
Chapter 3. The Group of Units Modulo N

3.1 Note: For a ∈ Zn, when we make a list of powers ak for k ∈ N, the list must eventually
repeat (because Zn is finite). In this chapter we study this repetition and consider the
problem of determining how fast the list of powers of a repeats in Zn.

3.2 Example: If today is Tuesday, then what day will it be in 2100 days (under the
unreasonable assumption that our solar system still exists in 2100 days)?

Solution: In Z7 we have
k 0 1 2 3 4 5
2k 1 2 4 1 2 4

and we see that the list of powers of 2 repeats every 3 terms beginning with 20 = 1. Since
100 = 1 mod 3 it follows that 2100 = 21 = 2 mod 7. Thus if today is Tuesday, then in 2100

days it will be Thursday.

3.3 Example: If it is currently 2:00 pm, then what time will it be in 2100 hours?

Solution: In Z24 we have
k 0 1 2 3 4 5
2k 1 2 4 8 16 8

and we see that the list of powers of 2 repeats every 2 terms beginning with 23 = 8. Since
100 = 0 = 4 mod 2 we must have 2100 = 24 = 16 mod 24. If it is currently 2:00 pm, then
in 2100 hours it will be 6:00 am.

3.4 Example: Here are a few tables showing the powers ak, until all lists of powers repeat,
in Zn for various values of n.

Z2 Z3 Z4 Z5

k 0 1 2

0k 1 0 0
1k 1 1 1

k 0 1 2 3

0k 1 0 0 0
1k 1 1 1 1
2k 1 2 1 2

k 0 1 2 3 4

0k 1 0 0 0 0
1k 1 1 1 1 1
2k 1 2 0 0 0
3k 1 3 1 3 1

k 0 1 2 3 4 5

0k 1 0 0 0 0 0
1k 1 1 1 1 1 1
2k 1 2 4 3 1 2
3k 1 3 4 2 1 3
4k 1 4 1 4 1 4

Z6 Z7 Z8

k 0 1 2 3

0k 1 0 0 0
1k 1 1 1 1
2k 1 2 4 2
3k 1 3 3 3
4k 1 4 4 4
5k 1 5 1 5

k 0 1 2 3 4 5 6 7

0k 1 0 0 0 0 0 0 0
1k 1 1 1 1 1 1 1 1
2k 1 2 4 1 2 4 1 2
3k 1 3 2 6 4 5 1 3
4k 1 4 2 1 4 2 1 4
5k 1 5 4 6 2 3 1 5
6k 1 6 1 6 1 6 1 6

k 0 1 2 3 4 5

0k 1 0 0 0 0 0
1k 1 1 1 1 1 1
2k 1 2 4 0 0 0
3k 1 3 1 3 1 3
4k 1 4 0 0 0 0
5k 1 5 1 5 1 5
6k 1 6 4 0 0 0
7k 1 7 1 7 1 7

As an exercise, make a few more such tables, search for patterns, and make some conjec-
tures. One conjecture that you might make is that, when n is a prime number, all of the
rows in the table repeat every n− 1 terms (see Fermat’s Litle Theorem, below) and that,
when n is a composite number, the rows repeat faster (see the Euler-Fermat Theorem).
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3.5 Theorem: (Fermat’s Little Theorem) Let p be a prime number.

(1) For all a ∈ Up we have ap−1 = 1. Equivalently, for all a ∈ Z with gcd(a, p) = 1 we have
ap−1 = 1 mod p.
(2) For all a ∈ Zp we have ap = a. Equivalently, for all a ∈ Z we have ap = a mod p.

Proof: To prove Part (1), let a ∈ Up or, equivalently, let a ∈ Z with gcd(a, p) = 1. Define
F : Up → Up by F (x) = ax (note that when a and x are units in a ring, the product ax is
also a unit with (ax)−1 = x−1a−1, so the map F is well-defined). Notice that F is bijective
with inverse G : Up → Up given by G(x) = a−1x. Since F is bijective, it follows that the
list of elements 1a, 2a, 3a, · · · , (p−1)a is a permutation (that is a a re-orderring) of the list
1, 2, 3, · · · , p− 1. Thus in Up we have

1a · 2a · 3a · . . . · (p− 1)a = 1 · 2 · 3 · . . . · (p− 1)

(p− 1)! ap−1 = (p− 1)!

Multiply both sides by the inverse of (p− 1)! in Up to get ap−1 = 1 in Up, as required.
To prove Part (2), let a ∈ Z be arbitrary. If gcd(a, p) = 1 then by Part (1) we have

ap−1 = 1 mod p and so we can multiply by a to get ap = a mod p. If gcd(a, p) 6= 1 then since
p is prime it follows that p|a, and so we have a = 0 mod p hence ap = 0p = 0 = a mod p.
In either case, we have ap = a mod p, as required.

3.6 Example: Show that 270 + 370 is not prime.

Solution: Our strategy here is to calculate 270 + 370 mod p for various primes p. If we find
a prime p for which 270 + 370 = 0 then we know that p

∣∣(270 + 270) and hence 270 + 370

is not prime. In Z2 we have 270 + 370 = 070 + 170 = 1 6= 0. In Z3, we have 270 + 370 =
(−1)70 + 070 = 1 6= 0. In Z5, by Fermat’s Little Theorem the list of powers of 2 and 3
repeats every 4 terms, and 70 = 2 mod 4, so we have 270 + 370 = 22 + 32 = 4 + 9 = 3 6= 0.
In Z7, the list of powers of 2 and 3 repeats every 6 terms, and 70 = 4 mod 6, so we have
270+370 = 24+34 = 42+92 = 42+22 = 2+4 = 6 6= 0. In Z11, the list of powers of 2 and 3
repeats every 10 terms, and 70 = 0 mod 10, so we have 270 +370 = 20 +30 = 1+1 = 2 6= 0.
In Z13, the list of powers of 2 and 3 repeats every 12 terms, and 70 = 10 mod 12, so we
have 270 + 370 = 210 + 310 = 24 · 24 · 22 + 33 · 33 · 31 = 3 · 3 · 4 + 1 · 1 · 3 = 10 + 3 = 0. Since
270 + 370 = 0 ∈ Z13 it follows that 13

∣∣(270 + 370) in Z, and so 270 + 370 is not prime.

3.7 Theorem: (The Euler-Fermat Theorem) Let n ∈ Z+. For all a ∈ Un we have
aϕ(n) = 1. Equivalently, for all a ∈ Z with gcd(a, n) = 1 we have aϕ(n) = 1 mod n.

Proof: Let a ∈ Un or, equivalently, let a ∈ Z with gcd(a, n) = 1. Let ϕ = ϕ(n) and let
x1, x2, · · · , xϕ be a list of all the elements in Un. Define F : Un → Un by F (x) = ax. Then
F is bijective with inverse G : Un → Un given by G(x) = a−1x. Since F is bijective, it
follows that the list ax1, ax2, · · · , axϕ is a permutation of the list x1, x2, · · · , xϕ, and so in
Un we have

ax1 · ax2 · . . . · axϕ = x1 · x2 · · · · · xϕ( ϕ∏
i=1

xi
)
aϕ =

ϕ∏
i=1

xi

Multiply both sides by the inverse of
ϕ∏
i=1

xi in Un to get aϕ = 1 in Un, as required.

3.8 Remark: For any finite abelian group G, the above proof is valid and it shows that
a|G| = e for all a ∈ G. The same result holds even in non-abelian finite groups, but a
different proof is required.
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3.9 Theorem: (The Refined Euler-Fermat Theorem) Let n =
∏
pi
ki where p1, · · · , p` are

distinct prime numbers and k1, · · · , k` ∈ Z+. Let κ = κ(n) = max{k1, k2, · · · , k`} and let
ψ = ψ(n) = lcm

(
ϕ(p1

k1), ϕ(p2
k2), · · · , ϕ(p`

k`)
)
.

(1) For all a ∈ Un we have aψ = 1.
(2) For all a ∈ Zn we have aκ+ψ = aκ.

Proof: To prove Part 1, suppose that a ∈ Un or, equivalently, let a ∈ Z with gcd(a, n) = 1.
Fix an index i. Since gcd(a, n) = 1 we have pi 6

∣∣a so that a ∈ Upiki . By the Euler-Fermat

Theorem, we have aϕ(pi
ki ) = 1 mod pi

ki . It follows that am = 1 mod pi
ki for every multiple

m of ϕ(pi
ki) and, in particular, aψ = 1 mod pi

ki . Since aψ = 1 mod pi
ki for all indices i,

it follows that aψ = 1 mod n, by the Chinese Remainder Theorem.
To prove Part 2, let a ∈ Z be arbitrary. Fix an index i. Case 1: suppose that pi

∣∣a.

Then pi
ki
∣∣aki so that aki = 0 ∈ Zpiki , hence aj = 0 ∈ Zpiki for all j ≥ ki and so, in

particular, aκ = aκ+ψ = 0 ∈ Zpiki . Case 2: suppose that pi6
∣∣a. Then we have a ∈ Upiki ,

hence aϕ(pi
ki ) = 1 ∈ Upiki by the Euler-Fermat Theorem, and so am = 1 ∈ Upiki for every

multiple m of ϕ(pi
ki). In particular, we have aψ = 1 ∈ Upiki and hence aκ+ψ = aκ ∈ Upiki .

In either case, we have aκ+ψ = aκ mod pi
ki in Z. Since aκ+ψ = aκ mod pi

ki for all indices
i, it follows from the Chinese Remainder Theorem that aκ+ψ = aκ mod n.

3.10 Remark: Part 2 of the Refined Euler-Fermat Theorem implies that for a ∈ Zn, the
list of powers ak repeats every ψ terms beginning with the term aκ. For example, when
n = 540 = 22 · 33 · 5 we have κ(n) = max{2, 3, 1} = 3 and ψ = lcm

(
φ(22), ϕ(33), ϕ(5)

)
=

lcm(2, 18, 4) = 36 and so the list of powers repeats every 36 terms beginning with a3.
For some particular values of a, the list of powers may repeat more quickly (for example

when a = 1 the list repeats every term and when a = n − 1 = −1 the list repeats every
2 terms). For some particular values of n, the list of powers ak repeats more quickly for
every a ∈ Zn. Indeed, we shall see below that when n = 8k the powers ak repeat every
ψ/2 terms for all a ∈ Zn. For example, as you can see from the last table in Example 3.4,
although ψ(8) = 4, in Z8 the powers ak repeat every 2 terms beginning with a3.

In order to obtain a deeper understanding of the period of repetition of powers modulo
n, we shall study the structure of the group of units modulo n.

3.11 Notation: When G is an additive group, (meaning that the operation is addition,
which is commutative, and the identity element is denoted by 0) for a ∈ G and k ∈ Z+ we
write 0a = 0, ka = a+a+a+ · · ·+a with k terms in the sum, and (−k)a = −(ka). Verify,
as an exercise, that for a, b ∈ G and k, ` ∈ Z we have (−k)a = −(ka) and (k+`)a = ka+`a
and k(a+ b) = ka+ kb.

When G is a multiplicative group (meaning that the operation is multiplication and
the identity element is denoted by e or 1 or I), we write a0 = e, and ak = a · a · a · . . . · a
with k terms in the product, and a−k = (ak)−1. Verify, as an exercise, that for a, b ∈ G
and k, ` ∈ Z we have a−k = (a−1)k and ak+` = aka` and if G is abelian then (ab)k = akbk.

3.12 Note: When G is a finite additive group and a ∈ G, the list of multiples of a must
eventually repeat, that is we must have ka = `a for some 0 ≤ k < `. When ka = `a with
0 ≤ k < `, we have (`− k)a = `a− ka = 0, and so there exists m ∈ Z+ such that ma = 0.
Similarly, when G is a finite multiplicative group and a ∈ G, the list of powers ak must
eventually repeat and there exists m ∈ Z+ such that am = e.
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3.13 Definition: Let G be a finite group and let a ∈ G. The order of the group G,
denoted by |G|, is the number of elements in G. When G is an additive group, the order
of a in G is the smallest m ∈ Z+ such that ma = 0. When G is a multiplicative group,
the order of a in G is the smallest m ∈ Z+ such that am = e. In either case, the order of
a in G is denoted by ord(a) or ord

G
(a). When G = Un we also write ord

G
(a) as ord

n
(a).

3.14 Definition: A subgroup of a group G is a subset H ⊆ G which is also a group
using the same operation which is used in G.

3.15 Definition: Let G be a finite group and let a ∈ G. When G is additive, we let
〈a〉 =

{
ka
∣∣ k ∈ Z

}
⊆ G. When G is multiplicative, we let 〈a〉 =

{
ak
∣∣ k ∈ Z

}
⊆ G. In

either case, verify that 〈a〉 is a subgroup of G. The group 〈a〉 is called the cyclic group
in G generated by a. When G = 〈a〉 for some a ∈ G we say that G is cyclic.

3.16 Example: The additive group Zn is a cyclic group generated by the element 1.

3.17 Example: The multiplicative group Cn =
{
z ∈ C∗

∣∣ zn = 1
}

is a cyclic group in C∗

which is generated by the element α = ei 2π/n.

3.18 Example: We have U18 = {1, 5, 7, 11, 13, 17}. In U18, we have

k 0 1 2 3 4 5 6
5k 1 5 7 17 13 11 1

so ord18(5) = 6, and we have 〈5〉 =
{

1, 5, 7, 17, 13, 11
}

= U18, so that U18 is cyclic.

3.19 Theorem: (Elements of a Cyclic Group) Let G be a finite group, let a ∈ G, and let
m = ord

G
(a). Then

(1) If G is additive then for k, ` ∈ Z we have ka = `a ⇐⇒ k = ` mod m.
(2) If G is multiplicative then for k, ` ∈ Z we have ak = a` ⇐⇒ k = ` mod m.

Proof: We prove Part 2 (the proof of Part 1 is similar but uses additive notation). Let
k, ` ∈ Z. Suppose that ak = a`. Note that a`−k = a`a−k = a`(ak)−1 = ak(ak)−1 = e.
Write ` − k = qm + r with 0 ≤ r < n. Then e = a`−k = aqm+r = (am)qar = ar. Since
ord(a) = m we must have r = 0. Thus ` − k = qm hence k = ` mod m. Suppose,
conversely, that k = ` mod m, say k = `+ qm. Then we have ak = a`+qm = a`(am)q = a`.

3.20 Corollary: Let G be a finite group, let a ∈ G, and let m = ord
G

(a). Then

(1) If G is additive then for k ∈ Z we have ka = 0 ⇐⇒ m
∣∣k.

(2) If G is multiplicative then for k ∈ Z we have ak = e ⇐⇒ m
∣∣k.

3.21 Corollary: Let G be a finite group, let a ∈ G, and let m = ord
G

(a).

(1) If G is additive then 〈a〉 =
{

0, a, 2a, 3a, · · · , (m−1)a
}

with the listed elements distinct.

(2) If G is multiplicative then 〈a〉 =
{

1, a, a2, · · · , am−1
}

with the listed elements distinct.

3.22 Corollary: Let G be a finite group and let a ∈ G. Then ord(a) =
∣∣〈a〉∣∣.
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3.23 Theorem: (Subgroups of a Cyclic Group) Let G be finite group, let a ∈ G, and let
m = ord

G
(a).

(1) If G is additive then every subgroup of 〈a〉 is of the form 〈ka〉 for some k ∈ Z and for
k, ` ∈ Z we have 〈ka〉 = 〈`a〉 ⇐⇒ gcd(k,m) = gcd(`,m). It follows that the distinct
subgroups of 〈a〉 are the groups 〈da〉 =

{
0, da, 2da, · · · , (m − d)a

}
where d is a positive

divisor of m.

(2) If G is multiplicative then every subgroup of 〈a〉 is of the form 〈ak〉 for some k ∈ Z and
for k, ` ∈ Z we have 〈ak〉 = 〈al〉 ⇐⇒ gcd(k, n) = gcd(l, n). It follows that the distinct
subgroups of 〈a〉 are the groups 〈ad〉 =

{
e, ad, a2d, · · · , am−d

}
where d is a positive divisor

of m.

Proof: We prove Part 2 (the proof of Part 1 is similar but uses additive notation). First
we show that every subgroup of 〈a〉 is cyclic. Let H be a subgroup of 〈a〉. If H = {e}
then H = 〈e〉, which is cyclic. Suppose that H 6= {e}. Since H ⊆ 〈a〉 =

{
ak
∣∣ k ∈ Z

}
and H 6= {e} we can choose 0 6= i ∈ Z such that ai ∈ H and, since we also have
a−i = (ai)−1 ∈ H, it follows that for j = |i| we have j ∈ Z+ and aj ∈ H. Let k be the
smallest positive integer such that ak ∈ H. We claim that H = 〈ak〉. Since ak ∈ H and
H is a group, it follows that (ak)j ∈ H for all j ∈ Z and so 〈ak〉 ⊆ H. Let a` ∈ H, where
` ∈ Z. Write ` = kq + r with 0 ≤ r < k. Then a` = akqar so we have ar = a`(akq)−1 ∈ H.
By our choice of k we must have r = 0 , so ` = qk and hence a` ∈ 〈ak〉. Thus H ⊆ 〈ak〉.

Note that for any divisor d
∣∣m we have 〈ad〉 =

{
a0, ad, a2d, · · · , am−d

}
with the listed

elements distinct so that ord(ad) = m
d . We claim that 〈ak〉 = 〈ad〉 where d = gcd(k,m).

Since d
∣∣k we have ak ∈ 〈ad〉 so 〈ak〉 ⊆ 〈ad〉. Choose s, t ∈ Z so that ks + mt = d. Then

ad = aks+mt = (ak)s(am)t = (ak)s ∈ 〈ak〉 and so 〈ad〉 ⊆ 〈ak〉. Thus 〈ak〉 = 〈ad〉, as
claimed. Now if 〈ak〉 = 〈a`〉 and d = gcd(k,m) and c = gcd(`,m) then 〈ad〉 = 〈ak〉 =
〈a`〉 = 〈ac〉 and so

∣∣〈ad〉∣∣ =
∣∣〈ac〉∣∣, that is m

d = m
c , and so d = c. Conversely, if d =

gcd(k,m) = gcd(`,m) = c then we have 〈ak〉 = 〈ad〉 = 〈a`〉.

3.24 Corollary: (Orders of Elements in a Cyclic Group) Let G be a finite group, let
a ∈ G, and let m = ord

G
(a).

(1) If G is additive then for k ∈ Z we have ord
G

(ka) = m
gcd(k,m) .

(2) If G is multiplicative then for k ∈ Z we have ord
G

(ak) = m
gcd(k,m) .

3.25 Corollary: (Generators of a Cyclic Group) Let G be a finite group, let a ∈ G, and
let m = ord

G
(a). Then

(1) If G is additive then for k ∈ Z we have 〈ka〉 = 〈a〉 ⇐⇒ gcd(k,m) = 1.
(2) If G is multiplicative then for k ∈ Z we have 〈ak〉 = 〈a〉 ⇐⇒ gcd(k,m) = 1.

3.26 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let G be
a finite group, let a ∈ G, and let m = ord

G
(a). Then the order of each element in 〈a〉 is a

positive divisor of m and, for each positive divisor d
∣∣m, the number of elements in 〈a〉 of

order d is equal to ϕ(d).

3.27 Corollary: For n ∈ Z+ we have
∑
d|n

ϕ(d) = n.

3.28 Exercise: To illustrate the above corollaries, for each subgroup of Z12, list all of the
elements in the subgroup and circle all the elements which generate the subgroup. Then
do the same for the group C12 = 〈α〉 =

{
αk
∣∣ k ∈ Z12

}
where α = ei π/6.
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3.29 Definition: Let G be a group using the operation ∗ and let H be a group using the
operation ×. An isomorphism from G to H is a bijective function φ : G→ H such that
φ(a ∗ b) = φ(a)× φ(b) for all a, b ∈ G. Note that when φ : G→ H is an isomorphism, the
inverse map ψ = φ−1 : H → G is also an isomorphism because, given c, d ∈ H, if we let
a = ψ(c) and b = ψ(d) so that c = φ(a) and d = φ(b), then we have

ψ(c× d) = ψ
(
φ(a)× φ(b)

)
= ψ

(
φ(a ∗ b)

)
= a ∗ b = ψ(c) ∗ ψ(d).

When there exists an isomorphism from G to H we say that G and H are isomorphic
and we write G ∼= H.

3.30 Remark: In algebra, isomorphic groups are considered to be essentially equivalent.

3.31 Example: Let G be a finite group, let a ∈ G, and let m = ord
G

(a). Then the map

φ : Zn → 〈a〉 given by φ(k) = ak is an isomorphism, so we have 〈a〉 ∼= Zm. Thus all cyclic
groups of order m are isomorphic.

3.32 Theorem: Let φ : G→ H be an isomorphism of finite groups. Then

(1) φ(e
G

) = e
H

,
(2) φ(a−1) = φ(a)−1 for all a ∈ G,
(3) φ(ak) = φ(a)k for all a ∈ G and all k ∈ Z,
(4) ord

G
(a) = ord

H

(
φ(a)

)
for all a ∈ G, and hence

(5) G and H have the same number of elements of each order.

Proof: To prove Part 1 note that φ(eG)×φ(eG) = φ(e
G
∗ e

G
) = φ(e

G
), then multiply both

sides by the inverse of φ(e
G

) in H to get φ(e
G

) = eH . To prove part 2, note that for a ∈ G
we have φ(a)× φ(a−1 = φ(a ∗ a−1) = φ(e

G
) = e

H
, then multiply both sides on the left by

the inverse of φ(a) in H to get φ(a−1) = φ(a)−1. Part 3 holds for k = 0 by Part 1, and it
holds for k > 0 by induction, and it holds for k < 0 by Part 2. Part 4 then follows because
for a ∈ G we have ak = e

G
⇐⇒ φ(ak) = φ(e

G
) ⇐⇒ φ(a)k = e

H
. Part 5 then follows

because, by Part 4, for each d ∈ Z+ the map φ : G → H restricts to give a bijective map
from the set

{
a ∈ G

∣∣ ord
G

(a) = d
}

to the set
{
b ∈ H

∣∣ ord
H

(b) = d
}

.

3.33 Remark: There is a converse to Part 5, for finite abelian groups, which is consid-
erably more difficult to prove: if G and H are finite abelian groups which have the same
number of elements of each order then G ∼= H.

3.34 Definition: If G and H are groups with identities e
G

and e
H

, then the product

G×H =
{

(a, b)
∣∣a ∈ G, b ∈ H}

is a group under the operation given by (a, b)(c, d) = (ac, bd) with identity e
G×H

= (e
G
, e

H
).

More generally, if G1, G2, · · · , Gn are groups then the product
n∏
i=1

Gi = G1 ×G2 × · · · ×Gn =
{

(a1, a2, · · · , an)
∣∣ai ∈ Gi}

is a group under the operation (a1, a2, · · · , an)(b1, b2, · · · , bn) = (a1b1, a2b2, · · · , anbn).

3.35 Example: For groups G, H, K and L, verify as an exercise that

(1) G× {e} ∼= G,
(2) G×H ∼= H ×G,
(3) (G×H)×K ∼= G× (H ×K) ∼= G×H ×K, and
(4) if G ∼= K and H ∼= L then G×H ∼= K × L.
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3.36 Note: Note that when G and H are groups we have
∣∣G ×H∣∣ = |G| |H|. Also note

that for a ∈ G and b ∈ H we have

ord
G×H

(a, b) = lcm
(

ord
G

(a), ord
H

(b)
)
.

Indeed if ord
G

(a) = n and ord
H

(b) = m then for k ∈ Z we have

(a, b)k = e
G×H

⇐⇒ (ak, bk) = (e
G
, e

H
) ⇐⇒

(
ak = e

G
and bk = e

H

)
⇐⇒ n

∣∣k and m
∣∣k) ⇐⇒ k is a common multiple of n and m.

3.37 Example: Find the number of elements of each order in the group Z9 × Z15.

Solution: We use Corollary 3.26 to determine the number of elements of each order in Z9

and in Z15 then we use Note 3.36 to calculate ord(a, b) for a ∈ Z9 and b ∈ Z15.

ord(a) # of a ord(b) # of b ord(a, b) # of (a, b)

1 1 1 1 1 1
3 2 3 2
5 4 5 4
15 8 15 8

3 2 1 1 3 2
3 2 3 4
5 4 15 8
15 8 15 16

9 6 1 1 9 6
3 2 9 12
5 4 45 24
15 8 45 48

ord(a, b) # of (a, b)

1 1
3 8
5 4
9 18
15 32
45 72

Summary

3.38 Theorem: For all k, ` ∈ Z+ we have Zk × Z` ∼= Zk` ⇐⇒ gcd(k, `) = 1.

Proof: Let k, ` ∈ Z+. Suppose that gcd(k, `) = 1. Then

ordZk×Z`
(1, 1) = lcm

(
ordZk

(1), ordZ`
(1)
)

= lcm(k, `) = k` .

Since
∣∣Zk × Z`

∣∣ = k` = ordZk×Z`
(1, 1), it follows that Zk × Z` =

〈
(1, 1)

〉
. Thus Zk × Z` is

a cyclic group of order k`, so it is isomorphic to Zk`.
Now suppose that gcd(k, `) = d > 1. Let a ∈ Zk and b ∈ Z`. Let n = ordZk

(a)

and let m = ordZm
(b). Since n

∣∣k and m
∣∣` it follows that lcm(n,m)

∣∣ lcm(k, `), that is

ordZk×Z`
(a, b)

∣∣k`
d , hence ord

Zk×Z`
(a, b) ≤ k`

d < k`. Since Zk×Z` has no elements of order
k`, it cannot be cyclic.

3.39 Theorem: (Classification of Finite Abelian Groups) For every finite abelian group
G 6= {e}, we have

G ∼= Zp1k1 × Zp2k2 × · · · × Zp`k`

for some ` ∈ Z+, some prime numbers p1, · · · , p` and some positive integers k1, · · · , k`. The
primes pi and the exponents ki are uniquely determined if we insist that pi ≤ pi+1 for all
1 ≤ i < ` and that whenever pi = pi+1 we have ki ≤ ki+1.

Proof: We shall omit the proof, which is quite difficult.

3.40 Remark: We shall not use the above theorem in any of our proofs, but it is relevant.
Our main goal in the remainder of this chapter is to determine the structure of the group of
units Un, that is to determine how the group Un decomposes as a product of cyclic groups
of prime power order, in accordance with the Classification of Finite Abelian Groups.
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3.41 Theorem: If n =
∏
pi
ki where p1, · · · , p` are distinct prime numbers and k1, · · · , k`

are positive integers, then we have

Un ∼=
∏̀
i=1

Upiki .

Proof: It suffices to prove that, if k, ` ∈ Z+ with gcd(k, `) = 1 then Uk` ∼= Uk × U`. Let
k, ` ∈ Z+ with gcd(k, `) = 1. In the proof of Theorem 2.50 we showed that the map
F : Uk` → Uk × U` given by F (x) = (x, x) for x ∈ Z is well-defined and bijective. Since
F (xy) = (xy, xy) = (x, x)(x, y) = F (x)F (y) for all x, y ∈ Z, it follows that F is a group
isomorphism.

3.42 Theorem: (The Group of Units Modulo 2k) We have U1 = {1} = 〈1〉 ∼= Z1 and
U2 = {1} = 〈1〉 ∼= Z1 and U4 = {1, 3} = 〈3〉 ∼= Z2, and for k ≥ 3 we have

U2k =
{
± 5j

∣∣ 0 ≤ j < 2k−2
} ∼= 〈−1〉 × 〈5〉 ∼= Z2 × Z2k−2 .

Proof: The statements about U1, U2 and U4 are clear. Let k ≥ 3 and let n = 2k and
consider the group Un. We have |Un| = ϕ(n) = ϕ(2k) = 2k−1. Note that Un is not cyclic
because, in Un we have (−1)2 = 1 and (2k−1 ± 1)2 = 1 so that Un has at least 3 elements
of order 2, but a cyclic group can only have ϕ(2) = 1 element of order 2. Let us calculate
ord(5) (the order of the element 5 in the group Un). By the Euler Fermat Theorem, we
know that 5ϕ(n) = 1 so ord(5)

∣∣ϕ(n), that is ord(5)
∣∣2k−1. Thus ord(5) = 2j for some

1 ≤ j ≤ 2k−1. Since Un is not cyclic, so Un 6= 〈5〉, we cannot have ord(5) = 2k−1 and so
ord(5) = 2j for some 1 ≤ j ≤ 2k−2. We claim that ord(5) = 2k−2. We shall prove this by

showing that 52
k−3 6= 1 and 52

k−2

= 1 in Un, and we shall do this by calculating e2
(
52

j−1
)(

the exponent of 2 in the prime factorization of the number 52
j −1

)
, recursively. We have

52
0

− 1 = 51 − 1 = 4 and e2(4) = 2,

52
1

− 1 = 52 − 1 = 24 and e2(24) = 3,

52
2

− 1 = 54 − 1 = 624 and e2(624) = 4.

Let j ≥ 0 and suppose, inductively, that e2
(
52

j − 1
)

= j + 2, say 52
j − 1 = 2j+2q where q

is an odd positive integer. Then

52
j+1

− 1 =
(
52

j)2 − 1 =
(
2j+2q + 1

)2 − 1 = 22j+4q2 + 2j+3q = 2j+3
(
q + 2j+1q

)
= 2j+3r

where r = q+2j+1q which is an odd positive integer. and so we have e2
(
52

j+1−1
)

= j+3.

By induction, we have e2
(
52

j − 1
)

= j + 2 for all j ≥ 0. Since e2
(
5k−3 − 1

)
= k − 1 and

e2
(
5k−2 − 1

)
= k , it follows that 5k−3 − 1 6= 0 mod 2k and 5k−2 − 1 = 0 mod 2k. Thus

5k−3 6= 1 ∈ Un and 5k−2 = 1 ∈ Un and so ord(5) = 2k−2 as claimed. Since ord(5) = 2k−2

we know that
〈5〉 =

{
5j
∣∣ 0 ≤ j < 2k−2

} ∼= Z2k−2 .

Note that 5i 6= −5j ∈ Un for any i, j ∈ Z because 5i = 1 mod 4 and −5j = −1 mod 4.
Since, in the group Un, which has 2k−1 elements the elements 5j with 0 ≤ j < 2k−2 are
distinct, and the elements −5j with 0 ≤ j < 2k−2 are distinct, and we have 5i 6= 5j for
any i, j, it follows that

Un =
{
± 5j

∣∣ 0 ≤ j < 2k−2
}

with all of the listed elements distinct. Finally, note that the map F : 〈−1〉 × 〈5〉 → Un
given by F (1, 5k) = 5k and F (−1, 5k) = −5k is a group isomorphism.
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3.43 Theorem: (The Group of Units Modulo p) Let p be an odd prime number. Then

Up ∼= Zϕ(p) = Zp−1.
Proof: We have |Up| = ϕ(p) = p − 1. To show that Up is cyclic, we need to show that
there is an element a ∈ Up with ord(a) = p− 1, and we shall do this by showing that for
every positive divisor d

∣∣(p− 1) there are exactly ϕ(d) elements of order d in Up. For each

positive divisor d
∣∣(p− 1), let

Ad =
{
a ∈ Up

∣∣ ord(a) = d
}
.

Note that Up is equal to the disjoint union of the sets Ad and so we have

p− 1 = |Up| =
∑

d|(p−1)
|Ad| .

Recall, from Corollary 3.27, that we also have p− 1 =
∑

d|(p−1)
ϕ(d) and so∑

d|(p−1)

(
ϕ(d)− |Ad|

)
= 0,

so it suffices to show that |Ad| ≤ ϕ(d) for al positive divisors d
∣∣(p − 1) (then all of the

terms in the above sum are non-negative and they add to 0 so they must all be zero).
Let d be a positive divisor of p − 1. To show that |Ad| ≤ ϕ(d) we shall show that either
|Ad| = 0 or |Ad| = ϕ(d). Suppose that |Ad| 6= 0 (so Ad 6= ∅). Choose an element a ∈ Ad,
that is choose a ∈ Ud with ord(a) = d. Then 〈a〉 =

{
1, a, a2, · · · , ad−1

}
with the listed

elements distinct. For each k the element x = ak satisfies xd = akd = (ad)k = 1k = 1, so
the elements 1, a, a2, · · · , ad−1 are the roots in Zp of the polynomial f(x) = xd − 1. On
the other hand, for every x ∈ Ad, since ord(x) = d we have xd = 1, so that x is a root of
the polynomial f(x) = xd − 1, and so every x ∈ Ad must be equal to one of the elements
〈a〉 =

{
1, a, a2, · · · , ad−1

}
. Thus Ad is equal to the set of elements of order d in 〈a〉, and

we know that there are exactly ϕ(d) such elements, so |Ad| = ϕ(d), as required.

3.44 Theorem: (The Group of Units Modulo p2) Let p be an odd prime number. Then

Up2 ∼= Zϕ(p2) = Zp(p−1).

Indeed for a ∈ Z with p 6
∣∣ a, if Up = 〈a〉 then either Up2 = 〈a〉 or Up2 = 〈a+ p〉.

Proof: Let a ∈ Z with p 6
∣∣ a so that a ∈ Up and suppose that Up = 〈a〉 but Up2 6= 〈a〉. We

claim that Up2 = 〈a + p〉. Let n = ord
p2

(a). Since ord
p2

(a)
∣∣ϕ(p2) we have n

∣∣p(p − 1).

Also, since an = 1 mod p2 we have an = 1 mod p so that an = 1 ∈ Up, and so n must
be a multiple of ord

p
(a) = p − 1. Since n

∣∣p(p − 1) and (p − 1)
∣∣n, either n = p − 1 or

n = p(p − 1). Since we are assuming that Up2 6= 〈a〉 we cannot have n = p(p − 1) and so
we must have n = p− 1.

Let m = ord
p2

(a+ p). Note that a = a+ p mod p so we have Up = 〈a〉 = 〈a+ p〉. As

above, we musy have m = p− 1 or m = p(p− 1). We need to show that m 6= p− 1 and we
shall do this by showing that (a+ p)p−1 6= 1 mod p2. By the Binomial Theorem, we have

(a+ p)p−1 = ap−1 + (p− 1)ap−2 · p+ terms involving p2

and so
(a+ p)p−1 = ap−1 − ap−2p mod p2

= 1− ap−2p mod p2

6= 1 mod p2

because p 6
∣∣ a and so p 6

∣∣ ap−2.
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3.45 Theorem: (The group of Units Modulo pk) Let p be an odd prime number and let
k ∈ Z+. Then

Upk ∼= Zϕ(pk) = Zpk−1(p−1).

Indeed for b ∈ Z with p 6
∣∣ b, if Up2 = 〈b〉 then Upj = 〈b〉 for all j ≥ 2.

Proof: Let b ∈ Z with p 6
∣∣ b. Let j ≥ 2 and suppose, inductively, that Upj = 〈b〉. Note that

ϕ(pj) = pj−1(p − 1) and ϕ(pj+1) = pj(p − 1). We need to show that Upj+1 = 〈b〉 and we
shall do this by showing that ord

pj+1(b) = ϕ(pj+1) = pj(p−1). Let m = ord
pj+1(b). Since

p 6
∣∣ b so that b ∈ Upj+1 , we have bϕ(p

j+1) = 1 ∈ Upj+1 and so m
∣∣ϕ(pj+1), that is m

∣∣pj(p−1).
Since bm = 1 ∈ Upj+1 , that is bm = 1 mod pj+1, we also have bm = 1 mod pj , that is
bm = 1 ∈ Upj , and so we must have ϕ(pj)

∣∣m, that is pj−1(p− 1)
∣∣m. Since pj−1(p− 1)

∣∣m
and m

∣∣pj(p−1), it follows that either m = pj−1(p−1) or m = pj(p−1). We need to show

that m 6= pj−1(p− 1) and we shall do this by showing that bp
j−1(p−1) 6= 1 mod pj+1.

Consider bp
k−2(p−1). Since Upj = 〈b〉 we also have Upj−1 = 〈b〉 so bϕ(p

j−1) = 1 ∈ Upj−1 ,

that is bp
j−2(p−1) = 1 mod pj−1. On the other hand, since Upj = 〈b〉 we know that

bp
j−2(p−1) 6= 1 mod pj . Since bp

j−2(p−1) = 1 mod pj−1 and bp
j−2(p−1) 6= 1 mod pj it follows

that
bp

j−2(p−1) = 1 + t pj−1 for some t ∈ Z+ with p 6
∣∣t.

By the Binomial Theorem,

bp
j−1(p−1) =

(
1 + tpj−1

)p
= 1 + t pj + p(p−1)

2 t2p2j−2 + higher order terms in p

so that
bp

j−1(p−1) = 1 + tpj mod pj+1.

Since p 6
∣∣t it follows that bp

j−1(p−1) 6= 1 mod pj+1, as required.

3.46 Theorem: (The Structure of The Group of Units Modulo n)

(1) If n =
∏
pi
k1 where p1, · · · , p` are distinct primes and k1, · · · k` ∈ Z+ then

Un ∼=
∏̀
i=1

Upiki .

(2) We have U1
∼= U2

∼= Z1 and U4
∼= Z2 and for k ≥ 3 we have U2k

∼= Z2 × Z2k−2 .
(3) If p is an odd prime and k ∈ Z+ then Upk ∼= Zpk−1(p−1).

Proof: This is just a summary of the 5 previous theorems.

3.47 Exercise: Find the number of elements of each order in the group U980.

3.48 Definition: For a finite abelian group G, the universal exponent of G, denoted
by λ(G), is the maximum of the orders of the elements in G. When G = Un, the universal
exponent is also called the Carmichael exponent of n and we write λ(n) = λ(Un).

3.49 Note: By the above Structure Theorem, when n =
∏
pi
ki , where p1, · · · , p` are

distinct primes and k1, · · · , k` ∈ Z+, we have

λ(n) = lcm
(
λ(p1

k1), · · · , λ(p`
k`)
)

with λ(2) = ϕ(2) = 1, λ(4) = ϕ(4) = 2, and λ(2k) = 1
2ϕ(2k) = 2k−2 for k ≥ 3, and with

λ(pk) = ϕ(pk) = pk−1(p − 1) when p is an odd prime and k ∈ Z+. Note that we can
improve the Refined Euler-Fermat Theorem by replacing ψ(n) by λ(n) and that this is the
best possible improvement.
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