Chapter 4. Quadratic Residues

4.1 Note: Given a € Z,, (or a € U,), how can we determine whether there exists = € Z,
(or € U,) such that 22 = a? This is the problem that we address in this chapter.

4.2 Definition: For a € Z,, (or U,,), we say that a is a quadratic residue (modulo n)
when there exists x € Z,, (or U,) such that z2 = a. Note that if a € U,, and z € Z,, with
r? = a, then we have ged(2?,n) = ged(a,n) = 1, hence ged(z,n) = 1, so that = € U,,. We

denote the set of quadratic residues in Z,, and U,, by S,, and @Q,,, respectively, so we have
S, = {ann‘a:x2 forsome.reZn},
Qn = {aEUn|a=x2 forsomexGUn}.

Note that @Q,, is a group, since 1 € Q,, and if a,b € Q,, with, say a = 2% and y = b? then
we have ab = (ry)? and we have ™! = (z71)%

4.3 Theorem: Let k,¢ € Z with ged(k,¢) = 1. The bijective map F : Zyy — Zy X Zy
given by F(u) = (u,u) restricts to give a bijective map F' : Sy — Sk X Sy, and it restricts
further to give a group isomorphism F' : Qpy — Qr X Q.

Proof: For a € Z, if a = z? mod k¢ then we also have a = 2 mod k and a = 2 mod /¢
and so F' restricts to a map F : Spy — Si x Sg. On the other hand, if b = y? mod k
and ¢ = 22 mod £ and F(a) = (b,c) = (y?,2%) = (y,2)?, then we have a = z? where
x=F"1 (y, z). Thus the map F restricts to give a bijective map F' : Siy — Sk x.Se. We have
already seen that F' restricts to give a group isomorphism F': Uy — Ui x Uy and the above
argument shows that F' restricts further to give a group isomorphism F': Qre — Qr X Q.

4.4 Remark: In light of the above theorem, it suffices to understand the sets S,, and @,

in the case that n = p* for some prime p and some k € ZT. We shall focus our attention

on the group Q,, with n = p*.

4.5 Note: We point out some properties of quadratic residues which follow immediately
from our understanding of the structure of the group of units U,, when n is a prime power.

(1) We have Q2 = {1}, and Q4 = {1} and for k > 3, since Upx = { £57 |0 < j < 2F72}
we have .
Qo = {2z € U } = {5%]0 < j < 2873} = (25)
so that Qqr is cyclic with |Qqr| = 1|Usk| = 2873, Also note, in the case k > 3, that
Uy = {£57} is equal to the disjoint union
Uy = {5°,5% 5%, --- L u{5',5°,5°, ... b U {-5°—5° =5 ... U {~5' —5° 5%, ... }
and modulo 8, the elements in these sets are all equal to 1, 5, 7 and 3, respectively. Thus

for a € Uyk, we have
a € @y <= a=1mod 8.

(2) Let p be an odd prime and let k € Z*. Choose u € Z so that Uy, = (u). Then
ord (u) = (p*) = p*¥~1(p — 1), which is even, and Uy = {uj ’0 <j<ptlp-— 1)} SO
Qpr = {xQ‘x € Upk} = {u2j |O <ji< %pk_l(p— 1)} = (u?)
and so Q,« is cyclic with |Q, x| = 1|U,x| = 1 pF~1(p — 1). Also note that for a € Z with

p)(a we have
a€ Qp a = u* for some j <= a € Qp.



4.6 Remark: When a €Z with 2 )(a and k>3, by the above note, a € Qo+ <= a=1 mod 8.
When p is an odd prime, a € Z with p *a and k€ Z™, by the above note, a € Qpr = a€Q)y.
It remains, then, to determine whether a € ), when p is an odd prime and p A/ a.

4.7 Definition: For an odd prime p and for a € 7Z, we define the Legendre symbol
0 ifplasoa¢U,,
(9) ={ 1 ifaeqQ,,
-1 ifacU,\ Q.
4.8 Note: When a € U, = (u) with say a = u*, we have a € Q, <= k is even, and so
(3) = (="
4.9 Theorem: (Multiplicative Property) Let p be an odd prime and let a,b € Z. Then
ab a b
($) = () 3):
Proof: If a ¢ U, or b ¢ U, that is if p‘a or p!b, then we have p‘ab so that
aby _ n _ (a\(b
() =0=(3)(3)
If a,b € U, = (u), say a = u”* and b = u, then we have ab = u

() = (CD8 = (DR = (2)(8)

k+e oo

¢
4.10 Note: By the multiplicative property of the Legendre symbol, when a = [] p;*
i=1

¢
where p1,---,pe are distinct primes and kq,---,k; € ZT, we have (%) = I] (%) . Thus

1=

to determine the value of (%) it suffices to determine the value of (%) when p and q are
primes. We make a table, listing the values (%) for some odd primes p and q .

p\¢ 3 5 7 11 13 17 19 23 29
3 0O-11 -1 1 -1 1 -1 -1
5 -1 0 -1 1 -1 -1 1 -1 1
7 -1-10 1 -1 -1 -1 1 1
11 1 1 -1 0 -1 -1 -1 1 -1
13 1 -1-1-1 0 1 -1 1 1
7 -1 -1 -1 -1 1 0 1 -1 -1
9 -1 1 1 1 -1 1 0O 1 -1
23 1 -1-1-1 1 -1 -1 0 1
29 -1 1.1 -1 1 -1 -1 1 O

The table appears to be symmetric with (]%) = (g) except when p = ¢ = 3 mod 4 in which

case (ﬂ) = —(2). This pattern was conjectured to hold by Euler and Legendre and was
P q

first proven by Gauss.



4.11 Theorem: (Euler’s Criterion) Let p be an odd prime and let a € Z. Then
(%) = a®=1/2 mod p.

Proof: If a ¢ U,, that is if p|a, then in Z, we have a = 0, hence a®P=1/2 = 0 = (%)

Suppose that a € U, = (u), say a = u®. Note that, in U, we have uw®P=1)/2 = _1 because

uP=1/2 £ 1 and (u(p_l)/2)2 =1 and —1 is the only element of order 2 in the cyclic group
U,. Thus

(2) = (~1)F = (u<p—1>/2)k = (uF)P=1)/2 = ¢(r=1)/2,

4.12 Theorem: (Gauss’ Lemma) Let p be an odd prime. Let P = {1, 2,3,---, %} and

let N = {—1,—2,—3, cee— p%l} Then for all a € U, we have
a) aPNN
(4) = (=1)lePN]

where aP = {a-l,a-2,a-3, e ,a-p%l} C U,.
Proof: For k,¢ € P we have
ak=al = alk—0)=0= k=1/{cU,.
Also, if k,£ € P then
ak=—al = a(k+0)=0=k=—-(€cU,
but this is not possible since kK € P and —¢ € N and U, is the disjoint union of P and Q.
Thus the set aP consists of one element from each pair {£1}, {+2},---, {j:p%l}. For each
k € P choose ¢, € {£1} so that e;-a-k € P. Then we have
P = {1,2, S p%l} = {gl.a.1752.a[.2, ce 76(])—1)/2'0"%}
Multiply all the elements in theses sets to get

()1 = ( I] i) a2 (252

kepP
Multiply both sides by the inverse of (pT_l) ! then apply Euler’s Criterion to get
1 —= ( H gk>.a(p_1)/2 e ( H €k>'(2)~
keP keP P

Note that by our choice of €, the number of elements k£ € P such that e, = —1 is equal
to the number of k € P such that ak € N, which is equal to |[aP N N|, and so

H £ = (_1)|aPmN|‘
keP

Thus 1 = (—1)|“PQN|-(%) and hence (%) = (=1)IePON a5 required.



4.13 Theorem: (Quadratic Reciprocity) Let p and q be distinct odd primes. Then
(®) { (2) ,ifp=1mod 4 or ¢ =1 mod 4,
) — ) _

p
(4) ,ifp=g¢g=3 mod 4.
Equivalently, we have

p

(2) . (ﬂ) = (—1)p=Da=1)/4,

q/ \p
Proof: Let P = {1,2,---,%} and N = {—L—Z,---,—%},andlet@z {1,2,---,%}
and M = { — 1,—2,---,—%1}. By Gauss’ Lemma, we have
_ lgPAN| lpQNM| laPOAN|+|pQ+M|
(2)-(3) = () (=) = (-0 ’

where gP NN C U, and pQ N M C U,. Note that |¢P N N| is equal to the number of
elements x € P with gxr € N mod p, which is equal to the number of x € P such that
gr — py € N for some y € Z. Also note that

2

= @E<py<qr+h = %x<y<%x+%

gr —py e N < py—qr e P < 1<py—qer <Pl — 0<py—qu<?t

and so |¢P N N| is equal to the number of ordered pairs of integers (x,y) in the rectangle
R = [1, %} x [1, %} such that %x <y< %x + % Similarly, |pQ N M| is equal to the
number of ordered pairs of integers (x,y) in the rectangle R such that gy << gy + 1.
Note that since ged(p, q) = 1 there are no points (x,y) which lie on the line y = %CL‘. To

summarize, we have (g) . (%) = (—1)™ where m = |¢P + N| + |pQ + M| which is equal
to the number of ordered pairs of integers (z,y) € R which lie strictly between the lines
Yy = %:c + % and x = YT % Since these two lines are symmetric in the rectangle R, we

also have m = r — 2s where r is the number of (z,y) € R and s is the number of (z,y) € R

with y > 1o+ 2. Since r = pg—l : q%l and 2s is even, we have (g)-(%) = (—1)(p71)(q71)/4,
as required.
gt+1
2
0 ptl

4.14 Theorem: Let p be an odd prime. Then
(1) -1€Q, < p=1mod 4,

(2) 2€Q, < p==1modS§,

(3) —2€ @, < p=1or3mod 8, and

(4) 3€Q, < p==+1mod 12.



Proof: To prove Part 1, note that by Euler’s Criterion we have
(__1) :(_1)(p_1)/2: 1ifp%1 is even _ 1if p=1mod 4 .
P —1if 25 is odd —1if p =3 mod 4

To prove Part 2, note that by Gauss’ Lemma we have (%) = (—1)|2P0N|.

Case 1: suppose that p = 1 mod 4 so that ]%1 is even. The sets P and 2P decompose as
the disjoint unions

-1 3 -1
P {12 B U{ER 2,
2P = (2.4, B U {2 p1)

The first of the two sets which decompose 2P lies in P and the second set lies in IV, so we

have |2PﬂP\:% and \QPON]:p%l—p%l:p%l. Thus when p = 1 mod 4 we have

1if 221 is even lif p=1mod 8
2PNN —1)/4 p O
(3) = (—1)PFN = (—ny T 2 { ! } = { :

—1if 221 is odd ~1if p=>5mod 8

Case 2: suppose that p = 3 mod 4 so that prl is odd. Then P and 2P are the disjoint
unions

-3 1 -1
P= (L2 B U (B gt
2P = {24, 22 U (R -1

The first of the sets which decompose 2P lies in P and the second lies in N so we have

|2PﬂP|z%and |2PﬂN|:pg—l—¥:p+:1. Thus when p = 3 mod 4 we have

P —1if 2L s odd ~1lifp=3mod8 [’

Combining the results from Cases 1 and 2 gives
(2): 1ifp=1,7mod 8 .
p —1if p=3,5 mod 8
Part 3 follows from Parts 1 and 2 using Theorem 7.9. Indeed, since
1 ifp=1,5mod 8 1 ifp=1,7mod 8
(1) = np o and (2) = op o
p —1 if p=3,7 mod 8 p —1 if p=3,5 mod 8
It follows that
lifp=1,3 mod 8
=2} _ (=1).(2) — ’ '
(p) (p)(p) {—1ifp:5,7mod8}

Finally, we shall prove Part 4 using Quadratic Reciprocity. Fist note that 3 ¢ Q3 so we
can assume that p > 3 and hence that p = 1,2 mod 3. By Quadratic Reciprocity, we have
(3): (g) if p=1mod 4 ‘

P —(&) if p=3 mod 4

In the case that p = 1 mod 4, since 1 € Q3 and 2 ¢ Q3, we have (%’) =1 when p = 1 mod 3,

that is when p = 1 mod 12, and we have (%) = —1 when p = 2 mod 3, that is when
p = 5 mod 12. Similarly, in the case that p = 3 mod 4 we have — (g) = 1 when p = 2 mod 3,
that is when p = 11 mod 12 and we have —(%) = —1 when p = 1 mod 3, that is when

p =7 mod 12. Part 4 follows by combing the results of both cases.



4.15 Example: Determine whether 7 € (43.

Solution: We provide 4 solutions. First we make a table showing the values of k2, 7% and
7k for half of the values of k € Uz (that is the values k € P).

ko k2 7% Tk ko k2 7F Tk
11 7 7 12 1 1 =2
2 4 6 14 13 40 7 5
3 9 -1 21 14 24 6 12
4 16 -7 —15 15 10 -1 19
5 25 —6 -8 16 41 -7 —-17
6 36 1 -1 17 31 -6 —10
7T 6 7 6 18 23 1 -3
8 21 6 13 19 17 7 4
9 38 -1 20 20 13 6 11
10 14 -7 —16 21 11 -1 18

11 35 -6 -9
For the first solution, note that since the column listing the values of k% does not include
7, it follows from the definition of Q43 that 7 ¢ Q4s.
For the second solution, we apply Euler’s Criterion, using the column listing the values of
7%, to obtain (L) = (—1)(43_1)/2 = (—1)?! = —1 so that 7 ¢ Qu3, hence 7 ¢ Qu3.
For the third solution, we apply Gauss’ Lemma, using the column which lists the values

of 7k for k € P. Note that this column indicates, for each k € P, whether 7k € P or
7k € N. Since 9 of the entries in this column are negative, we have |7P N N| =9 and so

(L) = (=)™ = (1) = -1

For the fourth solution, we use Quadratic Reciprocity. Since 7 = 3 mod 4 and 43 = 3 mod 4
we have (55) = —(2) =—(3) = -1 and s0 7 ¢ Qus.
4.16 Example: Determine whether 136 € QQ491.

Solution: First we determine whether 421 is prime. Since [v/421] = 20, it suffices to check
each of the primes 2,3,5,7,11,13,17,19 to see whether they are factors. We find that none
of those primes are factors, and so 421 is prime. Since 136 = 23-17 we have

136\ _ (.2 \2 (.2 17\ _ (.2 17
(32t) = (1)~ (@) (351) = (&21) - (a59)-
Since for an odd prime p we have 2 € (), <= p =1 mod 8, and since 421 = 5 mod 8, we
have 2 ¢ (421 so that (&) = —1. Also, by applying Quadratic Reciprocity twice, since

421 =1 mod 4 and 13 = 1 mod 4 we have (%) = (%) = (%) = (%) = (%) = 1. Thus

(186) = (&) (A5) = (-1)(1) = —1, and so 136 ¢ Quo1.
4.17 Example: Determine whether 468 € Qgo7.

First we determine whether 697 is prime. Since |v/697| = 26, it suffices to check each
of the primes 2,3,5,7,11,13,17,19,23 to see whether they are factors. We find that in
fact 17 is a factor and that 697 = 17-41, and so we need to determine whether 468 € Q17
and whether 468 € Q41. Since 468 = 9 = 32 mod 17 we have 468 € Q7. Reducing modulo
the denominator and applying Quadratic Reciprocity three times gives

()= =@ =FH =D =B =-@)=-() =

50 468 ¢ Q41 hence 468 ¢ Qgo7.



4.18 Example: Find a polynomial f(z) € Z[x] which has a root in Z,, for every n € Z*
but which has no root in Z.

Solution: Note that 13 € Q7 (indeed 13 = 82 mod 17), and 17 € Q13 (17 = 22 mod 13),
and 17 =1 mod 8, and 13-17 = 221, and consider the polynomial

f(z) = (22 — 13)(2* — 17)(2? — 221).

Note that f(z) has real roots +1/13, £+/17, £1/221 so it has no roots in Z (or Q). Since
17 = 1 mod 8 we have 17 € Qq« for all K € ZT and hence f(x) has a root in Zgx for all
k € Z*. Since 13 € Q17 we also have 13 € Q7+ for all k € ZT, and it follows that f(x)
has a root in Z« for all k € Z*. Since 17 € Q13 we also have 17 € Q3+ for all k € Z™,
and it follows that f(z) has a root in Z;x for all k € ZT. For any prime p # 2,13,17 we

have (2%) = (%) . (%) and it follows that one of the three Legendre symbols (%), (177)

or (2%) must be equal to 1, and so either 13 € @, or 17 € @, or 221 € @,, and hence
for every k € Z7, either f(13) = 0 or f(17) = 0 or f(221) = 0 in Z,x. Thus f(z) has a
root in Z,. for every prime p and every k € Z*. Finally, suppose that n =[] p;*i, where
p1,---,pe are distinct primes and kq,---,k, € ZT. For each index 4, choose a; € Z such
that f(a;) = 0 € Z,.x;. By the Chinese Remainder Theorem, we can choose x € Z so that
x = a; mod p;%i for all indices i. Then, for all indices i, we have f(x) = f(a;) = 0 mod p;*:
and hence, by the Chinese Remainder Theorem, we have f(x) = 0 mod n.

4.19 Remark: We can extend the Legendre symbol to the Jacobi symbol (%), defined
for a,b € ZT with b odd, by defining

(o) =TGD"

As an optional exercise, you can verify that the Jacobi symbol satisfies the following
properties.

(1) ()
)

hen a = b mod c,
_1)(a—1)(b—1)/4

1 ifa=1mod 4 9 1 ifa=1,7mod8
] and(—): ] )
—1ifa=3mod 4 e —1ifa=3,5mod 8
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