signs. Thus, since $(q_kx - p_k)u$ and $(q_{k+1}x - p_{k+1})v$ have the same sign, we have

$$|sx - r| = |(uq_k + vq_{k+1})x - (up_k + vp_{k+1})| = |(q_kx - p_k)u + (q_{k+1}x - p_{k+1})v|$$

= |q_kx - p_k||u| + |q_{k+1}x - p_{k+1}||v| > |q_kx - p_k|.

This contradicts the fact that $|sx - r| < |q_kx - p_k|$ and completes the proof of Part 1.

To prove Part 2 let $k \ge 0$, suppose that $|x - \frac{r}{s}| < |x - \frac{p_k}{q_k}|$ and suppose, for a contradiction, that $s \le q_k$. Then we have

$$|sx - r| = s \left| x - \frac{r}{s} \right| < s \left| x - \frac{p_k}{q_k} \right| \le q_k \left| x - \frac{p_k}{q_k} \right| = |q_k x - p_k|.$$

But then, by Part 2, we have $s \ge q_{k+1}$ so that $s > q_k$, giving the desired contradiction.

To prove Part 3, suppose that $|x - \frac{r}{s}| < \frac{1}{2s^2}$. Since $q_0 = 1$ and $\{q_n\}$ is increasing with $q_n \to \infty$ as $n \to \infty$, we can choose $k \ge 0$ so that $q_k \le s < q_{k+1}$. We claim that $\frac{r}{s} = c_k$. Suppose, for a contradiction, that $\frac{r}{s} \ne c_k$. Since $s < q_{k+1}$ it follows from Part (1) that $|q_k x - p_k| \le |sx - r|$, and so $|x - \frac{p_k}{q_k}| = \frac{1}{q_k} |q_k x - p_k| \le \frac{1}{q_k} |sx - r| = \frac{s}{q_k} |x - \frac{r}{s}| < \frac{s}{q_k} \cdot \frac{1}{2s^2} = \frac{1}{2sq_k}$. Since $\frac{r}{s} \ne c_k$, that is $\frac{r}{s} \ne \frac{p_k}{q_k}$, we have $rq_k - sp_k \ne 0$ and so $|\frac{r}{s} - \frac{p_k}{q_k}| = \frac{|rq_k - sp_k|}{sq_k} \ge \frac{1}{sq_k}$. Thus we have

$$\frac{1}{sq_k} \le \left|\frac{r}{s} - \frac{p_k}{q_k}\right| \le \left|\frac{r}{s} - x\right| + \left|x - \frac{p_k}{q_k}\right| < \frac{1}{2s^2} + \frac{1}{2sq_k}$$

Subtracting $\frac{1}{2sq_k}$ from both sides gives $\frac{1}{2sq_k} < \frac{1}{2s^2}$ so that $s < q_k$. This contradicts the fact that $q_k \leq s$, and so we have $\frac{r}{s} = c_k$, as claimed.

7.12 Corollary: Let $d \in \mathbb{Z}^+$ be a non-square and let $r, s \in \mathbb{Z}^+$. If $|r^2 - ds^2| \leq \sqrt{d}$ then $\frac{r}{s}$ is equal to one of the convergents of \sqrt{d} .

Proof: Suppose that $|r^2 - ds^2| \leq \sqrt{d}$. We consider two cases. Case 1: suppose that $0 < r^2 - ds^2 \leq \sqrt{d}$. Since $(r + s\sqrt{d})(r - s\sqrt{d}) = r^2 - ds^2 > 0$, we have $r - s\sqrt{d} > 0$, that is $r > s\sqrt{d}$. It follows that $0 < \frac{r}{s} - \sqrt{d} = \frac{r - s\sqrt{d}}{s} = \frac{r^2 - ds^2}{s(r + s\sqrt{d})} \leq \frac{\sqrt{d}}{s(r + s\sqrt{d})} < \frac{\sqrt{d}}{s(s\sqrt{d} + s\sqrt{d})} = \frac{1}{2s^2}$. By Part 3 of the above theorem, $\frac{r}{s}$ must be equal to one of the convergents of \sqrt{d} .

Case 2: suppose that $-\sqrt{d} < r^2 - ds^2 < 0$. Since $(r + s\sqrt{d})(r - s\sqrt{d}) = r^2 - ds^2 < 0$ we have $r - s\sqrt{d} < 0$ so that $r < s\sqrt{d}$. It follows that

$$0 < \frac{s}{r} - \frac{1}{\sqrt{d}} = \frac{s\sqrt{d} - r}{r\sqrt{d}} = \frac{s^2d - r^2}{r\sqrt{d}(s\sqrt{d} + r)} < \frac{\sqrt{d}}{r\sqrt{d}(s\sqrt{d} + r)} < \frac{\sqrt{d}}{r\sqrt{d}(r+r)} = \frac{1}{2r^2}$$

By Part 3 of the above theorem, $\frac{s}{r}$ must be equal to one of the convergents of $\frac{1}{\sqrt{d}}$. It then follows from Note 7.10, that $\frac{r}{s}$ is equal to one of the convergents of \sqrt{d} .

7.13 Corollary: Let $d \in \mathbb{Z}^+$ be a non-square and let $c_k = \frac{p_k}{q_k}$ be the convergents of \sqrt{d} . The smallest unit u > 1 in $\mathbb{Z}[\sqrt{d}]$ is equal to $u = p_k + q_k \sqrt{d}$ where k is the smallest index for which $p_k^2 - dq_k^2 = \pm 1$.

Proof: Suppose that v is a unit in $\mathbb{Z}[\sqrt{d}]$ with v > 1. Recall, from Theorem 6.10, that $v = r + s\sqrt{d}$ for some $r, s \in \mathbb{Z}^+$ with $r^2 - ds^2 = N(v) = \pm 1$. Since $|r^2 - ds^2| = 1 \le \sqrt{d}$ it follows, from the above corollary, that $\frac{r}{s} = \frac{p_k}{q_k}$ for some index k. Since $r, s, p_k, q_k \in \mathbb{Z}^+$ and $\frac{r}{s} = \frac{p_k}{q_k}$ and $\gcd(p_k, q_k) = 1$, we must have $r = tp_k$ and $s = tq_k$ for some $t \in \mathbb{Z}^+$. Since $1 = |r^2 - ds^2| = |t^2 p_k^2 - dt^2 q_k^2| = t^2 |p_k^2 - dq_k^2|$, we must have t = 1 so that $r = p_k$ and $s = q_k$. This shows that every unit v in $\mathbb{Z}[\sqrt{d}]$ with v > 1 is equal to $u_k = p_k + q_k\sqrt{d}$ for some index k for which $p_k^2 - dq_k^2 = \pm 1$.

On the other hand, if k is an index for which $p_k^2 - dq_k^2 d = \pm 1$ then the element $u_k = p_k + q_k \sqrt{d} \in \mathbb{Z}[\sqrt{d}]$ is a unit because $N(u_k) = \pm 1$.

7.14 Example: Find the smallest unit $u \in \mathbb{Z}[\sqrt{19}]$ with u > 1.

Solution: We find some terms in the sequences $\{x_n\}$ and $\{a_n\}$ using the recursion formulas $x_0 = x = \sqrt{19}$ and $a_k = \lfloor x_k \rfloor$ and $x_{k+1} = \frac{1}{x_k - a_k}$ for $k \ge 0$, and we find some terms in the sequences $\{p_n\}$ and $\{q_n\}$ using the recursion formulas $p_0 = a_0$, $p_1 = a_1a_0 + 1$, $q_0 = 1$ and $q_1 = a_1$ and $p_k = a_k p_{k-1} + p_{k-2}$ and $q_k = a_k q_{k-1} + q_{k-2}$ for $k \ge 2$, and we calculate the norms $N_k = N(p_k + q_k \sqrt{d}) = p_k^2 - dq_k^2$.

By the above corollary, the smallest unit u in $\mathbb{Z}[\sqrt{19}]$ with u > 1 is $u = 170 + 39\sqrt{19}$.

7.15 Definition: A quadratic irrational is an irrational number which is a root of a quadratic polynomial with coefficients in \mathbb{Z} .

7.16 Theorem: The quadratic irrational numbers are the numbers of the form $x = \frac{r+\sqrt{d}}{s}$ for some non-square $d \in \mathbb{Z}^+$ and some $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid (r^2 - d)$.

Proof: Suppose that $x = \frac{r+\sqrt{d}}{s}$ where $d \in \mathbb{Z}^+$ is a non-square and $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid (r^2 - d)$. Then x is irrational and we have $sx - r = \sqrt{d}$ so that $s^2x^2 - 2rsx + r^2 = d$, and so x is a root of $f(x) = sx^2 - 2rx + \frac{r^2 - d}{s} \in \mathbb{Z}[x]$.

Conversely, let x be an irrational number which is a root of $f(x) = ax^2 + bx + c$ where $a, b, c \in \mathbb{Z}$ with $a \neq 0$. By the Quadratic Formula, we have $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$. Let $d = b^2 - 4ac \in \mathbb{Z}$. Since x is irrational number, $d \geq 0$ and d is not a square. When $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ we have $x = \frac{r + \sqrt{d}}{s}$ for r = -b and s = 2a. When $x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ we have $x = \frac{r + \sqrt{d}}{s}$ for r = b and s = -2a. In either case, $s \neq 0$, $r^2 - d = 4ac$ and $s \mid (r^2 - d)$.

7.17 Theorem: Let $x = \frac{r+\sqrt{d}}{s}$ where $d \in \mathbb{Z}^+$ is a nonsquare and $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid (d-r^2)$. When we let $x_0 = x$, $a_k = \lfloor x_k \rfloor$ and $x_{k+1} = \frac{1}{x_k - a_k}$ for $k \geq 0$ so that $x = [a_0, a_1, a_2, \cdots]$, we have $x_k = \frac{r_k + \sqrt{d}}{s_k}$ where r_k and s_k are given recursively by $r_0 = r$, $s_0 = s$, $r_{k+1} = a_k s_k - r_k$ and $s_{k+1} = \frac{d - r_{k+1}^2}{s_k}$, and we have $r_k, s_k \in \mathbb{Z}$ with $s_k \neq 0$ and $s_k \mid (d - r_k^2)$.

Proof: Let r_k and s_k be defined by the given recursion formula. If we suppose, inductively, that $r_k, s_k \in \mathbb{Z}$ with $s_k \neq 0$ and $s_k | (d - r_k^2)$ then we have $r_{k+1} = a_k s_k - r_k \in \mathbb{Z}$, and $s_{k+1} = \frac{d - r_{k+1}^2}{s_k} \neq 0$ since d is a nonsquare, and

$$s_{k+1} = \frac{d - r_{k+1}^2}{s_k} = \frac{d - (a_k s_k - r_k)^2}{s_k} = 2a_k r_k - a_k^2 s_k + \frac{d - r_k^2}{s_k} \in \mathbb{Z}$$

since $s_k | (d - r_k^2)$, and $\frac{d - r_{k+1}^2}{s_{k+1}} = s_k \in \mathbb{Z}$ so that $s_{k+1} | (d - r_{k+1}^2)$. Also, if we suppose, inductively, that $x_k = \frac{r_k + \sqrt{d}}{s_k}$ then we have

$$x_{k+1} = \frac{1}{x_k - a_k} = \frac{1}{\frac{r_k + \sqrt{d}}{s_k} - a_k} = \frac{s_k}{\sqrt{d} - (a_k s_k - r_k)} = \frac{\sqrt{d} + (a_k s_k - r_k)}{(d - (a_k s_k - r_k)^2)/s_k} = \frac{r_{k+1} + \sqrt{d}}{s_{k+1}}.$$

7.18 Theorem: Let $x = [a_0, a_1, a_3, \cdots]$ with $a_k \in \mathbb{Z}^+$ for all $k \ge 0$. Let $c_k = \frac{p_k}{q_k}$ by the k^{th} convergent of x. Then $[a_k, a_{k-1}, \cdots, a_1, a_0] = \frac{p_k}{p_{k-1}}$ and $[a_k, a_{k-1}, \cdots, a_2, a_1] = \frac{q_k}{q_{k-1}}$.

Proof: Since $p_0 = a_0$ and $p_1 = a_1a_0 + 1$ we have $\frac{p_1}{p_0} = a_1 + \frac{1}{a_0} = [a_1, a_0]$. Suppose, inductively, that $\frac{p_{k-1}}{p_{k-2}} = [a_{k-1}, \dots, a_1, a_0]$. Then since $p_k = a_k p_{k-1} + p_{k-2}$, we have

$$\frac{p_k}{p_{k-1}} = a_k + \frac{p_{k-2}}{p_{k-1}} = a_k + \frac{1}{\frac{p_{k-1}}{p_{k-2}}} = a_k + \frac{1}{[a_{k-1}, \cdots, a_1, a_0]} = [a_k, a_{k-1}, \cdots, a_1, a_0].$$

Also, since $q_0 = 1$ and $q_1 = a_1$ we have $\frac{q_1}{q_0} = a_1 = [a_1]$. Suppose, inductively, that $\frac{q_{k-1}}{q_{k-2}} = [a_{k-1}, \dots, a_2, a_1]$. Then since $q_k = a_k a_{k-1} + q_{k-2}$ we have

$$\frac{q_k}{q_{k-1}} = a_k + \frac{q_{k-2}}{q_{k-1}} = a_k + \frac{1}{\frac{q_{k-1}}{q_{k-2}}} = a_k + \frac{1}{[a_{k-1}, \cdots, a_2, a_1]} = [a_k, a_{k-1}, \cdots, a_2, a_1].$$

7.19 Theorem: (Lagrange) Let $x = [a_0, a_1, a_2, \cdots]$ where $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$. Then the sequence $\{a_n\}$ is eventually periodic if and only if x is a quadratic irrational.

Proof: Suppose that $\{a_n\}$ is eventually periodic, say $x = [a_0, a_1, \cdots, a_{n-1}, \overline{a_n, \cdots, a_{n+m}}]$. Let $y = [\overline{a_n, \cdots, a_{n+m}}]$. Note that $y = [a_n, \cdots, a_{n+m}, \overline{a_n, \cdots, a_{n+m}}] = [a_n, \cdots, a_{m+n}, y]$. By Theorem 7.4, we have $y = \frac{p'_{m+1}}{q'_{m+1}} = \frac{yp'_m + p'_{m-1}}{yq'_m + q'_{m-1}}$ where $c'_k = \frac{p'_k}{q'_k}$ is the k^{th} convergent of y. It follows that $q'_m y^2 + (q'_{m-1} - p'_m)y - p'_{m-1} = 0$ and so y is a quadratic irrational. Also, note that $x = [a_0, a_1, \cdots, a_{n-1}, \overline{a_n, \cdots, a_{n+m}}] = [a_0, a_1, \cdots, a_{n-1}, y]$ so, again from Theorem 7.4, we have $x = \frac{p_n}{q_n} = \frac{yp_{n-1} + p_{n-2}}{yq_{n-1} + q_{n-2}}$ where $c_k = \frac{p_k}{q_k}$ is the k^{th} convergent of x. Verify, as an exercise, that since y is a quadratic irrational and $x = \frac{yp_{n-1} + p_{n-2}}{yq_{n-1} + q_{n-2}}$, it follows that x is a quadratic irrational.

Suppose, conversely, that x is a quadratic irrational, say $x = \frac{r+\sqrt{d}}{s}$ where $d \in \mathbb{Z}^+$ is a non-square and $r, s \in \mathbb{Z}$ with $s \neq 0$ and $s \mid (d-r^2)$. Recall that the conjugate of x in $\mathbb{Q}[\sqrt{d}]$ is given by $\overline{x} = \frac{r-\sqrt{d}}{s}$. From Theorem 7.17, we have $a_k = \lfloor x_k \rfloor$ with $x_k = \frac{r_k + \sqrt{d}}{s_k}$, where r_k and s_k are given by $r_0 = r$, $s_0 = s$, $r_{k+1} = a_k s_k - r_k$ and $s_{k+1} = \frac{d-r_{k+1}^2}{s_k}$. Recall from Note 7.8 that $x = [a_0, a_1, \dots, a_{k-1}, x_k]$ and so from Theorem 7.4 we have $x = \frac{x_k p_{k-1} + p_{k-2}}{x_k q_{k-1} + q_{k-2}}$. where $c_k = \frac{p_k}{q_k}$ is the k^{th} convergent of x. Taking the conjugate gives $\overline{x} = \frac{\overline{x}_k p_{k-1} + p_{k-2}}{\overline{x}_k q_{k-1} + q_{k-2}}$. Solving for \overline{x}_k gives

$$\overline{x}_{k} = \frac{p_{k-2} - q_{k-2}\overline{x}}{q_{k-1}\overline{x} - p_{k-1}} = -\frac{q_{k-2}(\overline{x} - c_{k-2})}{q_{k-1}(\overline{x} - c_{k-1})}.$$

Since $\lim_{k\to\infty} \frac{\overline{x} - c_{k-2}}{\overline{x} - c_{k-1}} = \frac{\overline{x} - x}{\overline{x} - x} = 1$, it follows that the right hand side is eventually negative, so we can choose $m \ge 1$ such that $\overline{x}_k < 0$ for all $k \ge m$. We also note that $x_k > 0$ for all $k \ge 1$ (since $x_k = [a_k, a_{k+1}, \cdots]$ with each $a_i \in \mathbb{Z}^+$) and so, for all $k \ge m$, we have

$$0 < x_k - \overline{x}_k = \frac{r_k + \sqrt{d}}{s_k} - \frac{r_k - \sqrt{d}}{s_k} = \frac{2\sqrt{d}}{s_k}$$

and hence $s_k > 0$. Since $s_{k+1} = \frac{d-r_k^2}{s_k}$ so that $d-r_k^2 = s_k s_{k+1}$, it follows that for all $k \ge m$ we have $0 < s_k \le s_k s_{k+1} = d - r_k^2 \le d$ and also, since $0 < d - r_k^2$ we have $r^2 < d$ so that $|r| \le \sqrt{d}$. Since $0 < s_k \le d$ and $|r| \le \sqrt{d}$, we see that for $k \ge m$ there are only finitely many possibilities for the pair (r_k, s_k) , hence only finitely many possibilities for $x_k = \frac{r_k + \sqrt{d}}{s_k}$. Thus the sequence $\{x_k\}$, hence also the sequence $\{a_k\}$, is eventually periodic. **7.20 Theorem:** Let $x = [a_0, a_1, a_2, \cdots]$ where $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$. Then the sequence $\{a_n\}$ is purely periodic if and only if x is a quadratic irrational with x > 1 and $-1 < \overline{x} < 0$. In this case, if $x = [\overline{a_0, a_1, \cdots, a_{\ell-1}}]$ and $y = [\overline{a_{\ell-1}, \cdots, a_1, a_0}]$ we have $\overline{x} = -\frac{1}{y}$.

Proof: We shall prove only one direction of the theorem. Suppose that $\{a_k\}$ is purely periodic, say $x = [\overline{a_0, a_1, \cdots, a_{\ell-1}}]$ and let $y = [\overline{a_{\ell-1}, \cdots, a_1, a_0}]$. Let $c_k = \frac{p_k}{q_k}$ be the k^{th} convergent for x and let $c'_k = \frac{p'_k}{q'_k}$ be the k^{th} convergent for y. By Theorems 7.4 and 7.18 we know that

$$\frac{p_{l-1}'}{q_{l-1}'} = [a_{l-1}, \cdots, a_1, a_0] = \frac{p_{l-1}}{p_{l-2}} \text{ and } \frac{p_{l-2}'}{q_{l-2}'} = [a_{l-1}, \cdots, a_2, a_1] = \frac{q_{l-1}}{q_{l-2}}$$

From the formula $p_k q_{k-1} - q_k p_{k-1} = (-1)^{k-1}$, we see that $gcd(p_k, q_k) = gcd(p_k, p_{k-1}) = gcd(q_k, q_{k-1} = 1 \text{ for all } k$, and so the fact that $\frac{p'_{l-1}}{q'_{l-1}} = \frac{p_{l-1}}{p_{l-2}}$ and $\frac{p'_{l-2}}{q'_{l-2}} = \frac{q_{l-1}}{q_{l-2}}$ implies that

$$p'_{l-1} = p_{l-1}$$
, $q'_{l-1} = p_{l-2}$, $p'_{l-2} = q_{l-1}$ and $q'_{l-2} = q_{l-2}$.

Since $x = [a_0, a_1, \dots, a_{l-1}, \overline{a_0, a_1, \dots, a_{l-1}}] = [a_0, a_1, \dots, a_{l-1}, x] = \frac{x p_{l-1} + p_{l-2}}{x q_{l-1} + q_{l-2}}$ we have $x^2 q_{l-1} + x(q_{l-2} - p_{l-2}) - p_{l-2} = 0$, so x is a root of the polynomial

$$g(x) = q_{l-1} x^2 + (q_{l-2} - p_{l-1}) x - p_{l-2}.$$

Since $y = [a_{l-1}, \dots, a_1, a_0, \overline{a_{l-1}, \dots, a_1, a_0}] = [a_{l-1}, \dots, a_1, a_0, y] = \frac{y p'_{l-1} + p'_{l-2}}{y q'_{l-1} + q'_{l-2}}$ we have $y^2 q'_{l-1} + y(q'_{l-2} - p'_{l-1}) - p'_{l-2} = 0$, that is $y^2 p_{l-2} + y(q_{l-2} - p_{l-1}) - q_{l-1} = 0$. Multiply through by $-\frac{1}{y^2}$ to get $-p_{l-2} - \frac{1}{y}(q_{l-2} - p_{l-1}) + \frac{1}{y^2}q_{l-1} = 0$, and so $-\frac{1}{y}$ is also a root of g(x). Since $\lfloor x \rfloor = a_0 = a_l \ge 1$ and $\lfloor y \rfloor = a_{l-1} \ge 1$ we have x > 1 and y > 1. Since y > 1 we have $-\frac{1}{y} \in (-1, 0)$. Since x > 1 and $y \in (-1, 0)$ we have $x \neq -\frac{1}{y}$ and so x and $-\frac{1}{y}$ are the two distinct roots of g(x). Since g(x) has coefficients in \mathbb{Z} , its two roots are conjugates so we have $\overline{x} = -\frac{1}{y} \in (-1, 0)$.

7.21 Theorem: Let $d \in \mathbb{Z}^+$ be a non-square. Let $\sqrt{d} = [a_0, a_1, a_2, \cdots]$ with $a_0 \in \mathbb{Z}$ and $a_k \in \mathbb{Z}^+$ for $k \ge 1$. Let ℓ be the minimum period of $\{a_n\}$. Let $c_n = [a_0, a_1, \cdots, a_n] = \frac{p_n}{q_n}$. Let $x_0 = \sqrt{d}$ and $x_{k+1} = \frac{1}{x_k - \lfloor x_k \rfloor}$ for $k \ge 0$. Write $x_k = \frac{r_k + \sqrt{d}}{s_k}$. Then (1) we have $a_\ell = 2a_0$ so that $\sqrt{d} = [a_0, \overline{a_1, a_2, \cdots, a_{\ell-1}, 2a_0}]$, (2) for all $k \ge 0$ we have $p_k^2 - dq_k^2 = (-1)^{k+1}s_{k+1}$, and (2) the smallest unit u in $\mathbb{Z}[\sqrt{d}]$ with $u \ge 1$ is equal to u, $r_{k-1} = \sqrt{d}$ and u_k have

(3) the smallest unit u in $\mathbb{Z}[\sqrt{d}]$ with u > 1 is equal to $u = p_{\ell-1} + q_{\ell-1}\sqrt{d}$ and we have

 $u^k = p_{k\ell-1} + q_{k\ell-1}\sqrt{d}$ for all $k \in \mathbb{Z}^+$.

Proof: Let us prove Part 1. We have $\sqrt{d} = [a_0, a_1, a_2, \cdots]$ with $a_0 = \lfloor \sqrt{d} \rfloor$. For any $c \in \mathbb{Z}$ we have $c + \sqrt{d} = [c + a_0, a_1, a_2, \cdots]$. Let $x = \lfloor \sqrt{d} \rfloor + \sqrt{d} = a_0 + \sqrt{d} = [2a_0, a_1, a_2, a_3, \cdots]$. Then x > 1 and $\overline{x} = \lfloor \sqrt{d} \rfloor - \sqrt{d} \in (-1, 0)$ so, by the previous theorem, the continued fraction for x is purely periodic. Thus we have $x = [2a_0, a_1, a_2, \cdots, a_{\ell-1}, a_\ell, \cdots] = [\overline{2a_0, a_1, a_2, \cdots, a_{\ell-1}}]$ with $a_\ell = 2a_0$ and hence $\sqrt{d} = [a_0, \overline{a_1}, \cdots, \overline{a_\ell}]$ with $a_\ell = 2a_0$.

Let us prove Part 2. Let $x = \sqrt{d} = [a_0, a_1, a_2, \cdots]$ and $x_k = [a_k, a_{k+1}, \cdots]$. We have

$$\sqrt{d} = [a_0, a_1, \cdots, a_k, x_{k+1}]$$

$$= \frac{x_{k+1}p_k + p_{k-1}}{x_{k+1}q_k + q_{k-1}} = \frac{\frac{r_{k+1} + \sqrt{d}}{s_{k+1}}p_k + p_{k-1}}{\frac{r_{k+1} + \sqrt{d}}{s_{k+1}}q_k + q_{k-1}} = \frac{(r_{k+1} + \sqrt{d})p_k + s_{k+1}p_{k-1}}{(r_{k+1} + \sqrt{d})q_k + s_{k+1}q_{k-1}}.$$

and hence

$$dq_k + (r_{k+1}q_k + s_{k+1}q_{k-1})\sqrt{d} = (r_{k+1}p_k + s_{k+1}p_{k-1}) + p_k\sqrt{d}.$$

It follows that $dq_k = r_{k+1}p_k + s_{k+1}p_{k-1}$ (1) and $p_k = r_{k+1}q_k + s_{k+1}q_{k-1}$ (2). Multiply Equation (1) by $-q_k$ and Equation (2) by p_k and add to get

$$p_k^2 - dq_k^2 = s_{k+1}(p_k q_{k-1} - q_k p_{k-1}).$$

Recall from Part 1 of Theorem 7.5 that $p_k q_{k-1} - q_k p_{k-1} = (-1)^{k+1}$, and so we have $p_k^2 - dq_k^2 = (-1)^{k+1} s_{k+1}$ as required.