Chapter 4. Quadratic Residues

4.1 Note: Given $a \in \mathbb{Z}_{n}$ (or $a \in U_{n}$), how can we determine whether there exists $x \in \mathbb{Z}_{n}$ (or $x \in U_{n}$) such that $x^{2}=a$? This is the problem that we address in this chapter.
4.2 Definition: For $a \in \mathbb{Z}_{n}$ (or U_{n}), we say that a is a quadratic residue (modulo n) when there exists $x \in \mathbb{Z}_{n}$ (or U_{n}) such that $x^{2}=a$. Note that if $a \in U_{n}$ and $x \in \mathbb{Z}_{n}$ with $x^{2}=a$, then we have $\operatorname{gcd}\left(x^{2}, n\right)=\operatorname{gcd}(a, n)=1$, hence $\operatorname{gcd}(x, n)=1$, so that $x \in U_{n}$. We denote the set of quadratic residues in \mathbb{Z}_{n} and U_{n} by S_{n} and Q_{n}, respectively, so we have

$$
\begin{aligned}
S_{n} & =\left\{a \in \mathbb{Z}_{n} \mid a=x^{2} \text { for some } x \in \mathbb{Z}_{n}\right\}, \\
Q_{n} & =\left\{a \in U_{n} \mid a=x^{2} \text { for some } x \in U_{n}\right\}
\end{aligned}
$$

Note that Q_{n} is a group, since $1 \in Q_{n}$ and if $a, b \in Q_{n}$ with, say $a=x^{2}$ and $y=b^{2}$ then we have $a b=(x y)^{2}$ and we have $a^{-1}=\left(x^{-1}\right)^{2}$.
4.3 Theorem: Let $k, \ell \in \mathbb{Z}$ with $\operatorname{gcd}(k, \ell)=1$. The bijective map $F: \mathbb{Z}_{k \ell} \rightarrow \mathbb{Z}_{k} \times \mathbb{Z}_{\ell}$ given by $F(u)=(u, u)$ restricts to give a bijective map $F: S_{k \ell} \rightarrow S_{k} \times S_{\ell}$, and it restricts further to give a group isomorphism $F: Q_{k \ell} \rightarrow Q_{k} \times Q_{\ell}$.
Proof: For $a \in \mathbb{Z}$, if $a=x^{2} \bmod k \ell$ then we also have $a=x^{2} \bmod k$ and $a=x^{2} \bmod \ell$ and so F restricts to a map $F: S_{k \ell} \rightarrow S_{k} \times S_{\ell}$. On the other hand, if $b=y^{2} \bmod k$ and $c=z^{2} \bmod \ell$ and $F(a)=(b, c)=\left(y^{2}, z^{2}\right)=(y, z)^{2}$, then we have $a=x^{2}$ where $x=F^{-1}(y, z)$. Thus the map F restricts to give a bijective map $F: S_{k \ell} \rightarrow S_{k} \times S_{\ell}$. We have already seen that F restricts to give a group isomorphism $F: U_{k \ell} \rightarrow U_{k} \times U_{\ell}$ and the above argument shows that F restricts further to give a group isomorphism $F: Q_{k \ell} \rightarrow Q_{k} \times Q_{\ell}$.
4.4 Remark: In light of the above theorem, it suffices to understand the sets S_{n} and Q_{n} in the case that $n=p^{k}$ for some prime p and some $k \in \mathbb{Z}^{+}$. We shall focus our attention on the group Q_{n} with $n=p^{k}$.
4.5 Note: We point out some properties of quadratic residues which follow immediately from our understanding of the structure of the group of units U_{n} when n is a prime power. (1) We have $Q_{2}=\{1\}$, and $Q_{4}=\{1\}$ and for $k \geq 3$, since $U_{2^{k}}=\left\{ \pm 5^{j} \mid 0 \leq j<2^{k-2}\right\}$ we have

$$
Q_{2^{k}}=\left\{x^{2} \mid x \in U_{2^{k}}\right\}=\left\{5^{2 j} \mid 0 \leq j<2^{k-3}\right\}=\langle 25\rangle
$$

so that $Q_{2^{k}}$ is cyclic with $\left|Q_{2^{k}}\right|=\frac{1}{4}\left|U_{2^{k}}\right|=2^{k-3}$. Also note, in the case $k \geq 3$, that $U_{2^{k}}=\left\{ \pm 5^{j}\right\}$ is equal to the disjoint union

$$
U_{2^{k}}=\left\{5^{0}, 5^{2}, 5^{4}, \cdots\right\} \cup\left\{5^{1}, 5^{3}, 5^{5}, \cdots\right\} \cup\left\{-5^{0},-5^{2},-5^{4}, \cdots\right\} \cup\left\{-5^{1},-5^{3},-5^{5}, \cdots\right\}
$$

and modulo 8 , the elements in these sets are all equal to $1,5,7$ and 3 , respectively. Thus for $a \in U_{2^{k}}$, we have

$$
a \in Q_{2^{k}} \Longleftrightarrow a=1 \bmod 8
$$

(2) Let p be an odd prime and let $k \in \mathbb{Z}^{+}$. Choose $u \in \mathbb{Z}$ so that $U_{p^{k}}=\langle u\rangle$. Then $\operatorname{ord}_{p^{k}}(u)=\varphi\left(p^{k}\right)=p^{k-1}(p-1)$, which is even, and $U_{p^{k}}=\left\{u^{j} \mid 0 \leq j<p^{k-1}(p-1)\right\}$ so

$$
Q_{p^{k}}=\left\{x^{2} \mid x \in U_{p^{k}}\right\}=\left\{u^{2 j} \left\lvert\, 0 \leq j<\frac{1}{2} p^{k-1}(p-1)\right.\right\}=\left\langle u^{2}\right\rangle
$$

and so $Q_{p^{k}}$ is cyclic with $\left|Q_{p^{k}}\right|=\frac{1}{2}\left|U_{p^{k}}\right|=\frac{1}{2} p^{k-1}(p-1)$. Also note that for $a \in \mathbb{Z}$ with $p \nmid a$ we have

$$
a \in Q_{p^{k}} \Longleftrightarrow a=u^{2 j} \text { for some } j \Longleftrightarrow a \in Q_{p}
$$

4.6 Remark: When $a \in \mathbb{Z}$ with $2 \nmid a$ and $k \geq 3$, by the above note, $a \in Q_{2^{k}} \Longleftrightarrow a=1 \bmod 8$. When p is an odd prime, $a \in \mathbb{Z}$ with $p \nmid a$ and $k \in \mathbb{Z}^{+}$, by the above note, $a \in Q_{p^{k}} \Longleftrightarrow a \in Q_{p}$. It remains, then, to determine whether $a \in Q_{p}$ when p is an odd prime and $p \nmid a$.
4.7 Definition: For an odd prime p and for $a \in \mathbb{Z}$, we define the Legendre symbol

$$
\left(\frac{a}{p}\right)=\left\{\begin{aligned}
0 & \text { if } p \mid a \text { so } a \notin U_{p} \\
1 & \text { if } a \in Q_{p} \\
-1 & \text { if } a \in U_{p} \backslash Q_{p}
\end{aligned}\right.
$$

4.8 Note: When $a \in U_{p}=\langle u\rangle$ with say $a=u^{k}$, we have $a \in Q_{p} \Longleftrightarrow k$ is even, and so

$$
\left(\frac{a}{p}\right)=(-1)^{k} .
$$

4.9 Theorem: (Multiplicative Property) Let p be an odd prime and let $a, b \in \mathbb{Z}$. Then

$$
\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) .
$$

Proof: If $a \notin U_{p}$ or $b \notin U_{p}$, that is if $p \mid a$ or $p \mid b$, then we have $p \mid a b$ so that

$$
\left(\frac{a b}{p}\right)=0=\left(\frac{a}{b}\right)\left(\frac{b}{p}\right) .
$$

If $a, b \in U_{p}=\langle u\rangle$, say $a=u^{k}$ and $b=u^{\ell}$, then we have $a b=u^{k+\ell}$ so

$$
\left(\frac{a b}{p}\right)=(-1)^{k+\ell}=(-1)^{k}(-1)^{\ell}=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) .
$$

4.10 Note: By the multiplicative property of the Legendre symbol, when $a=\prod_{i=1}^{\ell} p_{i}{ }^{k_{i}}$ where p_{1}, \cdots, p_{ℓ} are distinct primes and $k_{1}, \cdots, k_{\ell} \in \mathbb{Z}^{+}$, we have $\left(\frac{a}{p}\right)=\prod_{i=1}^{\ell}\left(\frac{p_{i}}{p}\right)^{k_{i}}$. Thus to determine the value of $\left(\frac{a}{p}\right)$ it suffices to determine the value of $\left(\frac{q}{p}\right)$ when p and q are primes. We make a table, listing the values $\left(\frac{q}{p}\right)$ for some odd primes p and q.

$p \backslash q$	3	5	7	11	13	17	19	23	29
3	0	-1	1	-1	1	-1	1	-1	-1
5	-1	0	-1	1	-1	-1	1	-1	1
7	-1	-1	0	1	-1	-1	-1	1	1
11	1	1	-1	0	-1	-1	-1	1	-1
13	1	-1	-1	-1	0	1	-1	1	1
17	-1	-1	-1	-1	1	0	1	-1	-1
19	-1	1	1	1	-1	1	0	1	-1
23	1	-1	-1	-1	1	-1	-1	0	1
29	-1	1	1	-1	1	-1	-1	1	0

The table appears to be symmetric with $\left(\frac{q}{p}\right)=\left(\frac{p}{q}\right)$ except when $p=q=3 \bmod 4$ in which case $\left(\frac{q}{p}\right)=-\left(\frac{p}{q}\right)$. This pattern was conjectured to hold by Euler and Legendre and was first proven by Gauss.
4.11 Theorem: (Euler's Criterion) Let p be an odd prime and let $a \in \mathbb{Z}$. Then

$$
\left(\frac{a}{p}\right)=a^{(p-1) / 2} \bmod p .
$$

Proof: If $a \notin U_{p}$, that is if $p \mid a$, then in Z_{p} we have $a=0$, hence $a^{(p-1) / 2}=0=\left(\frac{a}{p}\right)$. Suppose that $a \in U_{p}=\langle u\rangle$, say $a=u^{k}$. Note that, in U_{p} we have $u^{(p-1) / 2}=-1$ because $u^{(p-1) / 2} \neq 1$ and $\left(u^{(p-1) / 2}\right)^{2}=1$ and -1 is the only element of order 2 in the cyclic group U_{p}. Thus

$$
\left(\frac{a}{p}\right)=(-1)^{k}=\left(u^{(p-1) / 2}\right)^{k}=\left(u^{k}\right)^{(p-1) / 2}=a^{(p-1) / 2} .
$$

4.12 Theorem: (Gauss' Lemma) Let p be an odd prime. Let $P=\left\{1,2,3, \cdots, \frac{p-1}{2}\right\}$ and let $N=\left\{-1,-2,-3, \cdots,-\frac{p-1}{2}\right\}$. Then for all $a \in U_{p}$ we have

$$
\left(\frac{a}{p}\right)=(-1)^{|a P \cap N|}
$$

where $a P=\left\{a \cdot 1, a \cdot 2, a \cdot 3, \cdots, a \cdot \frac{p-1}{2}\right\} \subseteq U_{p}$.
Proof: For $k, \ell \in P$ we have

$$
a k=a \ell \Longrightarrow a(k-\ell)=0 \Longrightarrow k=\ell \in U_{p} .
$$

Also, if $k, \ell \in P$ then

$$
a k=-a \ell \Longrightarrow a(k+\ell)=0 \Longrightarrow k=-\ell \in U_{p}
$$

but this is not possible since $k \in P$ and $-\ell \in N$ and U_{p} is the disjoint union of P and Q. Thus the set $a P$ consists of one element from each pair $\{ \pm 1\},\{ \pm 2\}, \cdots,\left\{ \pm \frac{p-1}{2}\right\}$. For each $k \in P$ choose $\varepsilon_{k} \in\{ \pm 1\}$ so that $\varepsilon_{k} \cdot a \cdot k \in P$. Then we have

$$
P=\left\{1,2, \cdots, \frac{p-1}{2}\right\}=\left\{\varepsilon_{1} \cdot a \cdot 1, \varepsilon_{2} \cdot a \cdot 2, \cdots, \varepsilon_{(p-1) / 2} \cdot a \cdot \frac{p-1}{2}\right\}
$$

Multiply all the elements in theses sets to get

$$
\left(\frac{p-1}{2}\right)!=\left(\prod_{k \in P} \varepsilon_{k}\right) \cdot a^{(p-1) / 2} \cdot\left(\frac{p-1}{2}\right)!
$$

Multiply both sides by the inverse of $\left(\frac{p-1}{2}\right)$! then apply Euler's Criterion to get

$$
1=\left(\prod_{k \in P} \varepsilon_{k}\right) \cdot a^{(p-1) / 2}=\left(\prod_{k \in P} \varepsilon_{k}\right) \cdot\left(\frac{a}{p}\right)
$$

Note that by our choice of ε_{k}, the number of elements $k \in P$ such that $\varepsilon_{k}=-1$ is equal to the number of $k \in P$ such that $a k \in N$, which is equal to $|a P \cap N|$, and so

$$
\prod_{k \in P} \varepsilon_{k}=(-1)^{|a P \cap N|}
$$

Thus $1=(-1)^{|a P \cap N|} \cdot\left(\frac{a}{p}\right)$ and hence $\left(\frac{a}{p}\right)=(-1)^{|a P \cap N|}$, as required.
4.13 Theorem: (Quadratic Reciprocity) Let p and q be distinct odd primes. Then

$$
\left(\frac{p}{q}\right)=\left\{\begin{aligned}
\left(\frac{q}{p}\right), & \text { if } p=1 \bmod 4 \text { or } q=1 \bmod 4, \\
-\left(\frac{q}{p}\right), & \text { if } p=q=3 \bmod 4
\end{aligned}\right.
$$

Equivalently, we have

$$
\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4} .
$$

Proof: Let $P=\left\{1,2, \cdots, \frac{p-1}{2}\right\}$ and $N=\left\{-1,-2, \cdots,-\frac{p-1}{2}\right\}$, and let $Q=\left\{1,2, \cdots, \frac{q-1}{2}\right\}$ and $M=\left\{-1,-2, \cdots,-\frac{q-1}{2}\right\}$. By Gauss' Lemma, we have

$$
\left(\frac{q}{p}\right) \cdot\left(\frac{p}{q}\right)=(-1)^{|q P \cap N|}(-1)^{|p Q \cap M|}=(-1)^{|q P \cap N|+|p Q+M|}
$$

where $q P \cap N \subseteq U_{p}$ and $p Q \cap M \subseteq U_{q}$. Note that $|q P \cap N|$ is equal to the number of elements $x \in P$ with $q x \in N \bmod p$, which is equal to the number of $x \in P$ such that $q x-p y \in N$ for some $y \in \mathbb{Z}$. Also note that

$$
\begin{aligned}
q x-p y \in N & \Longleftrightarrow p y-q x \in P \Longleftrightarrow 1 \leq p y-q x \leq \frac{p-1}{2} \Longleftrightarrow 0<p y-q x<\frac{p}{2} \\
& \Longleftrightarrow q x<p y<q x+\frac{p}{2} \Longleftrightarrow \frac{q}{p} x<y<\frac{q}{p} x+\frac{1}{2}
\end{aligned}
$$

and so $|q P \cap N|$ is equal to the number of ordered pairs of integers (x, y) in the rectangle $R=\left[1, \frac{p-1}{2}\right] \times\left[1, \frac{q-1}{2}\right]$ such that $\frac{q}{p} x<y<\frac{q}{p} x+\frac{1}{2}$. Similarly, $|p Q \cap M|$ is equal to the number of ordered pairs of integers (x, y) in the rectangle R such that $\frac{p}{q} y<x<\frac{p}{q} y+\frac{1}{2}$. Note that since $\operatorname{gcd}(p, q)=1$ there are no points (x, y) which lie on the line $y=\frac{q}{p} x$. To summarize, we have $\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)=(-1)^{m}$ where $m=|q P+N|+|p Q+M|$ which is equal to the number of ordered pairs of integers $(x, y) \in R$ which lie strictly between the lines $y=\frac{q}{p} x+\frac{1}{2}$ and $x=\frac{p}{q} y+\frac{1}{2}$. Since these two lines are symmetric in the rectangle R, we also have $m=r-2 s$ where r is the number of $(x, y) \in R$ and s is the number of $(x, y) \in R$ with $y \geq \frac{q}{p} x+\frac{1}{2}$. Since $r=\frac{p-1}{2} \cdot \frac{q-1}{2}$ and $2 s$ is even, we have $\left(\frac{p}{q}\right) \cdot\left(\frac{q}{p}\right)=(-1)^{(p-1)(q-1) / 4}$, as required.

4.14 Theorem: Let p be an odd prime. Then
(1) $-1 \in Q_{p} \Longleftrightarrow p=1 \bmod 4$,
(2) $2 \in Q_{p} \Longleftrightarrow p= \pm 1 \bmod 8$,
(3) $-2 \in Q_{p} \Longleftrightarrow p=1$ or $3 \bmod 8$, and
(4) $3 \in Q_{p} \Longleftrightarrow p= \pm 1 \bmod 12$.

Proof: To prove Part 1, note that by Euler's Criterion we have

$$
\left(\frac{-1}{p}\right)=(-1)^{(p-1) / 2}=\left\{\begin{array}{r}
1 \text { if } \frac{p-1}{2} \text { is even } \\
-1 \text { if } \frac{p-1}{2} \text { is odd }
\end{array}\right\}=\left\{\begin{array}{r}
1 \text { if } p=1 \bmod 4 \\
-1 \text { if } p=3 \bmod 4
\end{array}\right\} .
$$

To prove Part 2, note that by Gauss' Lemma we have $\left(\frac{2}{p}\right)=(-1)^{|2 P \cap N|}$.
Case 1: suppose that $p=1 \bmod 4$ so that $\frac{p-1}{2}$ is even. The sets P and $2 P$ decompose as the disjoint unions

$$
\begin{aligned}
P & =\left\{1,2, \cdots, \frac{p-1}{4}\right\} \cup\left\{\frac{p+3}{4}, \cdots, \frac{p-1}{2}\right\}, \\
2 P & =\left\{2,4, \cdots, \frac{p-1}{2}\right\} \cup\left\{\frac{p+3}{2}, \cdots, p-1\right\} .
\end{aligned}
$$

The first of the two sets which decompose $2 P$ lies in P and the second set lies in N, so we have $|2 P \cap P|=\frac{p-1}{4}$ and $|2 P \cap N|=\frac{p-1}{2}-\frac{p-1}{4}=\frac{p-1}{4}$. Thus when $p=1 \bmod 4$ we have

$$
\left(\frac{2}{p}\right)=(-1)^{|2 P \cap N|}=(-1)^{(p-1) / 4}=\left\{\begin{array}{r}
1 \text { if } \frac{p-1}{4} \text { is even } \\
-1 \text { if } \frac{p-1}{4} \text { is odd }
\end{array}\right\}=\left\{\begin{array}{r}
1 \text { if } p=1 \bmod 8 \\
-1 \text { if } p=5 \bmod 8
\end{array}\right\}
$$

Case 2: suppose that $p=3 \bmod 4$ so that $\frac{p-1}{2}$ is odd. Then P and $2 P$ are the disjoint unions

$$
\begin{aligned}
P & =\left\{1,2, \cdots, \frac{p-3}{4}\left\{\cup\left\{\frac{p+1}{4}, \cdots, \frac{p-1}{2}\right\}\right.\right. \\
2 P & =\left\{2,4, \cdots, \frac{p-3}{2}\right\} \cup\left\{\frac{p+1}{2}, \cdots, p-1\right\} .
\end{aligned}
$$

The first of the sets which decompose $2 P$ lies in P and the second lies in N so we have $|2 P \cap P|=\frac{p-3}{4}$ and $|2 P \cap N|=\frac{p-1}{2}-\frac{p-3}{4}=\frac{p+1}{4}$. Thus when $p=3 \bmod 4$ we have

$$
\left(\frac{2}{p}\right)=(-1)^{|2 P \cap N|}=(-1)^{(p-1) / 4}=\left\{\begin{array}{r}
1 \text { if } \frac{p+1}{4} \text { is even } \\
-1 \text { if } \frac{p+1}{4} \text { is odd }
\end{array}\right\}=\left\{\begin{array}{r}
1 \text { if } p=7 \bmod 8 \\
-1 \text { if } p=3 \bmod 8
\end{array}\right\}
$$

Combining the results from Cases 1 and 2 gives

$$
\left(\frac{2}{p}\right)=\left\{\begin{array}{r}
1 \text { if } p=1,7 \bmod 8 \\
-1 \text { if } p=3,5 \bmod 8
\end{array}\right\}
$$

Part 3 follows from Parts 1 and 2 using Theorem 7.9. Indeed, since

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{r}
1 \text { if } p=1,5 \bmod 8 \\
-1 \text { if } p=3,7 \bmod 8
\end{array}\right\} \quad \text { and }\left(\frac{2}{p}\right)=\left\{\begin{array}{r}
1 \text { if } p=1,7 \bmod 8 \\
-1 \text { if } p=3,5 \bmod 8
\end{array}\right\}
$$

It follows that

$$
\left(\frac{-2}{p}\right)=\left(\frac{-1}{p}\right) \cdot\left(\frac{2}{p}\right)=\left\{\begin{array}{r}
1 \text { if } p=1,3 \bmod 8 \\
-1 \text { if } p=5,7 \bmod 8
\end{array}\right\}
$$

Finally, we shall prove Part 4 using Quadratic Reciprocity. Fist note that $3 \notin Q_{3}$ so we can assume that $p>3$ and hence that $p=1,2 \bmod 3$. By Quadratic Reciprocity, we have

$$
\left(\frac{3}{p}\right)=\left\{\begin{aligned}
\left(\frac{p}{3}\right) & \text { if } p=1 \bmod 4 \\
-\left(\frac{p}{3}\right) & \text { if } p=3 \bmod 4
\end{aligned}\right\} .
$$

In the case that $p=1 \bmod 4$, since $1 \in Q_{3}$ and $2 \notin Q_{3}$, we have $\left(\frac{p}{3}\right)=1$ when $p=1 \bmod 3$, that is when $p=1 \bmod 12$, and we have $\left(\frac{p}{3}\right)=-1$ when $p=2 \bmod 3$, that is when $p=5 \bmod 12$. Similarly, in the case that $p=3 \bmod 4$ we have $-\left(\frac{p}{3}\right)=1$ when $p=2 \bmod 3$, that is when $p=11 \bmod 12$ and we have $-\left(\frac{p}{3}\right)=-1$ when $p=1 \bmod 3$, that is when $p=7 \bmod 12$. Part 4 follows by combing the results of both cases.
4.15 Example: Determine whether $7 \in Q_{43}$.

Solution: We provide 4 solutions. First we make a table showing the values of $k^{2}, 7^{k}$ and $7 k$ for half of the values of $k \in U_{43}$ (that is the values $k \in P$).

k	k^{2}	7^{k}	$7 k$	k	k^{2}	7^{k}	$7 k$
1	1	7	7	12	1	1	-2
2	4	6	14	13	40	7	5
3	9	-1	21	14	24	6	12
4	16	-7	-15	15	10	-1	19
5	25	-6	-8	16	41	-7	-17
6	36	1	-1	17	31	-6	-10
7	6	7	6	18	23	1	-3
8	21	6	13	19	17	7	4
9	38	-1	20	20	13	6	11
10	14	-7	-16	21	11	-1	18
11	35	-6	-9				

For the first solution, note that since the column listing the values of k^{2} does not include 7 , it follows from the definition of Q_{43} that $7 \notin Q_{43}$.
For the second solution, we apply Euler's Criterion, using the column listing the values of 7^{k}, to obtain $\left(\frac{7}{43}\right)=(-1)^{(43-1) / 2}=(-1)^{21}=-1$ so that $7 \notin Q_{43}$, hence $7 \notin Q_{43}$.
For the third solution, we apply Gauss' Lemma, using the column which lists the values of $7 k$ for $k \in P$. Note that this column indicates, for each $k \in P$, whether $7 k \in P$ or $7 k \in N$. Since 9 of the entries in this column are negative, we have $|7 P \cap N|=9$ and so $\left(\frac{7}{43}\right)=(-1)^{|7 P \cap N|}=(-1)^{9}=-1$.
For the fourth solution, we use Quadratic Reciprocity. Since $7=3 \bmod 4$ and $43=3 \bmod 4$ we have $\left(\frac{7}{43}\right)=-\left(\frac{43}{7}\right)=-\left(\frac{1}{7}\right)=-1$ and so $7 \notin Q_{43}$.
4.16 Example: Determine whether $136 \in Q_{421}$.

Solution: First we determine whether 421 is prime. Since $\lfloor\sqrt{421}\rfloor=20$, it suffices to check each of the primes $2,3,5,7,11,13,17,19$ to see whether they are factors. We find that none of those primes are factors, and so 421 is prime. Since $136=2^{3} \cdot 17$ we have

$$
\left(\frac{136}{421}\right)=\left(\frac{2}{421}\right)^{2} \cdot\left(\frac{2}{421}\right) \cdot\left(\frac{17}{421}\right)=\left(\frac{2}{421}\right) \cdot\left(\frac{17}{421}\right) .
$$

Since for an odd prime p we have $2 \in Q_{p} \Longleftrightarrow p=1 \bmod 8$, and since $421=5 \bmod 8$, we have $2 \notin Q_{421}$ so that $\left(\frac{2}{421}\right)=-1$. Also, by applying Quadratic Reciprocity twice, since $421=1 \bmod 4$ and $13=1 \bmod 4$ we have $\left(\frac{17}{421}\right)=\left(\frac{421}{17}\right)=\left(\frac{13}{17}\right)=\left(\frac{17}{13}\right)=\left(\frac{4}{13}\right)=1$. Thus

$$
\left(\frac{136}{421}\right)=\left(\frac{2}{421}\right) \cdot\left(\frac{17}{421}\right)=(-1)(1)=-1, \text { and so } 136 \notin Q_{421} .
$$

4.17 Example: Determine whether $468 \in Q_{697}$.

First we determine whether 697 is prime. Since $\lfloor\sqrt{697}\rfloor=26$, it suffices to check each of the primes $2,3,5,7,11,13,17,19,23$ to see whether they are factors. We find that in fact 17 is a factor and that $697=17 \cdot 41$, and so we need to determine whether $468 \in Q_{17}$ and whether $468 \in Q_{41}$. Since $468=9=3^{2} \bmod 17$ we have $468 \in Q_{17}$. Reducing modulo the denominator and applying Quadratic Reciprocity three times gives

$$
\left(\frac{468}{41}\right)=\left(\frac{17}{41}\right)=\left(\frac{41}{17}\right)=\left(\frac{7}{17}\right)=\left(\frac{17}{7}\right)=\left(\frac{3}{7}\right)=-\left(\frac{7}{3}\right)=-\left(\frac{1}{3}\right)=-1
$$

so $468 \notin Q_{41}$ hence $468 \notin Q_{697}$.
4.18 Example: Find a polynomial $f(x) \in \mathbb{Z}[x]$ which has a root in \mathbb{Z}_{n} for every $n \in \mathbb{Z}^{+}$ but which has no root in \mathbb{Z}.

Solution: Note that $13 \in Q_{17}$ (indeed $\left.13=8^{2} \bmod 17\right)$, and $17 \in Q_{13}\left(17=2^{2} \bmod 13\right)$, and $17=1 \bmod 8$, and $13 \cdot 17=221$, and consider the polynomial

$$
f(x)=\left(x^{2}-13\right)\left(x^{2}-17\right)\left(x^{2}-221\right) .
$$

Note that $f(x)$ has real roots $\pm \sqrt{13}, \pm \sqrt{17}, \pm \sqrt{221}$ so it has no roots in \mathbb{Z} (or \mathbb{Q}). Since $17=1 \bmod 8$ we have $17 \in Q_{2^{k}}$ for all $k \in \mathbb{Z}^{+}$and hence $f(x)$ has a root in $\mathbb{Z}_{2^{k}}$ for all $k \in \mathbb{Z}^{+}$. Since $13 \in Q_{17}$ we also have $13 \in Q_{17^{k}}$ for all $k \in \mathbb{Z}^{+}$, and it follows that $f(x)$ has a root in $\mathbb{Z}_{17^{k}}$ for all $k \in \mathbb{Z}^{+}$. Since $17 \in Q_{13}$ we also have $17 \in Q_{13^{k}}$ for all $k \in \mathbb{Z}^{+}$, and it follows that $f(x)$ has a root in $\mathbb{Z}_{13^{k}}$ for all $k \in \mathbb{Z}^{+}$. For any prime $p \neq 2,13,17$ we have $\left(\frac{221}{p}\right)=\left(\frac{13}{p}\right) \cdot\left(\frac{17}{p}\right)$ and it follows that one of the three Legendre symbols $\left(\frac{13}{p}\right),\left(\frac{17}{p}\right)$ or $\left(\frac{221}{p}\right)$ must be equal to 1 , and so either $13 \in Q_{p}$ or $17 \in Q_{p}$ or $221 \in Q_{p}$, and hence for every $k \in \mathbb{Z}^{+}$, either $f(13)=0$ or $f(17)=0$ or $f(221)=0$ in $\mathbb{Z}_{p^{k}}$. Thus $f(x)$ has a root in $\mathbb{Z}_{p^{k}}$ for every prime p and every $k \in \mathbb{Z}^{+}$. Finally, suppose that $n=\prod p_{i}{ }^{k_{i}}$, where p_{1}, \cdots, p_{ℓ} are distinct primes and $k_{1}, \cdots, k_{\ell} \in \mathbb{Z}^{+}$. For each index i, choose $a_{i} \in \mathbb{Z}$ such that $f\left(a_{i}\right)=0 \in \mathbb{Z}_{p_{i} k_{i}}$. By the Chinese Remainder Theorem, we can choose $x \in \mathbb{Z}$ so that $x=a_{i} \bmod p_{1}{ }^{k_{i}}$ for all indices i. Then, for all indices i, we have $f(x)=f\left(a_{i}\right)=0 \bmod p_{i}{ }^{k_{i}}$ and hence, by the Chinese Remainder Theorem, we have $f(x)=0 \bmod n$.
4.19 Remark: We can extend the Legendre symbol to the Jacobi symbol ($\frac{a}{b}$), defined for $a, b \in \mathbb{Z}^{+}$with b odd, by defining

$$
\left(\frac{a}{\prod p_{i}^{k_{i}}}\right)=\prod\left(\frac{a}{p_{i}}\right)^{k_{i}} .
$$

As an optional exercise, you can verify that the Jacobi symbol satisfies the following properties.
(1) $\left(\frac{a b}{c}\right)=\left(\frac{a}{c}\right) \cdot\left(\frac{b}{c}\right)$,
(2) $\left(\frac{a}{b c}\right)=\left(\frac{a}{b}\right) \cdot\left(\frac{a}{c}\right)$,
(3) $\left(\frac{a}{c}\right)=\left(\frac{b}{c}\right)$ when $a=b \bmod c$,
(4) $\left(\frac{a}{b}\right) \cdot\left(\frac{b}{a}\right)=(-1)^{(a-1)(b-1) / 4}$,
(5) $\left(\frac{-1}{a}\right)=\left\{\begin{array}{r}1 \text { if } a=1 \bmod 4 \\ -1 \text { if } a=3 \bmod 4\end{array}\right\}$ and $\left(\frac{2}{a}\right)=\left\{\begin{array}{r}1 \text { if } a=1,7 \bmod 8 \\ -1 \text { if } a=3,5 \bmod 8\end{array}\right\}$.

