Chapter 3. The Group of Units Modulo N

3.1 Note: For a € Z,, when we make a list of powers a” for k € N, the list must eventually
repeat (because Z, is finite). In this chapter we study this repetition and consider the
problem of determining how fast the list of powers of a repeats in Z,,.

3.2 Example: If today is Tuesday, then what day will it be in 2!°° days (under the
unreasonable assumption that our solar system still exists in 2!%° days)?

Solution: In Z; we have
kK 0 1 2 3 4 5

2k 1 2 4 1 2 4

and we see that the list of powers of 2 repeats every 3 terms beginning with 2° = 1. Since
100 = 1 mod 3 it follows that 2! = 2! = 2 mod 7. Thus if today is Tuesday, then in 200
days it will be Thursday.

3.3 Example: If it is currently 2:00 pm, then what time will it be in 2'9 hours?

Solution: In Zs4 we have
k 01 2 3 4 5
1

ok 2 4 8 16 8

and we see that the list of powers of 2 repeats every 2 terms beginning with 22 = 8. Since
100 = 0 = 4 mod 2 we must have 210 = 2% = 16 mod 24. If it is currently 2:00 pm, then
in 2190 hours it will be 6:00 am.

3.4 Example: Here are a few tables showing the powers a*, until all lists of powers repeat,
in Z,, for various values of n.

ZQ Zg Z4 ZE)
o1 s r 01 2 3 4 11012345
E 0 1 2 ) % 1.0 0 0 0 0k100000
k 0 1.0 0 0 k 111111
0 1.0 0 k 11111 "
sl 111l e, g 21243102
28 1 2 1 2 ¢ 1 313 1 3134213
4k 1 41 41 4
ZLg L7 Lg
01 2 3 k01 23 45 67 B0 l2s 4
* 10000000 O 100000
0k 1.0 0 0 ¥ 111111
11111111
1111 2 1.2 40 0 0
281 2 41 2 41 2
k k
28 1 2 4 2 k 3 1313 1 3
k 3 1326 45 1 3 k
3 1333 v ] 49149014 ¥ 140000
k k
4k 1 4 4 4 K 5 1 5 1 5 1 5
K 5 1 5 46 2 3 15 k
* 15 15 o ] 6161616 & 164000
1T 17 107

As an exercise, make a few more such tables, search for patterns, and make some conjec-
tures. One conjecture that you might make is that, when n is a prime number, all of the
rows in the table repeat every n — 1 terms (see Fermat’s Litle Theorem, below) and that,
when 7 is a composite number, the rows repeat faster (see the Euler-Fermat Theorem).
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3.5 Theorem: (Fermat’s Little Theorem) Let p be a prime number.

(1) For all a € U, we have a?~! = 1. Equivalently, for all a € Z with ged(a,p) = 1 we have
a?~!' =1 mod p.
(2) For all a € Z,, we have a? = a. Equivalently, for all a € Z we have a” = a mod p.

Proof: To prove Part (1), let a € U, or, equivalently, let a € Z with ged(a,p) = 1. Define
F :U, = Uy, by F(z) = ax (note that when @ and x are units in a ring, the product ax is
also a unit with (ax)~! = 271a™!, so the map F is well-defined). Notice that F is bijective

with inverse G : U, — U, given by G(z) = a~'z. Since F is bijective, it follows that the

list of elements la, 2a,3a, - - -, (p—1)a is a permutation (that is a a re-orderring) of the list
1,2,3,---,p—1. Thus in U, we have
la-2a-3a-...-(p—1a=1-2-3-...-(p—1)

(p—Dla"! = (p-1)!
Multiply both sides by the inverse of (p — 1)! in U, to get a?~! =1 in U,, as required.
To prove Part (2), let a € Z be arbitrary. If gcd(a,p) = 1 then by Part (1) we have
a?~1 = 1 mod p and so we can multiply by a to get a? = a mod p. If gcd(a, p) # 1 then since
p is prime it follows that p|a, and so we have a = 0 mod p hence a? = 0P = 0 = a mod p.
In either case, we have a? = a mod p, as required.

3.6 Example: Show that 27 + 370 is not prime.

Solution: Our strategy here is to calculate 27° + 370 mod p for various primes p. If we find
a prime p for which 27 + 370 = 0 then we know that p|(27° 4+ 27°) and hence 270 + 37°
is not prime. In Zs we have 270 + 370 = 070 4170 = 1 #£ 0. In Z3, we have 270 + 370 =
(—=1)™ + 07 = 1 # 0. In Zs, by Fermat’s Little Theorem the list of powers of 2 and 3
repeats every 4 terms, and 70 = 2 mod 4, so we have 270 + 370 =22 4+ 32 =449 =3 #£0.
In Z~, the list of powers of 2 and 3 repeats every 6 terms, and 70 = 4 mod 6, so we have
2704370 = 24134 = 42492 =42422 =244 =6 #0. In Zq1, the list of powers of 2 and 3
repeats every 10 terms, and 70 = 0 mod 10, so we have 270 +37 =204+3° =14+1 =2 #£ 0.
In Zi3, the list of powers of 2 and 3 repeats every 12 terms, and 70 = 10 mod 12, so we
have 270 4370 =210 1310 —94.24.922 1 33.33.31 =3.3.4+1-1-3=10+3 = 0. Since
270 + 3™ = 0 € Zy3 it follows that 13[(27° + 3™) in Z, and so 27° + 370 is not prime.

3.7 Theorem: (The Euler-Fermat Theorem) Let n € Z%. For all a € U, we have
a¥™) = 1. Equivalently, for all a € Z with gcd(a,n) = 1 we have a®™ = 1 mod n.

Proof: Let a € U, or, equivalently, let a € Z with ged(a,n) = 1. Let ¢ = p(n) and let
x1,T2, -, %, be alist of all the elements in U,,. Define F' : U,, = U,, by F(z) = ax. Then
F is bijective with inverse G : U,, — U, given by G(x) = a~'x. Since F is bijective, it
follows that the list axq, axs, - -, ax, is a permutation of the list z1,z2, -, 2,, and so in

U,, we have

aajl . ax2 . . aa’/'cp — xl . x2 ..... x@
© ©
( H )a‘f’ = I =

i=1 i=1
Multiply both sides by the inverse of H x; in U, to get a¥ =1 in U,, as required.

i=1
3.8 Remark: For any finite abelian group G, the above proof is valid and it shows that
al¢l = e for all @ € G. The same result holds even in non-abelian finite groups, but a

different proof is required.



3.9 Theorem: (The Refined Euler-Fermat Theorem) Let n = [[ p;** where py,---,py are
distinct prime numbers and ky,---,ky € ZT. Let k = r(n) = max{ky, ko, -+, k¢} and let
¥ =1(n) = lem(p(pr ), o(p2*), -+, 0(pe™)).

(1) For all a € U,, we have a¥ = 1.

(2) For all a € Z,, we have a"T% = a".

Proof: To prove Part 1, suppose that a € U, or, equivalently, let a € Z with ged(a,n) = 1.
Fix an index 7. Since ged(a,n) = 1 we have p; )(a so that a € U, x;. By the Euler-Fermat

Theorem, we have a?®") = 1 mod pi¥. Tt follows that a™ = 1 mod p;* for every multiple
m of ¢(p;*) and, in particular, a¥ = 1 mod p;*:. Since a¥ = 1 mod p;* for all indices i,
it follows that a¥ = 1 mod n, by the Chinese Remainder Theorem.

To prove Part 2, let a € Z be arbitrary. Fix an index i. Case 1: suppose that p;|a.
Then p;*|a* so that a* = 0 € L, hence o/ = 0 € L, i for all j > k; and so, in
particular, a® = a"t¥ =0 € Zyp,k; - Case 2: suppose that pi/fa. Then we have a € U, x,,

hence a?®") =1 ¢ U,,x: by the Euler-Fermat Theorem, and so a™ =1 € U, ; for every
multiple m of ¢(p;*?). In particular, we have a¥ =1 € U,,x: and hence a"tY =a" € Up,wi-
In either case, we have a"T¥ = a” mod p;* in Z. Since a"t% = a” mod p;* for all indices
i, it follows from the Chinese Remainder Theorem that a®*% = a” mod n.

3.10 Remark: Part 2 of the Refined Euler-Fermat Theorem implies that for a € Z,,, the
list of powers a”* repeats every v terms beginning with the term a”. For example, when
n =540 = 22 3% .5 we have k(n) = max{2,3,1} = 3 and ¢ = lem(¢(2?), ¢(3?),0(5)) =
lem(2,18,4) = 36 and so the list of powers repeats every 36 terms beginning with a3.

For some particular values of a, the list of powers may repeat more quickly (for example
when a = 1 the list repeats every term and when a = n — 1 = —1 the list repeats every
2 terms). For some particular values of n, the list of powers a* repeats more quickly for
every a € Z,. Indeed, we shall see below that when n = 8k the powers a* repeat every
/2 terms for all a € Z,,. For example, as you can see from the last table in Example 3.4,
although 1(8) = 4, in Zg the powers a* repeat every 2 terms beginning with a3.

In order to obtain a deeper understanding of the period of repetition of powers modulo
n, we shall study the structure of the group of units modulo n.

3.11 Notation: When G is an additive group, (meaning that the operation is addition,
which is commutative, and the identity element is denoted by 0) for a € G and k € Z* we
write 0a = 0, ka = a+a+a+---+a with k terms in the sum, and (—k)a = —(ka). Verify,
as an exercise, that for a,b € G and k, ¢ € Z we have (—k)a = —(ka) and (k+/¢)a = ka+/{a
and k(a + b) = ka + kb.

When G is a multiplicative group (meaning that the operation is multiplication and
the identity element is denoted by e or 1 or I), we write a’ =e, and a* =a-a-a-... a
with k terms in the product, and a=* = (a*)~!. Verify, as an exercise, that for a,b € G
and k, ¢ € Z we have a % = (a71)* and a*** = a*a’ and if G is abelian then (ab)* = a*b*.

3.12 Note: When G is a finite additive group and a € G, the list of multiples of a must
eventually repeat, that is we must have ka = fa for some 0 < k < £. When ka = fa with
0 <k < /¥, wehave ({ —k)a = fa — ka = 0, and so there exists m € Z+ such that ma = 0.
Similarly, when G is a finite multiplicative group and a € G, the list of powers a* must
eventually repeat and there exists m € Z* such that a™ = e.



3.13 Definition: Let G be a finite group and let a € G. The order of the group G,
denoted by |G|, is the number of elements in G. When G is an additive group, the order
of a in G is the smallest m € Z* such that ma = 0. When G is a multiplicative group,
the order of a in G is the smallest m € Z™ such that a™ = e. In either case, the order of
a in G is denoted by ord(a) or ord_(a). When G = U,, we also write ord_(a) as ord, (a).

3.14 Definition: A subgroup of a group G is a subset H C G which is also a group
using the same operation which is used in G.

3.15 Definition: Let G be a finite group and let a € G. When G is additive, we let
(a) = {ka|k € Z} € G. When G is multiplicative, we let (a) = {a* |k € Z} C G. In
either case, verify that (a) is a subgroup of G. The group (a) is called the cyclic group
in G generated by a. When G = (a) for some a € G we say that G is cyclic.

3.16 Example: The additive group Z,, is a cyclic group generated by the element 1.

3.17 Example: The multiplicative group C,, = {z € C*| 2" = 1} is a cyclic group in C*

which is generated by the element o = e? 27/,

3.18 Example: We have Uyg = {1,5,7,11,13,17}. In Uys, we have

E 01 2 3 4 5 6
561 5 7 17 13 11 1

so ord,¢(5) = 6, and we have (5) = {1, 5,7,17,13, 11} = Uss, so that Uig is cyclic.

3.19 Theorem: (Elements of a Cyclic Group) Let G be a finite group, let a € G, and let
m = ord_(a). Then

(1) If G is additive then for k,{ € 7Z we have ka = la <= k = { mod m.

(2) If G is multiplicative then for k,{ € 7 we have a* = a* <= k = ¢ mod m.

Proof: We prove Part 2 (the proof of Part 1 is similar but uses additive notation). Let
k,¢ € 7. Suppose that a* = a’. Note that a*~* = a‘a™ = a’(a*)™! = d*(d*)7! = e.
Write £ — k = gm + 7 with 0 < r < n. Then e = a’~% = a9™*" = (¢™)%" = a". Since
ord(a) = m we must have r = 0. Thus ¢ — k = gm hence £k = ¢ mod m. Suppose,
conversely, that k = ¢ mod m, say k = £+ gm. Then we have a* = a/*9" = a*(a™)? = a’.

3.20 Corollary: Let G be a finite group, let a € G, and let m = ord (a). Then

(1) If G is additive then for k € Z we have ka =0 <= mlk.
(2) If G is multiplicative then for k € Z we have ¥ = e < mlk.

3.21 Corollary: Let G be a finite group, let a € G, and let m = ord (a).

(1) If G is additive then (a) = {0, a,2a,3a,---,(m—1)a} with the listed elements distinct.
(2) If G is multiplicative then (a) = {1, a,a?,--- ,am_l} with the listed elements distinct.

3.22 Corollary: Let G be a finite group and let a € G. Then ord(a) = |(a)|.



3.23 Theorem: (Subgroups of a Cyclic Group) Let G be finite group, let a € G, and let
m = ord (a).
G

(1) If G is additive then every subgroup of (a) is of the form (ka) for some k € Z and for
k.0 € Z we have (ka) = (la) <= gcd(k,m) = ged(¢,m). It follows that the distinct
subgroups of (a) are the groups (da) = {O,da, 2da, -+, (m — d)a} where d is a positive
divisor of m.

(2) If G is multiplicative then every subgroup of (a) is of the form (a*) for some k € Z and
for k,¢ € Z we have (a*) = (a') <= ged(k,n) = ged(l,n). It follows that the distinct
subgroups of {a) are the groups {a?) = {e, a®,a, ... ,am*d} where d is a positive divisor
of m.

Proof: We prove Part 2 (the proof of Part 1 is similar but uses additive notation). First
we show that every subgroup of (a) is cyclic. Let H be a subgroup of (a). If H = {e}
then H = (e), which is cyclic. Suppose that H # {e}. Since H C (a) = {a* |k € Z}
and H # {e} we can choose 0 # ¢ € Z such that ' € H and, since we also have
a”t = (a*)~! € H, it follows that for j = |i| we have j € ZT and o/ € H. Let k be the
smallest positive integer such that a* € H. We claim that H = (a*). Since a* € H and
H is a group, it follows that (a*)? € H for all j € Z and so (a*) C H. Let a’ € H, where
¢ € 7. Write £ = kq +r with 0 < r < k. Then a’ = a¥9a” so we have a" = af(a*?)~! € H.
By our choice of k& we must have r = 0 , so £ = gk and hence a’ € (a*). Thus H C (a*).
Note that for any divisor dim we have (a?) = {a07ad, a*, ... am_d} with the listed
elements distinct so that ord(a?) = 2. We claim that (a*) = (a?) where d = ged(k, m).
Since de: we have a* € (a?) so (a*) C (a?). Choose s,t € Z so that ks + mt = d. Then
a? = a"stmt = (aF)s(a™m)t = (a*)® € () and so (a?) C (a*). Thus (a*) = (a?), as
claimed. Now if (a*) = (a*) and d = gcd(k,m) and ¢ = ged(¢,m) then (a?) = (a¥) =
(a’) = (a°) and so |[(a®)| = [(a®)|, that is % = 2, and so d = c¢. Conversely, if d =
ged(k,m) = ged(€,m) = c then we have (a*) = (a?) = (a*).
3.24 Corollary: (Orders of Elements in a Cyclic Group) Let G be a finite group, let
a € G, and let m = ord_(a).

(1) If G is additive then for k € Z we have ord_(ka) = el -
(2) If G is multiplicative then for k € Z we have ord (a¥) = (k) -

3.25 Corollary: (Generators of a Cyclic Group) Let G be a finite group, let a € G, and
let m = ord_(a). Then

(1) If G is additive then for k € Z we have (ka) = (a) <= ged(k,m) = 1.
(2) If G is multiplicative then for k € Z we have (a*) = (a) <= gcd(k,m) = 1.

3.26 Corollary: (The Number of Elements of Each Order in a Cyclic Group) Let G be

a finite group, let a € G, and let m = ord_(a). Then the order of each element in (a) is a

positive divisor of m and, for each positive divisor d|m, the number of elements in (a) of
order d is equal to ¢(d).

3.27 Corollary: For n € Z* we have _ ¢(d) = n.
d|n

3.28 Exercise: To illustrate the above corollaries, for each subgroup of Z2, list all of the
elements in the subgroup and circle all the elements which generate the subgroup. Then
do the same for the group Ci3 = (o) = {ak | ke Zlg} where a = e?™/6,



3.29 Definition: Let GG be a group using the operation * and let H be a group using the
operation x. An isomorphism from G to H is a bijective function ¢ : G — H such that
d(a*b) = ¢(a) x ¢(b) for all a,b € G. Note that when ¢ : G — H is an isomorphism, the
inverse map ¥ = ¢~ ! : H — @ is also an isomorphism because, given c¢,d € H, if we let
a =(c) and b = 9(d) so that ¢ = ¢(a) and d = ¢(b), then we have

(e x d) =P (d(a) x ¢(b)) = P(p(axb)) = axb=(c)*(d).

When there exists an isomorphism from G to H we say that G and H are isomorphic
and we write G = H.

3.30 Remark: In algebra, isomorphic groups are considered to be essentially equivalent.

3.31 Example: Let G be a finite group, let a € G, and let m = ordG (a). Then the map
¢ : Zn, — (a) given by ¢(k) = a* is an isomorphism, so we have (a) = Z,,. Thus all cyclic
groups of order m are isomorphic.

3.32 Theorem: Let ¢ : G — H be an isomorphism of finite groups. Then
(1) Bleg) = eu,

(2) p(a™1) = ¢(a)~! for all a € G,

(3) ¢(a*) = ¢p(a)* for all a € G and all k € Z,

(4) ord_(a) = ord (¢(a)) for all a € G, and hence

(5) G and H have the same number of elements of each order.

Proof: To prove Part 1 note that ¢(eg) x ¢(eq) = d(e. *xe.) = ¢(e. ), then multiply both
sides by the inverse of ¢(e,) in H to get ¢(e,) = em. To prove part 2, note that for a € G
we have ¢(a) X p(a™! = ¢p(axa™1) = ¢(e,) = ¢e,,, then multiply both sides on the left by
the inverse of ¢(a) in H to get ¢(a™!) = ¢(a)~!. Part 3 holds for k = 0 by Part 1, and it
holds for £ > 0 by induction, and it holds for k£ < 0 by Part 2. Part 4 then follows because
for a € G we have a* = e, <= ¢(a*) = ¢(e,) <= ¢(a)* = e,,. Part 5 then follows
because, by Part 4, for each d € Z™ the map ¢ : G — H restricts to give a bijective map
from the set {a € G| ord _(a) = d} to the set {b € H | ord (b) = d}.

3.33 Remark: There is a converse to Part 5, for finite abelian groups, which is consid-
erably more difficult to prove: if G and H are finite abelian groups which have the same
number of elements of each order then G = H.

3.34 Definition: If G and H are groups with identities e, and e, , then the product
Gx H={(a,b)lacGbec H}

is a group under the operation given by (a,b)(c, d) = (ac, bd) with identity e
More generally, if G1,Go, - - -, G,, are groups then the product

GxH — (6G76H>'

HG,L:Gl X Gy x - xG, = {(al,CLQ,"',CLn)‘CLi GGZ}
=1

is a group under the operation (ai,as,- -, a,)(b1,ba, -+, by) = (a1b1,a2ba, - -, anby,).

3.35 Example: For groups GG, H, K and L, verify as an exercise that
(1) G x{e} =G,

(2) G x H= H x G,
B)(GxH)xK=Gx(HxK)=2GxHxK, and

(4)if G2 K and H = L then G x H= K x L.



3.36 Note: Note that when G and H are groups we have |G x H| = |G||H|. Also note
that for a € G and b € H we have

ord  (a,b) = lcm(ordG (a), ord (b)) .
Indeed if ord_(a) =n and ord (b) = m then for k € Z we have

(a,b)F =e &

oxn = (d"0F) = (e,,e,) = (a® = e, and v = €y)

— n‘k and m|k’) <= k is a common multiple of n and m.

3.37 Example: Find the number of elements of each order in the group Zg x Zs.
Solution: We use Corollary 3.26 to determine the number of elements of each order in Zg

and in Zi5 then we use Note 3.36 to calculate ord(a,b) for a € Zg and b € Z;5.
ord(a) # ofa ord(b) # ofb ord(a,b) +# of (a,b)

Summary
1 1 1 1 1 1
g i g Z ord(a,b) # of (a,b)
15 8 15 8 1 1
3 2 1 1 3 2 3 8
3 2 3 4 5 4
5 4 15 8 9 18
15 8 15 16 15 32
9 6 1 1 9 6 45 72
3 2 9 12
5 4 45 24
15 8 45 48

3.38 Theorem: For all k,{ € Z+ we have Zy X Ly 2 Zyy < ged(k,f) = 1.
Proof: Let k,¢ € Z". Suppose that ged(k, ) = 1. Then
Zxz, (L) = lcm(ordzk(l), ordze(l)) = lem(k, 0) = k¢.

Since |Zy, x Zy| =kl = ord, _, (1,1), it follows that Zy x Z¢ = ((1,1)). Thus Zy, x Zy is
a cyclic group of order k¢, so it is isomorphic to Zy,.
Now suppose that ged(k,{) = d > 1. Let a € Zj and b € Zy. Let n = ord, (a)

and let m = ord, (b). Since n|k and m|f it follows that lem(n,m)|lem(k,£), that is

ord, ., (a, b)}%, hence ord

k¢, it cannot be cyclic.

ord

2, %2, (@ D) < % < k{. Since Zj, x Z¢ has no elements of order

3.39 Theorem: (Classification of Finite Abelian Groups) For every finite abelian group
G # {e}, we have

G= Zplkl X ZPQkQ X X kae
for some ¢ € 7T, some prime numbers p1, - - -, p; and some positive integers k1, - - -, ky. The
primes p; and the exponents k; are uniquely determined if we insist that p; < p;y1 for all
1 <i < ¢ and that whenever p; = p;+1 we have k; < k;11.

Proof: We shall omit the proof, which is quite difficult.

3.40 Remark: We shall not use the above theorem in any of our proofs, but it is relevant.
Our main goal in the remainder of this chapter is to determine the structure of the group of
units U, that is to determine how the group U,, decomposes as a product of cyclic groups
of prime power order, in accordance with the Classification of Finite Abelian Groups.
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3.41 Theorem: Ifn = szk where p1,- - -, py are distinct prime numbers and k1, -- -, ky
are positive integers, then we have

U, = U, x;.

pi

=N

7

Proof: It suffices to prove that, if k,¢ € ZT with ged(k,£) = 1 then Uy, = Uy x Uy. Let
k.t € Z* with ged(k,f) = 1. In the proof of Theorem 2.50 we showed that the map
F : Uk — Uy x Uyp given by F(z) = (z,z) for x € Z is well-defined and bijective. Since
F(zy) = (zy,zy) = (z,2)(x,y) = F(x)F(y) for all z,y € Z, it follows that F' is a group
isomorphism.

3.42 Theorem: (The Group of Units Modulo 2¥) We have U; = {1} = (1) = Z, and
Uy ={1} = (1) 2 Z, and Uy = {1,3} = (3) = Zo, and for k > 3 we have

Upe = {£5|0< 5 <2872} 2 (1) x (5) X Zy X Zou-—2.
Proof: The statements about Uy, Us and Uy are clear. Let k > 3 and let n = 2* and
consider the group U,,. We have |U,| = p(n) = ¢(2F) = 2¥~1. Note that U, is not cyclic
because, in U,, we have (—1)2 =1 and (2"~! £ 1)? = 1 so that U, has at least 3 elements
of order 2, but a cyclic group can only have ¢(2) = 1 element of order 2. Let us calculate
ord(5) (the order of the element 5 in the group U,). By the Euler Fermat Theorem, we
know that 5#(") = 1 so ord(5)|¢(n), that is ord(5)[25~1. Thus ord(5) = 2/ for some
1 <j < 2kL Since U, is not cyclic, so U,, # (5), we cannot have ord(5) = 2*~! and so
ord(5) = 27 for some 1 < j < 2k=2 We claim that ord(5) = 2k=2_ 'We shall prove this by
showing that 52° " # 1 and 52° ~ = 1 in U, and we shall do this by calculating e» (5% -1)
( the exponent of 2 in the prime factorization of the number 52’ — 1), recursively. We have

52 —1=5"—1=4 and es(4) = 2,
52 — 1 =52 —1=24 and e5(24) = 3,
52° — 1 =5% — 1 = 624 and e5(624) = 4.

Let 5 > 0 and suppose, inductively, that e (52j — 1) =74 2, say 57 — 1= 2724 where ¢
is an odd positive integer. Then

52j+1 - (52j)2 - (2j+2q+ 1)2 1= 22j+4q2 +2j+3q — 2j+3(q+2j+1q) _ 2j+37“

where r = ¢+ 27171¢ which is an odd positive integer. and so we have e, (52J+1 - 1) =j+3.
By induction, we have es (52J — 1) = j+ 2 for all 7 > 0. Since es (5’“‘3 — 1) =k—1and
e2(5F72 — 1) = k , it follows that 573 — 1 £ 0 mod 2* and 5*72 — 1 = 0 mod 2*. Thus
5F=3 £1€ U, and 5*72 =1 € U,, and so ord(5) = 2¥=2 as claimed. Since ord(5) = 2~~2
we know that

(5)y ={5|0<j<2"7%} = Zois.

Note that 5° # —57 € U,, for any i,j € Z because 5° = 1 mod 4 and —5/ = —1 mod 4.
Since, in the group U,,, which has 2*~1 elements the elements 5/ with 0 < j < 22 are
distinct, and the elements —57 with 0 < j < 2¥=2 are distinct, and we have 5¢ # 57 for

any 1, j, it follows that '
Uy={+5]0<j<2"7?}

with all of the listed elements distinct. Finally, note that the map F : (—1) x (5) — U,
given by F(1,5%) = 5% and F(—1,5%) = —5* is a group isomorphism.



3.43 Theorem: (The Group of Units Modulo p) Let p be an odd prime number. Then
Up = Zp(p) = Lp-1-

Proof: We have |U,| = ¢(p) = p — 1. To show that U, is cyclic, we need to show that
there is an element a € U, with ord(a) = p — 1, and we shall do this by showing that for
every positive divisor d|(p — 1) there are exactly ¢(d) elements of order d in U,. For each
positive divisor d!(p — 1), let

Ag={acU,| ord(a) = d}.
Note that U, is equal to the disjoint union of the sets A, and so we have

p—1=[Upl= > [Adl.

dl(p—1)
Recall, from Corollary 3.27, that we also have p— 1= >  ¢(d) and so
dl(p—1)
> (v(d) —|Adl) =0,
d|(p—1)

so it suffices to show that [A4| < ¢(d) for al positive divisors d|(p — 1) (then all of the
terms in the above sum are non-negative and they add to 0 so they must all be zero).
Let d be a positive divisor of p — 1. To show that |A4| < ¢(d) we shall show that either
|Ag| = 0 or |Agq| = ¢(d). Suppose that |A4| # 0 (so Ag # (). Choose an element a € Ay,
that is choose a € Uy with ord(a) = d. Then (a) = {1,a,a?, ---,a% '} with the listed
elements distinct. For each k the element x = a satisfies ¢ = a*? = (a?)¥ = 1¥ =1, s0
the elements 1,a,a?,---,a%" ! are the roots in Z,, of the polynomial f(z) = z¢—1. On
the other hand, for every z € Ay, since ord(z) = d we have x¢ = 1, so that x is a root of
the polynomial f(x) = 2% — 1, and so every = € Ay must be equal to one of the elements
(a) = {1,a,a®---,a%'}. Thus A, is equal to the set of elements of order d in (a), and
we know that there are exactly ¢(d) such elements, so |A4| = ¢(d), as required.

3.44 Theorem: (The Group of Units Modulo p?) Let p be an odd prime number. Then
Up = ZLp(p2) = Lip(p-1)-

Indeed for a € Z with p fa, if U, = (a) then either Uy = (a) or Uy = (a + p).

Proof: Let a € Z with p fa so that a € U, and suppose that U, = (a) but U,z # (a). We
claim that Up2 = (a +p). Let n = ord ,(a). Since ord , (a)|p(p?) we have n|p(p — 1).
Also, since a™ = 1 mod p? we have a” = 1 mod p so that a® =1 € Uy, and so n must
be a multiple of ordp(a) = p— 1. Since n}p(p — 1) and (p — 1)}n, either n = p—1 or
n = p(p — 1). Since we are assuming that U,> # (a) we cannot have n = p(p — 1) and so
we must have n = p — 1.

Let m = ord ,(a + p). Note that @ = a4+ p mod p so we have U, = (a) = (a +p). As
above, we musy have m =p—1 or m = p(p — 1). We need to show that m # p — 1 and we
shall do this by showing that (a + p)?~! # 1 mod p?. By the Binomial Theorem, we have

(a+p)P P =a’"' 4+ (p—1)aP"%-p+ terms involving p

and so
(a+p)P ' =aP™! —a’?p mod p?

=1—a??p mod p?
# 1 mod p?

because p*a and so pkap*Q.



3.45 Theorem: (The group of Units Modulo p*) Let p be an odd prime number and let
k € ZT. Then

Upn o(p*) = Lpr—1(p—1)-

Indeed for b € Z with p b, if U,z = (b) then U,; = (b) for all j > 2.
Proof: Let b € Z with p *b. Let j > 2 and suppose, inductively, that U,; = (b). Note that
o) =p"(p—1) and o(p’*t) = p’(p — 1). We need to show that U,i+1 = (b) and we
shall do this by showing that ord ;. (b) = o(p’™) =pi(p—1). Let m = ord pi+1(b). Since
p)(b so that b € U,;+1, we have b =1eU pi+1 and so m|g0 (p*1), that is m‘pﬂ p—1).
Since b™ = 1 € U,pi+1, that is b™ = 1 rnod p]“, we also have b™ = 1 mod p?, that is
b"™ =1 € U,;, and so we must have ¢(p’ ‘m that is p/~1(p — ‘m Since p? ~1(p — 1) ‘m
and m|p? (p— 1), it follows that either m = p/~!(p—1) or m = pJ (p—1). We need to show
that m # p’~1(p — 1) and we shall do this by showing that b?’ ‘-1 # 1 mod p/ 1.
Consider b*"“(»=1_ Since U »i = (b) we also have U,;-1 = (b) so pe D =1 ¢ Upi-1,
that is 5’ =1 = 1 mod pi~ 1. On the other hand, since Uy = (b) we know that
b’ 2 (=1 £ 1 mod p?. Since P’ ®=1) =1 mod p?~1 and 5?’  P=D £ 1 mod p/ it follows
that

=7

p’ Pe-1) — +tp’~! for some t € ZT with pj/t.
By the Binomial Theorem,
pr’ 1) (L+tp ) =1+tp + ”(Z’T_l) t2p* =2 + higher order terms in p

so that ,
- — +tp’ mod p 1.

Since p ¢ it follows that v’ (=1 £ 1 mod pi*L, as required.

3.46 Theorem: (The Structure of The Group of Units Modulo n)
(1) If n = [ p:** where p1,---,pe are distinct primes and ky,---ky € Z* then

‘
Un = [T U,k
i=1
(2) We have Uy =2 Uy 2 71 and Uy = 7y and for k > 3 we have Uy = Zg X Ligk—2.
(3) If p is an odd prime and k € Z" then Uk = Zyk-1(,_1)-
Proof: This is just a summary of the 5 previous theorems.
3.47 Exercise: Find the number of elements of each order in the group Uggg.

3.48 Definition: For a finite abelian group G, the universal exponent of G, denoted
by A(G), is the maximum of the orders of the elements in G. When G = U,,, the universal
exponent is also called the Carmichael exponent of n and we write A(n) = A(U,,).

3.49 Note: By the above Structure Theorem, when n = []p;*:, where py,---,p, are
distinct primes and kq,---,ky € ZT, we have

A(n) = lem(A(p1 ™), -+, A(pe™))
with A(2) = ¢(2) = 1, A(4) = ¢(4) = 2, and \(2%) = ¢(2F) = 2872 for k > 3, and with
AP*) = ¢(p*) = p*~1(p — 1) when p is an odd prime and k¥ € ZT. Note that we can
improve the Refined Euler-Fermat Theorem by replacing 1(n) by A(n) and that this is the
best possible improvement.
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