
Chapter 5. Some Topics Involving Prime Numbers

The RSA Scheme

5.1 Definition: Cryptography is the study of secret codes. When we convert a mes-
sage from a normal language, say English, to a secret code, we say that we encrypt (or
encipher) the message, and the coded word is called the ciphertext. When we convert
the ciphertext back into normal language, we say that we decipher (or decrypt) the
ciphertext to obtain the original message.

5.2 Example: One of the simplest encryption methods is a Caesar cipher. Suppose
Alice wants to send a secret message to Bob using a Caesar cipher. Alice and Bob agree
in advance on a number n between 1 and 25. Alice encrypts the message by replacing
each letter in the message by the letter which follows it by n positions (modulo 26) in
the English alphabet. For example, if n = 4 then the letter P would be replaced by the
letter T (which follows P by 4 positions), and the message PONY would be replaced by
the ciphertext TSRC. Bob can easily decrypt the ciphertext by replacing each letter by
the letter which precedes it by n positions.

5.3 Example: A slightly more secure encryption method is a substitution cipher.
Suppose that Alice wants to send a secret message to Bob using a substitution cipher.
Alice and Bob agree in advance on a permutation p of the letters of the English alphabet.
Alice enciphers the message by replacing each letter by the letter which corresponds to it
under the permutation p. For example, if the permutation p is given as follows

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
V G S C F U Q L A P I D X N W T H Y O J K Z B E R M

then the letter H would be replaced by the letter L and the message HORSE would be
replaced by the ciphertext LWYOF.

5.4 Definition: A far more secure encryption system, which is commonly used by modern
computers, is the RSA scheme. The letters R, S and A stand for Rivest, Shamir and
Adleman, who first described this encryption system. The RSA scheme is a public key
encryption system, which means that when a person, say Alice, wishes to receive a secret
message, she makes her encryption rules publicly known so that anyone can encipher a
message and send it to Alice and yet, although everyone knows the encryption rules, only
Alice knows the decryption rules and can decipher the ciphertext.

Suppose that Alice wishes to receive a secret message using the RSA scheme. Alice
chooses two large prime numbers p and q (in practice, p and q would have over 100
decimal digits) and calculates n = pq and ϕ = ϕ(n) = (p− 1)(q − 1). Then Alice chooses
a positive integer e < ϕ with gcd(e, ϕ) = 1 and calculates d = e−1 mod ϕ. The number
e is called the encryption key and the number d is called the decryption key. Then
Alice makes the numbers n and e publicly known. Suppose that Bob wishes to send a
message to Alice. Bob converts his message to a positive integer m with m < n (if his
message is too long then he breaks it into shorter messages). Bob calculates the ciphertext
c = me mod n which he sends to Alice. Note that since ed = 1 mod ϕ, we have
cd = (me)d = med = m1 = m mod n by the Euler Fermat Theorem, and so Alice can
recover the original message m by calculating m = cd mod n.
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5.5 Note: Alice can save some time if, instead of calculating ϕ = (p − 1)(q − 1) and
d = e−1 mod ϕ, she instead calculates ψ = lcm(p − 1, q − 1) and d = e−1 mod ψ. Verify
that when c = me mod n we have cd = (ce)d = ced = c1 = m mod n.

5.6 Note: The reason that the RSA scheme is practical and secure is that there do exist
efficient (polynomial time) algorithms which can be used to find p, q, n, ϕ, e and d and
to calculate c = me mod n and m = cd mod n, but there is no known efficient algorithm
which can be used to determine m from n, e and c. In particular, there do exist efficient
algorithms which can be used to determine whether a given positive integer n is prime,
but there is no known efficient algorithm which can determine a prime factor of n in the
case that n is composite.

There do, of course, exist inefficient algorithms which can determine a prime factor of
n. For example, we can use the Sieve of Eratosthenes to list all primes p with 1 < p ≤

√
n

and then test each such prime p to determine whether it is a factor of n. But when the
prime factors of n are over a hundred digits long, this algorithm is too slow (if a computer
could list 1010 prime numbers each second then it would take about 1080 years to list all
the prime numbers p with p < 10100).

5.7 Example: The calculation of d = e−1 mod ϕ can be performed using the Euclidean
Algorithm, which is efficient.

5.8 Example: When n, e and m are all large, we can calculate c = me mod n efficiently

as follows. Express e in base 2, say e =
∑̀
i=1

2ki with 0 ≤ k1 < k2 < k3 < · · ·, calculate the

residues m1,m2,m4,m8, · · · ,m2
k`

mod n, then calculate c = me =
∏̀
i=1

m2
ki

mod n. This

algorithm is known as the Square and Multiply Algorithm.

5.9 Example: Alice wishes to receive a message. She chooses p = 13 and q = 17 and
calculates n = pq = 221. She also chooses e = 35 and makes the numbers n and e public.
Bob wishes to secretly send Alice the letter T . Bob converts the letter T to the number
m = 20 (since T is the 20th letter in the English alphabet) and sends the cyphertext
c = me mod n. As an exercise, calculate c = me mod n and calculate ψ = lcm(p−1, q−1)
and d = e−1 mod ψ, then directly calculate cd mod n to verify that cd = m mod n.

Primality Tests and Carmichael Numbers

5.10 Definition: Let us describe a simple test for primality which is called the Fermat
Primality Test. Suppose that we are given an integer n > 2. Choose an integer a with
1 < a < n. By Fermat’s Little Theorem, if n is prime then we must have gcd(a, n) = 1 and
an−1 = 1 mod n, so we use the Square and Multiply Algorithm to calculate an−1 mod n.
If an−1 6= 1 mod n then we can conclude that n is composite while if an−1 = 1 mod n
then we can conclude that n is probably prime.

5.11 Example: Unfortunately, given n, a ∈ Z+ with 1 < a < n, if an−1 = 1 mod n then
it does not necessarily follow that n is prime. For example, verify that 2340 = 1 mod 341
but 341 = 11 · 31. As another example, verify that 390 = 1 mod 91 but 91 = 7 · 13.
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5.12 Definition: Let n, a ∈ Z+ with n composite and 1 < a < n. If an−1 6= 1 mod n
then we say that a is a Fermat witness for the compositeness of n. If an−1 = 1 mod n
then we say that a is a Fermat liar and that n is a Fermat pseudoprime in the base a.

5.13 Note: We can improve the reliability of the above test simply by repeating it. Given
n ∈ Z+, we choose a finite set S of integers a with 1 < a < n. For each a ∈ S we calculate
an−1 mod n. If we find some a ∈ S such that an−1 6= 1 mod n then we know that n is
composite. If we find that for every a ∈ S we have an−1 = 1 mod n then we can conclude
that n is probably prime.

5.14 Example: Unfortunately, if if an−1 = 1 mod n for every a with 1 < a < n and
gcd(a, n) = 1 then it does not necessarily follow that n is prime. For example, show that
when n = 3 · 11 · 17 = 561 we have an−1 = 1 mod n for all a ∈ Z with gcd(a, n) = 1.

5.15 Definition: For n ∈ Z+ we say that n is a Carmichael number when n is
composite and an−1 = 1 mod n for every a ∈ Z with gcd(a, n) = 1.

5.16 Theorem: (Carmichael Numbers) Let n ∈ Z+. Then n is a Carmichael num-
ber if and only if n = p1p2 · · · p` for some ` ≥ 3 and some distinct odd prime numbers
p1, p2, · · · , p` such that (pi − 1)

∣∣(n− 1) for all indices i.

Proof: Suppose that n = p1p2 · · · p` where ` ≥ 2 and the pi are distinct primes with
(pi − 1)

∣∣(n− 1). Note that n is composite since ` ≥ 2. Let a ∈ Z+ with gcd(a, n) = 1. Fix

an index i. Since gcd(a, n) = 1 we have pi 6
∣∣ a and so api−1 = 1 mod pi by Fermat’s Little

Theorem. Since api−1 = 1 mod pi and (pi − 1)
∣∣(n − 1), we also have an−1 = 1 mod pi.

Since an−1 = 1 mod pi for every index i, it follows from the Chinese Remainder Theorem
that an−1 = 1 mod n. Thus n is a Carmichael number.

Suppose that n is a Carmichael number, say n =
∏
pi
ki where p1, · · · , p` are distinct

primes and k1, · · · , k` ∈ Z+. Choose a ∈ Un such that ord
n
(a) = λ(n), where λ(n) is the

universal exponent λ(n) = lcm
(
λ(p1

k1), · · · , λ(p`
k`)
)
. Since n is a Carmichael number, we

have an−1 = 1 ∈ Un and so n − 1 is a multiple of ord
n
(a) = λ(n), that is λ(n)

∣∣(n − 1).
Recall that λ(22) = 2 and λ(2k) = 2k−2 for k ≥ 3 and λ(pk) = pk−1(p− 1) for odd primes
p, and so when k ≥ 2 we have p

∣∣λ(pk) for all primes p. If we had ki ≥ 2 for some i then we

would have pi
∣∣λ(n) and hence, since λ(n)

∣∣(n−1), we would have pi
∣∣(n−1), but this is not

possible since pi
∣∣n. Thus we must have ki = 1 for all i, and so n = p1p2 · · · p`. Since n is

composite, we must have ` ≥ 2. Since n−1 is a multiple of λ(n) = lcm
(
λ(p1), · · · , λ(p`)

)
=

lcm(p1 − 1, · · · , p` − 1
)

we have (pi − 1)
∣∣(n− 1) for all i.

To finish the proof we need to show that when n = p1p2 · · · p` where ` ≥ 2 and
p1, · · · , p` are distinct primes with (pi−1)

∣∣(n−1) for all i, we must have ` ≥ 3 and n must
be odd. Since l ≥ 2, at least one of the primes pi is odd, say pk is odd. Since pk − 1 is
even and (pk − 1)

∣∣(n− 1), it follows that (n− 1) is even and so n is odd.

To show that we must have ` ≥ 3, suppose, for a contradiction, that n is a Carmichael
number of the formn = pq where p and q are primes with p < q and we have (p−1)

∣∣(n−1)

and (q− 1)
∣∣(n− 1). Note that n− 1 = pq− 1 = p(q− 1) + (p− 1). Since (q− 1)

∣∣(n− 1) we

have (q − 1)
∣∣(n− 1)− p(q − 1), that is (p− 1)

∣∣(p− 1). But this implies that q ≤ p giving
the desired contradiction.

5.17 Exercise: Find distinct primes p and q such that 145 p and 145 q are both Carmichael
numbers.
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5.18 Theorem: (The Miller-Rabin Test) Let n be an odd prime number and let a ∈ Z
with gcd(a, n) = 1. Write n− 1 = 2sd where s, d ∈ Z+ with d odd. Then

either ad = 1 mod n or a2
rd = −1 for some 0 ≤ r < s.

Proof: First we remark that since n is prime, Zn is a field, so for all x ∈ Zn we have

x2 = 1⇐⇒x2 − 1 = 0⇐⇒ (x− 1)(x+ 1) = 0⇐⇒x = ±1 .

By Fermat’s Little Theorem, we have an−1 = 1 mod n, that is a2
sd = 1 mod n. By the

above remark
(
using x = a2

s−1d
)

it follows that a2
s−1d = ±1 mod n. If a2

s−1d 6= −1

then a2
s−1d = 1 so, by the above remark again, it follows that a2

s−2

d = ±1. Similarly,
if a2

s−1d 6= −1 and a2
s−2d 6= −1 then a2

s−2d = 1 and hence a2
s−3

d = ±1 and so on.
Repeating the above argument we find that if a2

s−1d 6= −1 , a2
s−2d 6= −1 , · · · , a22d 6= −1

and a2d 6= −1 then a2d = 1 and hence ad = ±1.

5.19 Definition: Using the above theorem we obtain the following test for primality,
called the Miller-Rabin Primality Test. Given an odd integer n ∈ Z+ write n−1 = 2sd
and choose an integer a with 1 < a < n. By the above theorem, if ad 6= 1 mod n and
a2

rd 6= −1 mod n for all 0 ≤ r < s then we can conclude that n is composite. If, on the
other hand, we find that either ad = 1 mod n or a2

rd = −1 mod n for some 0 ≤ r < s
then we can conclude that n is probably prime.

5.20 Example: Unfortunately, given n = 1 + 2sd where s, d ∈ Z+ with d odd, and given
a ∈ Z with 1 < a < n, even if it is true that either ad = 1 mod n or a2

rd = −1 for some
0 ≤ r < s, it does not necessarily follow that n is prime. For example, verify that when
n = 221 = 13 · 17 and a = 174 we have s = 2 and d = 55 and a2d = −1 mod n.

5.21 Definition: Let n, a ∈ Z+ where n is an odd composite number and 1 < a < n. Write
n − 1 = 2sd where s, d ∈ Z+ with d odd. If ad 6= 1 and a2

rd 6= −1 for all 0 ≤ r < s then
we say that a is a Miller-Rabin witness (or a strong witness) for the compositeness
of n. If either ad = 1 or a2

rd = −1 for some 0 ≤ r < s then we say that a is a Rabin-
Miller liar (or a strong liar) and that n is a Rabin-Miller pseudoprime (or a strong
pseudoprime) in the base a.

5.22 Note: As with the Fermat primality test, we can make the Miller-Rabin test more
reliable simply by repeating it. Given an odd positive integer n, write n − 1 = 2sd with
s, d ∈ Z+ and d odd. Choose a finite set S of integers a with 1 < a < n. For each a ∈ S,
calculate a2

rd mod n for 0 ≤ r < s. If we find some a ∈ S for which ad 6= 1 mod n and
a2

rd 6= −1 for all 0 ≤ r < s then we know that n is composite. If, on the other hand, we
find that for every a ∈ S, either ad = 1 mod n or a2

rd = −1 mod n for some 0 ≤ r < s
then we can conclude that n is probably prime.

5.23 Remark: Recall that repeating the Fermat primality test does not make the test
become completely reliable because of the existence of Carmichael numbers. The situation
is different with the Miller-Rabin primality test. It has been proven that for every compos-
ite positive integer n, at least 3

4 of the numbers a with 1 < a < n are strong witnesses for
the compositeness of n. It follows that, given an odd composite number n, if we choose m
integers a with 1 < a < n, the probability that none of the numbers a is a strong witness
is at most 1

4m .
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Fermat Primes

5.24 Definition: A Fermat prime is a prime number of the form p = 2k + 1 for some
k ∈ Z+. The first few values of 2k + 1 are shown below.

k 1 2 3 4 5 6 7 8 9 10
2k + 1 3 5 9 17 33 65 129 257 513 1025

We see that 2k + 1 is prime for k = 1, 2, 4, 8 so one might guess (indeed Fermat did guess)
that 2k + 1 is prime if and only if k is a power of 2.

5.25 Example: Show that if 2k + 1 is prime then k must be a power of 2.

Solution: We remark that when r is odd, x = −1 is a root of xr + 1, so x + 1 is a factor
of xr + 1. Suppose that k is not a power of 2. Then we can write k = 2nr for some n ≥ 0
and some odd number r > 1, and then we have 2k + 1 = 22

nr + 1. By the above remark,
22

n

+ 1 is a factor of 22
nr + 1 = 2k + 1, so 2k + 1 is not prime.

5.26 Definition: For k ∈ N, the number Fk = 22
k

+ 1 is called the kth Fermat number.

5.27 Remark: The Fermat numbers Fk are all prime for 0 ≤ k ≤ 4, but these are the
only known Fermat primes, and they may well be the only ones.

5.28 Example: Show that if p is a prime factor of Fk = 22
k

+ 1 then p = 1 + c 2k+1 for
some c ∈ Z+.

Solution: Suppose that p is a prime factor of Fk = 22
k

+1. Since p
∣∣(22k +1) we have

22
k

= −1 mod p, hence 22
k+1

= (22
k)2

= 1 mod p. Since 22
k

+1 is odd, the prime factor
p must be odd, so we have gcd(2, p) = 1 so that 2 ∈ Up. In the group of units Up we have

22
k

= −1 and 22
k+1

= 1. Since 22
k+1

= 1, it follows from Corollary 3.20 that ord
p
(2)
∣∣2k+1

so ord
p
(2) = 2j for some j ≤ k + 1. If we had ord

p
(2) = 2j with j ≤ k then we would

have 22
j

= 1, hence 22
l

= 1 for all l ≥ j, hence in particular 22
k

= 1, but instead we have

22
k

= −1. It follows that ord
p
(2) = 2k+1. By Fermat’s Little Theorem, we have 2p−1 = 1

in Up, so from Corollary 3.20 we have ord
p
(2)
∣∣(p − 1), that is 2k+1

∣∣(p − 1), and hence

p = 1 + c 2k+1 for some c ∈ Z+.

5.29 Example: Show that F5 is not prime. Indeed, show that 641 is a factor of F5.

Solution: Note that 641 = 625 + 16 = 54 + 24 and 641 = 640 + 1 = 5·27 + 1, so we have

F5 = 22
5

+ 1 = 232 + 1 = 24 ·228 + 1 = (641− 54)·228 + 1 = 641·228 − (5·27)4 + 1

= 641·228 − (641− 1)4 + 1 = 641·228 − 6414 + 4·6413 − 6·6412 + 4·641.

5.30 Example: Show that Fn = F0F1F2 · · ·Fn−1 + 2 for all n ≥ 1.

Solution: We have F0 = 3 and F1 = 5 so that F1 = F0 + 2. Let n ≥ 1 and suppose,
inductively, that Fn = F0F1 · · ·Fn−1 + 2. Then

Fn+1 − 2 = 22
n+1

− 1 =
(
22

n)2 − 1 =
(
22

n

+ 1
)(

22
n

− 1
)

= Fn(Fn − 2) = Fn
(
F0F1 · · ·Fn−1

)
= F0F1 · · ·Fn.

5.31 Example: Let Fk = 22
k

+ 1. Show that if k 6= l then Fk and Fl are coprime.

Solution: Let k < l. By the previous example, we have Fk
∣∣(Fl − 2). Since Fk

∣∣(Fl − 2) and
Fk and Fl are odd, it follows that Fk and Fl are coprime.

5



Mersenne Primes and Perfect Numbers

5.32 Definition: For k ∈ Z+, the number Mk = 2k−1 is called the kth Mersenne
number. A Mersenne prime is a Mersenne number which is prime. The first few values
of Mk are shown below.

k 1 2 3 4 5 6 7 8 9 10
Mk 1 3 7 15 31 63 127 255 511 1023

We note that Mk is prime for k = 2, 3, 5, 7 so one might guess that Mk is prime if and only
if k is prime.

5.33 Example: Show that for k ∈ Z+, if Mk is prime then k must be prime.

Solution: Suppose that k is composite, say k = rs with 1 < r < k and 1 < s < k. Then

Mk = 2k − 1 = 2rs − 1 = (2r)s − 1 =
(
2r − 1

)(
(2r)s−1 + (2r)s−2 + · · ·+ (2r) + 1

)
.

Since r > 1 and s > 1 we have 2r − 1 > 1 and
(
(2r)s−1 + (2r)s−2 + · · · + (2r) + 1

)
> 1,

and so Mk is composite.

5.34 Example: Show that M11 is composite.

Solution: We have M11 = 211−1 = 2047. To determine whether 2047 is prime, we test each
prime p with p ≤ b

√
2047c = 45 to see if it is a factor. Using the Sieve of Eratosthenes, we

find that the primes we need to check are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, and
when we test these primes we find that 23 is a factor and that 2047 = 23 · 89.

5.35 Example: Show that if k and l are coprime then so are Mk and Ml.

Solution: Suppose that Mk and Ml are not coprime. Let d = gcd(Mk,Ml). Note that d is
odd (since Mk and Ml are odd), so 2 is an invertible element in Zd. Let n be the order of
2 in Zd (so n is the smallest positive integer such that 2n = 1 in Zd). Since d

∣∣Mk = 2k − 1

we have 2k = 1 ∈ Zd and so n
∣∣k. Similarly n

∣∣l and so gcd(k, l) ≥ n > 1.

5.36 Example: Show that for k, l ∈ Z+, we have gcd(Mk,Ml) = Mgcd(k,l) (note that this
generalizes the result of the previous example).

Solution: Let d = gcd(k, l) and let e = gcd(Mk,Ml). Since d
∣∣k we can write k = ds for

some s ∈ Z. Then

Mk = 2k − 1 = 2ds − 1 = (2d − 1)
(
(2d)s−1 + (2d)s−2 + · · ·+ 1

)
and so (2d − 1)

∣∣Mk, that is Md

∣∣Mk. Similarly, since d
∣∣l we have Md

∣∣Ml. Since Md

∣∣Mk

and Md

∣∣Ml we have Md

∣∣ gcd(Mk,Ml), that is Md

∣∣e.
Since d = gcd(k, l) we can choose x, y ∈ Z so that kx + ly = d. Since e

∣∣Mk, that is

e
∣∣2k − 1, we have 2k = 1 mod e, that is 2k = 1 ∈ Ze, and hence 2kx = 1 ∈ Ze. Similarly

2ly = 1 ∈ Ze and so 2d = 2kx+ly = 2kx2ly = 1 ∈ Ze. Thus 2d − 1 = 0 mod e and so
e
∣∣2d − 1, that is e

∣∣Md.

5.37 Example: Let p be prime. Show that if q is a prime divisor of Mp = 2p − 1, then
q = 1 mod 2p.

Solution: Let q be a prime divisor of Mp = 2p − 1. Then 2p = 1 ∈ Uq and so ord
q
(2)
∣∣p.

Since ord
q
(2) 6= 1 and p is prime, we must have ord

q
(2) = p. Recall that ord

q
(2)
∣∣|Uq|,

so we have p
∣∣q − 1, that is q = 1 mod p. Since p and q are both odd, this implies that

q = 1 mod 2p.
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5.38 Example: Show that M23 is composite.

Solution: We have M23 = 223 − 1 = 8388607. By Example 5.12, if q is a prime factor
of M23 then q = 1 mod 46 so q = 1, 47, 93, 139, 185, · · ·. We try q = 47 and find that
M23 = 47 · 178481.

5.39 Exercise: Determine the 6 smallest Mersenne primes.

5.40 Definition: A perfect number is a positive integer n ∈ Z+ which is equal to the
sum of its positive proper divisors, that is

n =
∑

d|n , d 6=n
d = σ(n)− n

or, equivalently, such that σ(n) = 2n. The first few Mersenne primes are M2 = 3, M3 = 7
and M3 = 31 and the first few perfect numbers are

6 = 1 + 2 + 3 = 2·3
28 = 1 + 2 + 4 + 7 + 14 = 4·7

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 = 16·31

One might guess that the perfect numbers are the numbers of the form n = 2p−1·Mp where
Mp is a Mersenne prime.

5.41 Remark: It is not known whether or not there exist any odd perfect numbers.

5.42 Example: Show that for k ∈ Z+, if Mk is prime then 2k−1Mk is perfect.

Solution: Suppose that Mk is prime. Since Mk is prime, the divisors of Mk are 1 and Mk

so σ(Mk) = 1 + Mk. From the formula σ
(∏

pi
ki
)

=
∏
σ(pi

ki) it follows that when q is
odd we have σ(2k−1q) = σ(2k−1)σ(q). Since Mk = 2k−1, it follows that Mk is odd and so

σ
(
2k−1Mk

)
= σ(2k−1)σ(Mk) =

(
1 + 2 + 22 + · · ·+ 2k−1

)
(1 +Mk) = (2k − 1)(1 +Mk)

= 2k − 1 + 2kMk −Mk = Mk + 2kMk −Mk = 2kMk = 2 · 2k−1Mk

and so 2k−1Mk is perfect.

5.43 Example: Show that if n ∈ Z+ is even and perfect then n = 2k−1Mk for some
Mersenne prime Mk.

Solution: Let n be an even perfect number. Since n is even we can write n = 2k−1p where
k, p ∈ Z+ with k ≥ 2 and p odd. Since p is odd we have σ(n) = σ(2k−1p) = σ(2k−1)σ(p) =
(2k − 1)σ(p). Since n is perfect, we also have σ(n) = 2n = 2kp and so

(2k − 1)σ(p) = 2kp. (1)

From (1) we see that 2k
∣∣(2k− 1)σ(p), and since gcd(2k, 2k− 1) = 1 it follows that 2k

∣∣σ(p),
say σ(p) = 2kd. Put σ(p) = 2kd into (1) to get (2k − 1)2kd = 2kp then divide by 2k to get

(2k − 1)d = p. (2)

From (2) we see that d|p and d 6= p and p + d = (2k − 1)d + d = 2kd = σ(p). Since p
and d are two distinct divisors of p with σ(p) = p+ d, it follows that p and d are the only
divisors of p, so p is prime and d = 1. Put d = 1 into (2) to get p = 2k − 1 = Mk. Thus
p = Mk is a Mersenne prime and n = 2k−1p = 2k−1Mk.
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Primes in Arithmetic Progression

5.44 Remark: There is a famous theorem, by Dirichlet, about primes in arithmetic
progression, which we state here without proof.

5.45 Theorem: (Dirichlet’s Theorem) For all a, b ∈ Z+ with gcd(a, b) = 1, there exist
infinitely many primes p with p = a mod b.

Proof: The proof is difficult. It is usually given in PMATH 440.

5.46 Remark: Although we have not developed all of the necessary machinery to prove
Dirichlet’s Theorem in general, we can prove special cases of the theorem involving partic-
ular values of b. We give a few such proofs in the following example.

5.47 Example: Show that there exist infinitely many primes p of each of the following
forms.

(1) p = 1 mod 4,
(2) p = 3 mod 4,
(3) p = 1 mod 8,
(4) p = 3 mod 8.

Solution: For Part 1, suppose there are only finitely many primes p with p = 1 mod 4, say
p1, p2, · · · , p` are all such primes. Let n = (2p1p2 · · · p`)2 + 1. Let p be a prime factor of n.
Note that p 6= pk for 1 ≤ k ≤ ` because n = 1 mod pk. Since p

∣∣n we have n = 0 mod p,
that is (2p1 · · · p`)2 + 1 = 0 mod p, and so (2p1 · · · p`)2 = −1 mod p. Thus −1 ∈ Qp so
p = 1 mod 4. Thus we have found a prime p = 1 mod 4 which is not in the list p1, p2, · · · , p`.

For Part 2, suppose there are only finitely many primes p with p = 3 mod 4, say
p1, p2, · · · , p` are all such primes. Let n = 4p1p2 · · · p` − 1. Note that n = −1 = 3 mod 4
and note that none of the primes pk with 1 ≤ k ≤ ` is a factor of n because n = −1 mod pk.
The prime factors of n are odd so they are of the form p = 1 mod 4 or p = 3 mod 4. Not
every prime factor of n can be of the form p = 1 mod 4, because a product of numbers of
the form 1 mod 4 is also of the form 1 mod 4 but we have n = 3 mod 4. Thus n must have
at least one prime factor p of the form p = 3 mod 4. Thus we have found another prime p
of the form p = 3 mod 4 which is not in the list p1, p2, · · · , pk.

For Part 3, suppose there are only finitely many primes p with p = 1 mod 8, say
p1, p2, · · · , p` are all such primes. Let n = (2p1p2 · · · p`)4 + 1. Let p be a prime fac-
tor of n. Since p|n we have n = 0 mod p, that is (2p1 · · · p`)4 + 1 = 0 mod p hence
(2p1 · · · p`)4 = −1 mod p and hence (2p1 · · · p`)8 = 1 mod p. Since (2p1 · · · p`)4 = −1 mod p
and (2p1 · · · p`)8 = 1 mod p it follows that ordp(2p1 · · · p`) = 8. Thus 8

∣∣|Up|, that is

8
∣∣(p−1), and so p = 1 mod 8. Thus we have found another prime p of the form p = 1 mod 8.

For Part 4, suppose there are only finitely many primes p with p = 3 mod 8, say
p1, p2, · · · , p` are all such primes. Let n = (p1 · · · p`)2+2. Let p be a prime factor of n. Since
p|n we have n = 0 mod p, that is (p1 · · · p`)2 + 2 = 0 mod p hence (p1 · · · p`)2 = −2 mod p.
Thus −2 ∈ Qp and so p = 1, 3 mod 8. Since each pk = 3 mod 8 we have pk

2 = 1 mod 8
so that n = (p1 · · · p`)2 + 2 = 3 mod 8. Not every prime factor of n can be of the form
p = 1 mod 8, (because a product of numbers of the form 1 mod 8 is also equal equal to
1 mod 8) and so n must have at least one prime factor p of the form p = 3 mod 8. Thus
we have found another prime p = 3 mod 8 which is not in the list p1, · · · , p`.
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The Distribution of Primes

5.48 Definition: For x ∈ R, let π(x) ∈ N be the number of prime numbers p with p ≤ x.
For n ∈ Z+, let p(n) = pn ∈ Z+ be the nth prime number.

5.49 Remark: In section we consider theorems which describe how rapidly π(x) and p(n)
tend to infinity.

5.50 Theorem: (Bertrand’s Postulate) For all n ∈ Z+ there is a prime p with n < p ≤ 2n.

Proof: Recall that, for a prime p and a positive integer n, e(p, n) denotes the exponent of

p in the prime factorization of n. Also recall that
n∑
k=0

(
n
k

)
= 2n.

Claim 1: we claim that for all n ∈ Z+ we have
∏

n<p≤2n
p ≤ 4n and

∏
n+1<p≤2n+1

p ≤ 4n,

where the products are taken over prime numbers p. Let n ∈ Z+. For each prime p with
n < p ≤ 2n we have p

∣∣(2n)! and p 6
∣∣n! and hence p

∣∣( 2n
n

)
. It follows that

∏
n<p≤2n

p
∣∣( 2n

n

)
and

hence we have
∏

n<p≤2n
p ≤

(
2n
n

)
≤ 22n = 4n. For each prime p with n+ 1 < p ≤ 2n+ 1 we

have p
∣∣(2n+1)! and p6

∣∣(n+1)! and hence p
∣∣( 2n+1

n+1

)
. It follows that

∏
n+1<p≤2n+1

p ≤
(
2n+1
n+1

)
.

Also note that
(
2n+1
n+1

)
=
(
2n+1
n

)
so we have 2

(
2n+1
n+1

)
=
(
2n+1
n

)
+
(
2n+1
n+1

)
≤ 22n+1 and hence∏

n+1≤p≤2n+1

p ≤
(
2n+1
n+1

)
≤ 22n = 4n, as claimed.

Claim 2: we claim that
∏

1≤p≤n
p ≤ 4n for all n ∈ Z+. Let m ∈ Z+ and suppose,

inductively, that
∏

1≤p≤n
p ≤ 4n for every integer n < m. When m is even, say m = 2n,

since
∏

1≤p≤n
p ≤ 4n by the induction hypothesis, and since

∏
n<p≤2n

p ≤ 4n by Claim 1,

it follows that
∏

1≤p≤m
p =

( ∏
1≤p≤n

p
)( ∏

n<p≤2n
p
)
≤ 4n · 4n = 4m. Similarly, when m is

odd, say m = 2n + 1, since
∏

1≤p≤n+1

p ≤ 4n+1 by the induction hypothesis, and since∏
n+1<p≤2n+1

p ≤ 4n by Claim 1, it follows that
∏

1≤p≤m
p ≤ 4n+1 · 4n = 4m. By induction, it

follows that
∏

1≤p≤n
p ≤ 4n for all n ∈ Z+, as claimed.

Claim 3: we claim that if n∈Z+, and p is prime with 1≤p≤2n, and e(p) = e
(
p,
(
2n
n

))
,

then we have pe(p) ≤ 2n. Recall that e
(
p, (2n)!

)
=

m∑
k=1

⌊
2n
pk
c and e(p, n!) =

m∑
k=1

⌊
n
pk

⌋
where

m = blogp(2n)c so that for k ∈ Z+ with k > m we have k > logp(2n) hence pk > 2n.
Verify, as an exercise, that for all x ∈ R we have b2xc − 2bxc ∈ {0, 1}. It follows that

e(p) = e
(
p,
(
2n
n

))
= e
(
p, (2n)!

)
− 2e

(
p, n!

)
=

m∑
k=1

(⌊
2n
pk

⌋
− 2
⌊
n
pk

⌋)
≤

m∑
k=1

1 = m

and hence pe(p) ≤ pm ≤ plogp(2n) = 2n, as claimed.

Claim 4: we claim that when n ∈ Z+, and p is a prime with
√

2n < p ≤ 2n, and
e(p) = e

(
p,
(
2n
n

))
, then we have e(p) ≤ 1. As in the proof of Claim 3, we have e(p) ≤ m

where m = blogp(2n)c. Since
√

2n < p ≤ 2n we have p ≤ 2n and p2 > 2n and hence
m = 1. Thus e(p) ≤ m = 1, as claimed.
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Claim 5: we claim that when n ∈ Z+ and p is a prime with 2
3 n < p ≤ n, and

e(p) = e
(
p,
(
2n
n

))
then we have e(p) = 0. Let n ∈ Z+ and let p be prime with 2

3 n < p ≤ n.
Multiply by 2 to get 4

3 n < 2p ≤ 2n and multiply by 3 to get 2n < 3p ≤ 3n. Since p ≤ n
and 2p > 4

3 n > n it follows that e
(
p, n!

)
= 1. Since p ≤ n ≤ 2n and 2p ≤ 2n and 3p > 2n

it follows that e
(
p, (2n)!

)
= 2. Thus e

(
p,
(
2n
n

))
= e
(
p, (2n)!

)
− 2e

(
p, n!

)
= 0, as claimed.

Using Claims 2, 3, 4 and 5 we can now prove Bertrand’s Postulate. Let n ∈ Z+ and
suppose that there are no primes p with n < p ≤ 2n. For each prime p with 1 < p ≤ 2n,
write e(p) = e

(
p,
(
2n
n

))
. Then we have(

2n
n

)
=

∏
1<p≤2n

pe(p) =
∏

1<p≤n
pe(p)

=
( ∏

1<p≤
√
2n

pe(p)
)( ∏
√
2n<p≤ 2

3n

pe(p)
)( ∏

2
3n<p≤n

pe(p)
)
.

By Claim 3, for all primes p with 1 < p ≤
√

2n we have pe(p) ≤ 2n and so∏
1≤p≤

√
2n

pe(p) ≤
∏

1≤p≤
√
2n

(2n) = (2n)π(
√
2n).

Verify, as an exercise, that (since 2 is the only even number which is prime) we have

π(x) ≤ x
2 for all x ≥ 8. Also verify that

√
2x
2 ≤

√
x− 1 for all x ≥ 2 +

√
2. It follows that

when n ≥ 32 so that
√

2n ≥ 8 we have π(
√

2n) ≤
√
2n
2 ≤

√
n− 1 and hence∏

1≤p≤
√
2n

pe(p) ≤ (2n)
√
n−1.

By Claim 4, for all primes p with
√

2n < p ≤ 2
3n we have e(p) ≤ 1 and, by Claim 2, we

have
∏

1≤p≤ 2
3n

pe(p) ≤ 4b2n/3c ≤ 42n/3 and so

∏
√
2n<p≤ 2

3n

pe(p) ≤
∏

√
2n<p≤ 2

3n

p1 ≤
∏

1≤p≤ 2
3n

p ≤ 42n/3.

By Claim 5, for all primes p with 2
3n < p ≤ n we have e(p) = 0 so∏

2
3n<p≤n

pe(p) = 1.

Thus(
2n
n

)
=
( ∏

1<p≤
√
2n

pe(p)
)( ∏
√
2n<p≤ 2

3n

pe(p)
)( ∏

2
3n<p≤n

pe(p)
)
. ≤ (2n)

√
n−1 · 42n/3 · 1.

On the other hand, since
(
2n
n

)
is the largest of the binomial coefficients

(
2n
k

)
and also(

2n
n

)
≥ 2 we have 4n = 2 +

n−1∑
k=1

(
2n
n

)
≤
(
2n
n

)
+ (2n− 1)

(
2n
n

)
= (2n)

(
2n
pn

)
so that(

2n
n

)
≥ 4n

2n .

We have shown that, at least when n ≥ 32, we must have 4n

2n ≤ (2n)
√
n−1 · 42n/3 that is

4n/3 ≤ (2n)
√
n. Taking the logarithm on both sides gives n

3 ln 4 ≤
√
n ln(2n) or equivalently

2 ln 2
√
n ≤ 3 ln(2n). As a calculus exercise, show that for f(x) = 3 ln(2x) − 2 ln 2

√
x we

have f ′(x) < 0 for x > 9
(ln 2)2 and we have f(154) < 0 so that f(x) < 0 for all x ≥ 154. We

have shown that if there are no primes p with n < p ≤ 2n then we must have n < 154. To
complete the proof, it suffices to verify that for all n ∈ Z+ with n < 154 there does exist
a prime p with n < p ≤ 2n.
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5.51 Corollary: For all n ∈ Z+ we have pn ≤ 2n, where pn is the nth prime number.

Proof: By Bertrand’s Postulate, there is at least one prime in each of the intervals
(1, 2], (2, 4], (4, 8], · · · , (2n−1, 2n], and so there are at least n primes p with p ≤ 2n, and
hence pn ≤ 2n.

5.52 Remark: The upper bound for pn given in the above corollary is not very tight. In
fact pn is much smaller that 2n (see the Prime Number Therorem below).

5.53 Theorem: Let pn be the nth prime number. Then
∞∑
n=1

1
pn

=∞.

Proof: Suppose, for a contradiction, that
∞∑
n=1

1
pn
<∞. Choose ` ∈ Z+ so that

∞∑
n=`+1

1
pn
< 1

2 .

Let a be the product a = p1p2 · · · p`, and consider the arithmetic progression 1+ka, k ∈ Z+.
Note that none of the primes p1, p2, · · · , p` is a factor of any of the numbers 1+ka, k ∈ Z+

(because for 1 ≤ n ≤ ` we have a = 0 mod pn so 1 + ka = 1 mod pn), so each number
1 + ka has a prime factorization of the form 1 + ka = pn1

pn2
· · · pnm

for some ni > ` (not
necessarily distinct). Notice that for each m ∈ Z+, we can expand the product( ∞∑

n=`+1

1
pn

)m
into an infinite sum of terms of the form 1

pn1
pn2
···pnm

with each ni > `, and each of the

numbers 1
1+ka with k ∈ Z+ is equal to one of the terms in one of these sums for some m.

It follows that
∞∑
k=1

1
1+ka ≤

∞∑
m=1

( ∞∑
n=`+1

1
pn

)m
≤
∞∑
m=1

(
1
2

)m
= 1.

But this is not possible since
∞∑
k=1

1
1+ka diverges (say by the integral test).

5.54 Definition: For f, g : R→ R, we write f(x) ∼ g(x) when lim
x→∞

f(x)

g(x)
= 1. Similarly,

for f, g : Z+ → R we write f(n) ∼ g(n) when lim
n→∞

f(n)

g(n)
= 1.

5.55 Theorem: (The Prime Number Theorem) Let π(x) be the number of primes p with
p ≤ x, and let p(n) be the nth prime number.

(1) We have π(x) ∼ x

lnx
or, equivalently, lim

x→∞

π(x) lnx

x
= 1.

(2) We have p(n) ∼ n lnn or, equivalently, lim
n→∞

p(n)

n lnn
= 1.

Proof: The proof of this theorem is difficult. It is often given in PMATH 440. We shall

only prove that Part 1 implies Part 2. Suppose that lim
x→∞

π(x) ln x
x = 1. Take the logarithm

on both sides to get lim
x→∞

(
ln(π(x))+ln(lnx)− lnx

)
= 0. Since lnx→∞, we can divide by

lnx to get lim
x→∞

( ln(π(x))
ln x + ln(ln x)

ln x − 1
)

= 0 hence lim
x→∞

ln(π(x))
ln x = 1. Since lim

x→∞
π(x) ln x

x = 1

it follows that lim
x→∞

ln(π(x))
ln x · π(x) ln xx = 1, that is limx→∞

π(x) ln(π(x))
x = 1. Finally, by taking

x = p(n) so that π(x) = n, we obtain lim
n→∞

n lnn
p(n) = 1.

5.56 Example: Note that Theorem 5.53 is an immediate consequence of Part 2 of the

Prime Number Theorem by the Limit Comparison Test (since
∞∑
n=2

1
n lnn diverges).

11


