
Chapter 4. Quadratic Residues

4.1 Note: Given a ∈ Zn (or a ∈ Un), how can we determine whether there exists x ∈ Zn

(or x ∈ Un) such that x2 = a? This is the problem that we address in this chapter.

4.2 Definition: For a ∈ Zn (or Un), we say that a is a quadratic residue (modulo n)
when there exists x ∈ Zn (or Un) such that x2 = a. Note that if a ∈ Un and x ∈ Zn with
x2 = a, then we have gcd(x2, n) = gcd(a, n) = 1, hence gcd(x, n) = 1, so that x ∈ Un. We
denote the set of quadratic residues in Zn and Un by Sn and Qn, respectively, so we have

Sn =
{
a ∈ Zn

∣∣ a = x2 for some x ∈ Zn

}
,

Qn =
{
a ∈ Un

∣∣ a = x2 for some x ∈ Un

}
.

Note that Qn is a group, since 1 ∈ Qn and if a, b ∈ Qn with, say a = x2 and y = b2 then
we have ab = (xy)2 and we have a−1 = (x−1)2.

4.3 Theorem: Let k, ` ∈ Z with gcd(k, `) = 1. The bijective map F : Zk` → Zk × Z`

given by F (u) = (u, u) restricts to give a bijective map F : Sk` → Sk × S`, and it restricts
further to give a group isomorphism F : Qk` → Qk ×Q`.

Proof: For a ∈ Z, if a = x2 mod k` then we also have a = x2 mod k and a = x2 mod `
and so F restricts to a map F : Sk` → Sk × S`. On the other hand, if b = y2 mod k
and c = z2 mod ` and F (a) = (b, c) = (y2, z2) = (y, z)2, then we have a = x2 where
x = F−1(y, z). Thus the map F restricts to give a bijective map F : Sk` → Sk×S`. We have
already seen that F restricts to give a group isomorphism F : Uk` → Uk×U` and the above
argument shows that F restricts further to give a group isomorphism F : Qk` → Qk ×Q`.

4.4 Remark: In light of the above theorem, it suffices to understand the sets Sn and Qn

in the case that n = pk for some prime p and some k ∈ Z+. We shall focus our attention
on the group Qn with n = pk.

4.5 Note: We point out some properties of quadratic residues which follow immediately
from our understanding of the structure of the group of units Un when n is a prime power.

(1) We have Q2 = {1}, and Q4 = {1} and for k ≥ 3, since U2k =
{
± 5j

∣∣ 0 ≤ j < 2k−2
}

we have
Q2k =

{
x2
∣∣x ∈ U2k

}
=
{

52j
∣∣0 ≤ j < 2k−3

}
= 〈25〉

so that Q2k is cyclic with |Q2k | = 1
4 |U2k | = 2k−3. Also note, in the case k ≥ 3, that

U2k = {±5j} is equal to the disjoint union

U2k =
{

50, 52, 54, · · ·
}
∪
{

51, 53, 55, · · ·
}
∪
{
−50,−52,−54, · · ·

}
∪
{
−51,−53,−55, · · ·

}
and modulo 8, the elements in these sets are all equal to 1, 5, 7 and 3, respectively. Thus
for a ∈ U2k , we have

a ∈ Q2k ⇐⇒ a = 1 mod 8.

(2) Let p be an odd prime and let k ∈ Z+. Choose u ∈ Z so that Upk = 〈u〉. Then
ord

pk(u) = ϕ(pk) = pk−1(p− 1), which is even, and Upk =
{
uj
∣∣ 0 ≤ j < pk−1(p− 1)

}
so

Qpk =
{
x2
∣∣x ∈ Upk

}
=
{
u2j
∣∣ 0 ≤ j < 1

2 p
k−1(p− 1)

}
= 〈u2〉

and so Qpk is cyclic with |Qpk | = 1
2 |Upk | = 1

2 p
k−1(p − 1). Also note that for a ∈ Z with

p 6
∣∣ a we have

a ∈ Qpk ⇐⇒ a = u2j for some j ⇐⇒ a ∈ Qp.
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4.6 Remark: When a∈Z with 2 6
∣∣ a and k≥3, by the above note, a∈Q2k ⇐⇒ a=1 mod 8.

When p is an odd prime, a∈Z with p 6
∣∣ a and k∈Z+, by the above note, a∈Qpk ⇐⇒ a∈Qp.

It remains, then, to determine whether a ∈ Qp when p is an odd prime and p 6
∣∣ a.

4.7 Definition: For an odd prime p and for a ∈ Z, we define the Legendre symbol

( a

p

)
=


0 if p|a so a /∈ Up ,

1 if a ∈ Qp ,

−1 if a ∈ Up \Qp .

4.8 Note: When a ∈ Up = 〈u〉 with say a = uk, we have a ∈ Qp ⇐⇒ k is even, and so(
a
p

)
= (−1)k.

4.9 Theorem: (Multiplicative Property) Let p be an odd prime and let a, b ∈ Z. Then(
ab
p

)
=
(
a
p

)(
b
p

)
.

Proof: If a /∈ Up or b /∈ Up, that is if p
∣∣a or p

∣∣b, then we have p
∣∣ab so that(

ab
p

)
= 0 =

(
a
b

)(
b
p

)
.

If a, b ∈ Up = 〈u〉, say a = uk and b = u`, then we have ab = uk+` so(
ab
p

)
= (−1)k+` = (−1)k(−1)` =

(
a
p

)(
b
p

)
.

4.10 Note: By the multiplicative property of the Legendre symbol, when a =
∏̀
i=1

pi
ki

where p1, · · · , p` are distinct primes and k1, · · · , k` ∈ Z+, we have
(
a
p

)
=
∏̀
i=1

(
pi

p

)ki
. Thus

to determine the value of
(
a
p

)
it suffices to determine the value of

(
q
p

)
when p and q are

primes. We make a table, listing the values
(
q
p

)
for some odd primes p and q .

p\q 3 5 7 11 13 17 19 23 29

3 0 −1 1 −1 1 −1 1 −1 −1
5 −1 0 −1 1 −1 −1 1 −1 1
7 −1 −1 0 1 −1 −1 −1 1 1
11 1 1 −1 0 −1 −1 −1 1 −1
13 1 −1 −1 −1 0 1 −1 1 1
17 −1 −1 −1 −1 1 0 1 −1 −1
19 −1 1 1 1 −1 1 0 1 −1
23 1 −1 −1 −1 1 −1 −1 0 1
29 −1 1 1 −1 1 −1 −1 1 0

The table appears to be symmetric with
(
q
p

)
=
(
p
q

)
except when p = q = 3 mod 4 in which

case
(
q
p

)
= −

(
p
q

)
. This pattern was conjectured to hold by Euler and Legendre and was

first proven by Gauss.
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4.11 Theorem: (Euler’s Criterion) Let p be an odd prime and let a ∈ Z. Then(
a
p

)
= a(p−1)/2 mod p.

Proof: If a /∈ Up, that is if p
∣∣a, then in Zp we have a = 0, hence a(p−1)/2 = 0 =

(
a
p

)
.

Suppose that a ∈ Up = 〈u〉, say a = uk. Note that, in Up we have u(p−1)/2 = −1 because

u(p−1)/2 6= 1 and
(
u(p−1)/2)2 = 1 and −1 is the only element of order 2 in the cyclic group

Up. Thus (
a
p

)
= (−1)k =

(
u(p−1)/2)k = (uk)(p−1)/2 = a(p−1)/2.

4.12 Theorem: (Gauss’ Lemma) Let p be an odd prime. Let P =
{

1, 2, 3, · · · , p−1
2

}
and

let N =
{
−1,−2,−3, · · · ,− p−1

2

}
. Then for all a ∈ Up we have(

a
p

)
= (−1)|aP∩N |

where aP =
{
a·1, a·2, a·3, · · · , a· p−12

}
⊆ Up.

Proof: For k, ` ∈ P we have

ak = a` =⇒ a(k − `) = 0 =⇒ k = ` ∈ Up.

Also, if k, ` ∈ P then

ak = −a` =⇒ a(k + `) = 0 =⇒ k = −` ∈ Up

but this is not possible since k ∈ P and −` ∈ N and Up is the disjoint union of P and Q.
Thus the set aP consists of one element from each pair {±1}, {±2}, · · · , {±p−1

2

}
. For each

k ∈ P choose εk ∈ {±1} so that εk ·a·k ∈ P . Then we have

P =
{

1, 2, · · · , p−1
2

}
=
{
ε1 ·a·1, ε2 ·a·2, · · · , ε(p−1)/2 ·a· p−12

}
Multiply all the elements in theses sets to get(

p−1
2

)
! =

( ∏
k∈P

εk

)
·a(p−1)/2 ·

(
p−1
2

)
!

Multiply both sides by the inverse of
(
p−1
2

)
! then apply Euler’s Criterion to get

1 =
( ∏

k∈P
εk

)
·a(p−1)/2 =

( ∏
k∈P

εk

)
·
(
a
p

)
.

Note that by our choice of εk, the number of elements k ∈ P such that εk = −1 is equal
to the number of k ∈ P such that ak ∈ N , which is equal to |aP ∩N |, and so∏

k∈P
εk = (−1)|aP∩N |.

Thus 1 = (−1)|aP∩N | ·
(
a
p

)
and hence

(
a
p

)
= (−1)|aP∩N |, as required.
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4.13 Theorem: (Quadratic Reciprocity) Let p and q be distinct odd primes. Then(
p
q

)
=

{ (
q
p

)
, if p = 1 mod 4 or q = 1 mod 4 ,

−
(
q
p

)
, if p = q = 3 mod 4 .

Equivalently, we have (
p
q

)
·
(
q
p

)
= (−1)(p−1)(q−1)/4.

Proof: Let P =
{

1, 2, · · · , p−1
2

}
and N =

{
−1,−2, · · · ,−p−1

2

}
, and let Q =

{
1, 2, · · · , q−1

2

}
and M =

{
− 1,−2, · · · ,− q−1

2

}
. By Gauss’ Lemma, we have(

q
p

)
·
(
p
q

)
= (−1)

|qP∩N |
(−1)

|pQ∩M |
= (−1)

|qP∩N |+|pQ+M |

where qP ∩ N ⊆ Up and pQ ∩M ⊆ Uq. Note that |qP ∩ N | is equal to the number of
elements x ∈ P with qx ∈ N mod p, which is equal to the number of x ∈ P such that
qx− py ∈ N for some y ∈ Z. Also note that

qx− py ∈ N ⇐⇒ py − qx ∈ P ⇐⇒ 1 ≤ py − qx ≤ p−1
2 ⇐⇒ 0 < py − qx < p

2

⇐⇒ qx < py < qx + p
2 ⇐⇒

q
p x < y < q

p x + 1
2

and so |qP ∩N | is equal to the number of ordered pairs of integers (x, y) in the rectangle
R =

[
1, p−1

2

]
× [1, q−1

2

]
such that q

p x < y < q
p x + 1

2 . Similarly, |pQ ∩M | is equal to the

number of ordered pairs of integers (x, y) in the rectangle R such that p
q y < x < p

q y + 1
2 .

Note that since gcd(p, q) = 1 there are no points (x, y) which lie on the line y = q
p x. To

summarize, we have
(
p
q

)
·
(
q
p

)
= (−1)m where m = |qP + N | + |pQ + M | which is equal

to the number of ordered pairs of integers (x, y) ∈ R which lie strictly between the lines
y = q

p x + 1
2 and x = p

q y + 1
2 . Since these two lines are symmetric in the rectangle R, we

also have m = r−2s where r is the number of (x, y) ∈ R and s is the number of (x, y) ∈ R

with y ≥ q
p x+ 1

2 . Since r = p−1
2 ·

q−1
2 and 2s is even, we have

(
p
q

)
·
(
q
p

)
= (−1)

(p−1)(q−1)/4
,

as required.
q+1
2

0 p+1
2

4.14 Theorem: Let p be an odd prime. Then

(1) −1 ∈ Qp ⇐⇒ p = 1 mod 4,
(2) 2 ∈ Qp ⇐⇒ p = ±1 mod 8,
(3) −2 ∈ Qp ⇐⇒ p = 1 or 3 mod 8, and
(4) 3 ∈ Qp ⇐⇒ p = ±1 mod 12.
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Proof: To prove Part 1, note that by Euler’s Criterion we have(−1
p

)
= (−1)

(p−1)/2
=

{
1 if p−1

2 is even

−1 if p−1
2 is odd

}
=

{
1 if p = 1 mod 4

−1 if p = 3 mod 4

}
.

To prove Part 2, note that by Gauss’ Lemma we have
(
2
p

)
= (−1)

|2P∩N |
.

Case 1: suppose that p = 1 mod 4 so that p−1
2 is even. The sets P and 2P decompose as

the disjoint unions
P =

{
1, 2, · · · , p−1

4

}
∪
{

p+3
4 , · · · , p−1

2

}
,

2P =
{

2, 4, · · · , p−1
2

}
∪
{

p+3
2 , · · · , p−1

}
.

The first of the two sets which decompose 2P lies in P and the second set lies in N , so we
have |2P ∩ P | = p−1

4 and |2P ∩N | = p−1
2 −

p−1
4 = p−1

4 . Thus when p = 1 mod 4 we have(
2
p

)
= (−1)

|2P∩N |
= (−1)

(p−1)/4
=

{
1 if p−1

4 is even

−1 if p−1
4 is odd

}
=

{
1 if p = 1 mod 8

−1 if p = 5 mod 8

}
.

Case 2: suppose that p = 3 mod 4 so that p−1
2 is odd. Then P and 2P are the disjoint

unions
P =

{
1, 2, · · · , p−3

4

{
∪
{

p+1
4 , · · · , p−1

2

}
2P =

{
2, 4, · · · , p−3

2

}
∪
{

p+1
2 , · · · , p−1

}
.

The first of the sets which decompose 2P lies in P and the second lies in N so we have
|2P ∩ P | = p−3

4 and |2P ∩N | = p−1
2 −

p−3
4 = p+1

4 . Thus when p = 3 mod 4 we have(
2
p

)
= (−1)

|2P∩N |
= (−1)

(p−1)/4
=

{
1 if p+1

4 is even

−1 if p+1
4 is odd

}
=

{
1 if p = 7 mod 8

−1 if p = 3 mod 8

}
.

Combining the results from Cases 1 and 2 gives(
2
p

)
=

{
1 if p = 1, 7 mod 8

−1 if p = 3, 5 mod 8

}
.

Part 3 follows from Parts 1 and 2 using Theorem 7.9. Indeed, since(−1
p

)
=

{
1 if p = 1, 5 mod 8

−1 if p = 3, 7 mod 8

}
and

(
2
p

)
=

{
1 if p = 1, 7 mod 8

−1 if p = 3, 5 mod 8

}
It follows that (−2

p

)
=
(−1

p

)
·
(
2
p

)
=

{
1 if p = 1, 3 mod 8

−1 if p = 5, 7 mod 8

}
.

Finally, we shall prove Part 4 using Quadratic Reciprocity. Fist note that 3 /∈ Q3 so we
can assume that p > 3 and hence that p = 1, 2 mod 3. By Quadratic Reciprocity, we have(

3
p

)
=

{ (
p
3

)
if p = 1 mod 4

−
(
p
3

)
if p = 3 mod 4

}
.

In the case that p = 1 mod 4, since 1 ∈ Q3 and 2 /∈ Q3, we have
(
p
3

)
= 1 when p = 1 mod 3,

that is when p = 1 mod 12, and we have
(
p
3

)
= −1 when p = 2 mod 3, that is when

p = 5 mod 12. Similarly, in the case that p = 3 mod 4 we have −
(
p
3

)
= 1 when p = 2 mod 3,

that is when p = 11 mod 12 and we have −
(
p
3

)
= −1 when p = 1 mod 3, that is when

p = 7 mod 12. Part 4 follows by combing the results of both cases.
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4.15 Example: Determine whether 7 ∈ Q43.

Solution: We provide 4 solutions. First we make a table showing the values of k2, 7k and
7k for half of the values of k ∈ U43 (that is the values k ∈ P ).

k k2 7k 7k

1 1 7 7
2 4 6 14
3 9 −1 21
4 16 −7 −15
5 25 −6 −8
6 36 1 −1
7 6 7 6
8 21 6 13
9 38 −1 20
10 14 −7 −16
11 35 −6 −9

k k2 7k 7k

12 1 1 −2
13 40 7 5
14 24 6 12
15 10 −1 19
16 41 −7 −17
17 31 −6 −10
18 23 1 −3
19 17 7 4
20 13 6 11
21 11 −1 18

For the first solution, note that since the column listing the values of k2 does not include
7, it follows from the definition of Q43 that 7 /∈ Q43.

For the second solution, we apply Euler’s Criterion, using the column listing the values of

7k, to obtain
(

7
43

)
= (−1)

(43−1)/2
= (−1)21 = −1 so that 7 /∈ Q43, hence 7 /∈ Q43.

For the third solution, we apply Gauss’ Lemma, using the column which lists the values
of 7k for k ∈ P . Note that this column indicates, for each k ∈ P , whether 7k ∈ P or
7k ∈ N . Since 9 of the entries in this column are negative, we have |7P ∩N | = 9 and so(

7
43

)
= (−1)

|7P∩N |
= (−1)9 = −1.

For the fourth solution, we use Quadratic Reciprocity. Since 7 = 3 mod 4 and 43 = 3 mod 4
we have

(
7
43

)
= −

(
43
7

)
= −

(
1
7

)
= −1 and so 7 /∈ Q43.

4.16 Example: Determine whether 136 ∈ Q421.

Solution: First we determine whether 421 is prime. Since b
√

421c = 20, it suffices to check
each of the primes 2, 3, 5, 7, 11, 13, 17, 19 to see whether they are factors. We find that none
of those primes are factors, and so 421 is prime. Since 136 = 23 ·17 we have(

136
421

)
=
(

2
421

)2·( 2
421

)
·
(

17
421

)
=
(

2
421

)
·
(

17
421

)
.

Since for an odd prime p we have 2 ∈ Qp ⇐⇒ p = 1 mod 8, and since 421 = 5 mod 8, we
have 2 /∈ Q421 so that

(
2

421

)
= −1. Also, by applying Quadratic Reciprocity twice, since

421 = 1 mod 4 and 13 = 1 mod 4 we have
(

17
421

)
=
(
421
17

)
=
(
13
17

)
=
(
17
13

)
=
(

4
13

)
= 1. Thus(

136
421

)
=
(

2
421

)
·
(

17
421

)
= (−1)(1) = −1 , and so 136 /∈ Q421.

4.17 Example: Determine whether 468 ∈ Q697.

First we determine whether 697 is prime. Since b
√

697c = 26, it suffices to check each
of the primes 2, 3, 5, 7, 11, 13, 17, 19, 23 to see whether they are factors. We find that in
fact 17 is a factor and that 697 = 17·41, and so we need to determine whether 468 ∈ Q17

and whether 468 ∈ Q41. Since 468 = 9 = 32 mod 17 we have 468 ∈ Q17. Reducing modulo
the denominator and applying Quadratic Reciprocity three times gives(

468
41

)
=
(
17
41

)
=
(
41
17

)
=
(

7
17

)
=
(
17
7

)
=
(
3
7

)
= −

(
7
3

)
= −

(
1
3

)
= −1

so 468 /∈ Q41 hence 468 /∈ Q697.
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4.18 Example: Find a polynomial f(x) ∈ Z[x] which has a root in Zn for every n ∈ Z+

but which has no root in Z.

Solution: Note that 13 ∈ Q17 (indeed 13 = 82 mod 17), and 17 ∈ Q13 (17 = 22 mod 13),
and 17 = 1 mod 8, and 13·17 = 221, and consider the polynomial

f(x) = (x2 − 13)(x2 − 17)(x2 − 221).

Note that f(x) has real roots ±
√

13, ±
√

17, ±
√

221 so it has no roots in Z (or Q). Since
17 = 1 mod 8 we have 17 ∈ Q2k for all k ∈ Z+ and hence f(x) has a root in Z2k for all
k ∈ Z+. Since 13 ∈ Q17 we also have 13 ∈ Q17k for all k ∈ Z+, and it follows that f(x)
has a root in Z17k for all k ∈ Z+. Since 17 ∈ Q13 we also have 17 ∈ Q13k for all k ∈ Z+,
and it follows that f(x) has a root in Z13k for all k ∈ Z+. For any prime p 6= 2, 13, 17 we
have

(
221
p

)
=
(
13
p

)
·
(
17
p

)
and it follows that one of the three Legendre symbols

(
13
p

)
,
(
17
p

)
or
(
221
p

)
must be equal to 1, and so either 13 ∈ Qp or 17 ∈ Qp or 221 ∈ Qp, and hence

for every k ∈ Z+, either f(13) = 0 or f(17) = 0 or f(221) = 0 in Zpk . Thus f(x) has a
root in Zpk for every prime p and every k ∈ Z+. Finally, suppose that n =

∏
pi

ki , where
p1, · · · , p` are distinct primes and k1, · · · , k` ∈ Z+. For each index i, choose ai ∈ Z such
that f(ai) = 0 ∈ Zpi

ki . By the Chinese Remainder Theorem, we can choose x ∈ Z so that

x = ai mod p1
ki for all indices i. Then, for all indices i, we have f(x) = f(ai) = 0 mod pi

ki

and hence, by the Chinese Remainder Theorem, we have f(x) = 0 mod n.

4.19 Remark: We can extend the Legendre symbol to the Jacobi symbol
(
a
b

)
, defined

for a, b ∈ Z+ with b odd, by defining( a∏
pi

ki

)
=
∏(

a
pi

)ki
.

As an optional exercise, you can verify that the Jacobi symbol satisfies the following
properties.

(1)
(
ab
c

)
=
(
a
c

)
·
(
b
c

)
,

(2)
(

a
bc

)
=
(
a
b

)
·
(
a
c

)
,

(3)
(
a
c

)
=
(
b
c

)
when a = b mod c,

(4)
(
a
b

)
·
(
b
a

)
= (−1)

(a−1)(b−1)/4
,

(5)
(−1

a

)
=

{
1 if a = 1 mod 4

−1 if a = 3 mod 4

}
and

(
2
a

)
=

{
1 if a = 1, 7 mod 8

−1 if a = 3, 5 mod 8

}
.

7


