2.1 Definition: A (commutative) **ring** (with 1) is a set R with two elements $0, 1 \in R$ (usually assumed to be distinct) and two binary operations, $+, \times : R \times R \to R$ (usually called *addition* and *multiplication*) where, for $a, b \in R$, we write +(a, b) as a + b and we write $\times(a, b)$ as $a \times b$ or $a \cdot b$ or ab, which satisfy the following axims.

R1. + is associative: (a + b) + c = a + (b + c) for all $a, b, c \in R$,

R2. + is commutative: a + b = b + a for all $a, b, c \in R$,

R3. 0 is an additive identity: a + 0 = a for all $a \in R$,

R4. every $a \in R$ has an additive inverse: for all $a \in R$ there exists $b \in R$ such that a + b = 0,

R5. × is associative: (ab)c = a(bc) for all $a, b, c \in R$,

R6. × is commutative: a * b = b * a for all $a, b \in R$,

R7. 1 is a multiplicative identity: $a \times 1 = a$ for all $a \in R$, and

R8. × is distributive over +: a(b+c) = ab + ac and (a+b)c = ac + bc for all $a, b, c \in R$.

For $a \in R$ we say that a is **invertible** (or that a is a **unit**) when there is an element $b \in R$ with ab = 1. A **field** is a commutative ring F in which $0 \neq 1$ and

R9. every non-zero element is a unit: for all $0 \neq a \in F$ there exists $b \in F$ such that ab = 1.

2.2 Example: \mathbb{Z} is a ring, and \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields.

2.3 Example: Let $d \in \mathbb{Z}$ be a non-square (that is $d \neq s^2$ with $s \in \mathbb{Z}$). When d > 0 we have $\sqrt{d} \in \mathbb{R}$ and when d < 0 we write $\sqrt{d} = \sqrt{|d|} i \in \mathbb{C}$. Let

$$\mathbb{Z}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \,\middle|\, a, b \in \mathbb{Z}\right\},\\ \mathbb{Q}\left[\sqrt{d}\right] = \left\{a + b\sqrt{d} \,\middle|\, a, b \in \mathbb{Q}\right\}.$$

Verify that $\mathbb{Z}[\sqrt{d}]$ is a ring and that $\mathbb{Q}[\sqrt{d}]$ is a field. When d > 0 so $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{Q}[\sqrt{d}] \subseteq \mathbb{R}$, we say that $\mathbb{Z}[\sqrt{d}]$ is a **real quadratic ring** and $\mathbb{Q}[\sqrt{d}]$ is a **real quadratic field**, and when when d < 0 so $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{Q}[\sqrt{d}] \subseteq \mathbb{C}$ and we say that $\mathbb{Z}[\sqrt{d}]$ is a **complex quadratic ring** and $\mathbb{Q}[\sqrt{d}]$ is a **complex quadratic field**. The ring $\mathbb{Z}[\sqrt{-1}] = \mathbb{Z}[i]$ is called the ring of **Gaussian integers**.

2.4 Example: Many students will be familiar with the ring \mathbb{Z}_n of integers modulo n. Later in this chapter, we shall define the ring \mathbb{Z}_n and show that \mathbb{Z}_n is a field if and only if n is prime.

2.5 Remark: When R is a commutative ring, the set R[x] of polynomials with coefficients in R is a commutative ring and, when $n \in \mathbb{Z}$ with $n \geq 2$, the set $M_n(R)$ of $n \times n$ matrices with entries in R is an example of a *non-commutative* ring (Axiom R6 does not hold).

2.6 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

(1) the additive identity element 0 is unique in the sense that if $e \in R$ has the property that a + e = a for all $a \in R$ then e = 0,

(2) the multiplicative identity element 1 is unique in the sense that for all $u \in R$, if au = a for all $a \in R$ then u = 1,

(3) the additive inverse of each $a \in R$ is unique in the sense that for all $a, b, c \in R$ if a + b = 0 and a + c = 0 then b = c, and

(4) the multiplicative inverse of each unit $a \in R$ is unique in the sense that for all $a \in R$, if there exist $b, c \in R$ such that ab = 1 and ac = 1 then b = c.

Proof: The proof is left as an exercise.

2.7 Notation: Let R be a ring. For $a \in R$ we denote the unique additive inverse of $a \in R$ by -a, and for $a, b \in R$ we write b - a for b + (-a). If a is a unit we denote its unique multiplicative inverse by a^{-1} . When F is a field, and $a, b \in F$ with $b \neq 0$ we also write b^{-1} as $\frac{1}{b}$ and we write ab^{-1} as $\frac{a}{b}$.

2.8 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all $a, b, c \in R$,

(1) if a + b = a + c then b = c, (2) if a + b = b then a = 0, and (3) if a + b = 0 then a = -b.

Proof: The proof is left as an exercise.

2.9 Note: We do not, in general, have similar rules for cancellation under multiplication. In general, for a, b, c in a ring R, ab = ac does not imply that b = c, ab = b does not imply that a = 1, and ac = 0 does not imply that a = 0 or b = 0 (and in the case that R is not commutative, ac = 1 does not imply that ca = 1). When ac = 0 but $a \neq 0$ and $b \neq 0$, we say that a and b are **zero divisors**. A commutative ring with 1 which has no zero divisors is called an **integral domain**.

2.10 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all $a, b, c \in R$, if ab = ac then either a = 0 or b = c or a is a zero divisor.

Proof: Suppose ab = ac. Then ab - ac = 0 so a(b - c) = 0. By the definition of a zero divisor, either a = 0 or b - c = 0 (hence b = c), or else both a and b - c are zero divisors.

2.11 Theorem: (Basic Properties of Rings) Let R be a ring. Then

(1) $0 \cdot a = 0$ for all $a \in R$, (2) (-a)b = -(ab) = a(-b) for all $a, b \in R$, (3) (-a)(-b) = ab for all $a, b \in R$, (4) (-1)a = -a for all $a \in R$.

Proof: Let $a \in R$. Then $0 \cdot a = (0+0) \cdot a = 0 \cdot a + 0 \cdot a$. Thus $0 \cdot a = 0$ by additive cancellation. The proof that $a \cdot 0 = 0$ is similar, and the other proofs are left as an exercise.

2.12 Remark: In a ring R, we usually assume that $0 \neq 1$. Note that if 0 = 1 then in fact $R = \{0\}$ because for all $a \in R$ we have $a = a \cdot 1 = a \cdot 0 = 0$. The ring $R = \{0\}$ is called the **trivial ring**.

2.13 Notation: Let R be a ring. For $a \in R$ and $k \in \mathbb{Z}$ we define $ka \in R$ as follows. We define 0a = 0, and for $k \in \mathbb{Z}^+$ we define $ka = a + a + \cdots + a$ with k terms in the sum, and we define (-k)a = k(-a). For $a \in R$ and $k \in \mathbb{N}$ we define $a^k \in R$ as follows. We define $a^0 = 1$ and for $k \in \mathbb{Z}^+$ we define $a^k = a \cdot a \cdot \ldots \cdot a$ with k terms in the product. When a is a unit and $k \in \mathbb{Z}^+$, we also define $a^{-k} = (a^{-1})^k$. For all $k, l \in \mathbb{Z}$ and all $a \in R$ we have (k + l)a = ka + la, (-k)a = -(ka) = k(-a), -(-a) = a, -(a + b) = -a - b, (ka)(lb) = (kl)(ab). For all $k, l \in \mathbb{N}$ and all $a \in R$ we have $a^{k+l} = a^k a^l$. When a and b are units, for all $k, l \in \mathbb{Z}$ we have $a^{k+l} = a^k a^l$, $a^{-k} = (a^k)^{-1}$, $(a^{-1})^{-1} = a$ and $(ab)^{-1} = b^{-1}a^{-1}$.

2.14 Definition: Let $n \in \mathbb{Z}^+$. For $a, b \in \mathbb{Z}$ we say that a is equal (or **congruent**) to b modulo n, and we write $a = b \mod n$, when n | (a - b) or, equivalently, when a = b + kn for some $k \in \mathbb{Z}$.

2.15 Theorem: Let $n \in \mathbb{Z}^+$. For $a, b \in \mathbb{Z}$ we have $a = b \mod n$ if and only if a and b have the same remainder when divided by n. In particular, for every $a \in \mathbb{Z}$ there is a unique $r \in \mathbb{Z}$ with $a = r \mod n$ and $0 \le r < n$.

Proof: Let $a, b \in \mathbb{Z}$. Use the Division Algorithm to write a = qn + r with $0 \le r < n$ and b = pn + s with $0 \le s < n$. We need to show that $a = b \mod n$ if and only if r = s. Suppose that $a = b \mod n$, say a = b + kn where $k \in \mathbb{Z}$. Then since a = qn + r and a = b + kn = (pn + s) + kn = (p + k)n + s with $0 \le r < n$ and $0 \le s < n$, it follows that q = p + s and r = s by the uniqueness part of the Division Algorithm. Conversely, suppose that r = s. Then we have 0 = r - s = (a - qn) - (b - pn) so that a = b + (q - p)n, and hence $a = b \mod n$.

2.16 Example: Find 117 mod 35.

Solution: We are being asked to find the unique integer r with $0 \le r < n$ such that $117 = r \mod 35$ or, in other words, to find the remainder r when 117 is divided by 35. Since $117 = 3 \cdot 35 + 12$ we have $117 = 12 \mod 35$.

2.17 Definition: An equivalence relation on a set S is a binary relation \sim on S such that

E1. ~ is reflexive: for every $a \in S$ we have $a \sim a$,

E2. ~ is symmetric: for all $a, b \in S$, if $a \sim b$ then $b \sim a$, and

E3. ~ is transitive: for all $a, b, c \in S$, if $a \sim b$ and $b \sim c$ then $a \sim c$.

When \sim is an equivalence relation on S and $a \in S$, the **equivalence class** of a in S is the set

$$[a] = \{x \in S \mid x \sim a\}.$$

2.18 Theorem: Let $n \in \mathbb{Z}^+$. Then congruence modulo n is an equivalence relation on \mathbb{Z} .

Proof: Let $a \in \mathbb{Z}$. Since $a = a + 0 \cdot n$ we have $a = a \mod n$. Thus congruence modulo n satisfies Property E1. Let $a, b \in \mathbb{Z}$ and suppose that $a = b \mod n$, say a = b + kn with $k \in \mathbb{Z}$. Then b = a + (-k)n so we have $b = a \mod n$. Thus congruence modulo n satisfies Property E2. Let $a, b, c \in \mathbb{Z}$ and suppose that $a = b \mod n$ and $b = c \mod n$. Since $a = b \mod n$ we can choose $k \in \mathbb{Z}$ so that a = b + kn. Since $b = c \mod n$ we can choose $l \in \mathbb{Z}$ so that b = c + ln. Then a = b + kn = (c + ln) + kn = c + (k + l)n and so $a = c \mod n$. Thus congruence modulo n satisfies Property E3.

2.19 Definition: A **partition** of a set S is a set P of nonempty disjoint subsets of S whose union is S. This means that

P1. for all $A \in P$ we have $\emptyset \neq A \subseteq S$,

P2. for all $A, B \in P$, if $A \neq B$ then $A \cap B = \emptyset$, and

P3. for every $a \in S$ we have $a \in A$ for some $A \in P$.

2.20 Example: $P = \{\{1, 3, 5\}, \{2\}, \{4, 6\}\}$ is a partition of $S = \{1, 2, 3, 4, 5, 6\}$.

2.21 Theorem: Let ~ be an equivalence relation on a set S. Then $P = \{[a] | a \in S\}$ is a partition of S.

Proof: For $a \in S$, it is clear from the definition of [a] that $[a] \subseteq S$, and we have $[a] \neq \emptyset$ because $a \sim a$ so $a \in [a]$. This shows that P satisfies P1.

Let $a, b \in S$. We claim that $a \sim b$ if and only if [a] = [b]. Suppose that $a \sim b$. Let $x \in S$. Suppose that $x \in [a]$. Then $x \sim a$ by the definition of [a]. Since $x \sim a$ and $a \sim b$ we have $x \sim b$ since \sim is transitive. Since $x \sim b$ we have $x \in [b]$. This shows that $[a] \subseteq [b]$. Since $a \sim b$ implies that $b \sim a$ by symmetry, a similar argument shows that $[b] \subseteq [a]$. Thus we have [a] = [b]. Conversely, suppose that [a] = [b]. Then since $a \sim a$ we have $a \in [a]$. Since $a \in [a]$ and [a] = [b], we have $a \in [b]$. Since $a \in [b]$, we have $a \sim b$. Thus $a \sim b$ if and only if [a] = [b], as claimed.

Let $a, b \in S$. We claim that if $[a] \neq [b]$ then $[a] \cap [b] = \emptyset$. Suppose that $[a] \cap [b] \neq \emptyset$. Choose $c \in [a] \cap [b]$. Since $c \in [a]$ so that $c \sim a$ we have [c] = [a] (by the above claim). Since $c \in [b]$ so that $c \sim b$ we have [c] = [b]. Thus [a] = [c] = [b], as required. This completes the proof that P satisfies P2.

Finally, note that P satisfies P3 because given $a \in S$ we have $a \in [a] \in P$.

2.22 Definition: Let \sim be an equivalence relation on a set S. The **quotient** of the set S by the relation \sim , denoted by S/\sim , is the partition P of the above theorem, that is

$$S/ \sim = \{ [a] | a \in S \}.$$

2.23 Definition: Let $n \in \mathbb{Z}^+$. Let \sim be the equivalence relation on \mathbb{Z} defined for $a, b \in \mathbb{Z}$ by $a \sim b \iff a = b \mod n$, and write $[a] = \{x \in \mathbb{Z} | x \sim a\} = \{x \in \mathbb{Z} | x = a \mod n\}$. The set of **integers modulo n**, denoted by \mathbb{Z}_n , is defined to be the quotient set

$$\mathbb{Z}_n = \mathbb{Z}/\!\!\sim = \left\{ [a] \middle| a \in \mathbb{Z} \right\}$$

Since every $a \in \mathbb{Z}$ is congruent modulo n to a unique $r \in \mathbb{Z}$ with $0 \leq r < n$, we have

$$\mathbb{Z}_n = \{[0], [1], [2], \cdots, [n-1]\}$$

and the elements listed in the above set are distinct so that \mathbb{Z}_n is an *n*-element set.

2.24 Example: We have

$$\mathbb{Z}_3 = \left\{ [0], [1], [2] \right\} = \left\{ \left\{ \cdots, -3, 0, 3, 6, \cdots \right\}, \left\{ \cdots, -2, 1, 4, 7, \cdots \right\}, \left\{ \cdots, -1, 2, 5, 8, \cdots \right\} \right\}.$$

2.25 Theorem: (Addition and Multiplication Modulo n) Let $n \in \mathbb{Z}^+$. For $a, b, c, d \in \mathbb{Z}$, if $a = c \mod n$ and $b = d \mod n$ then $a + b = c + d \mod n$ and $ab = cd \mod n$. It follows that we can define addition and multiplication operations on \mathbb{Z}_n by defining

[a] + [b] = [a + b] and [a] [b] = [ab]

for all $a, b \in \mathbb{Z}$. When $n \ge 2$, the set \mathbb{Z}_n is a commutative ring using these operations with zero and identity elements [0] and [1] (in \mathbb{Z}_1 we have [0] = [1], so \mathbb{Z}_1 is the trivial ring).

Proof: Let $a, b, c, d \in \mathbb{Z}$. Suppose that $a = c \mod n$ and $b = d \mod n$. Since $a = c \mod n$ we can choose $k \in \mathbb{Z}$ so that a = c + kn. Since $b = d \mod n$ we can choose $\ell \in \mathbb{Z}$ so that $b = d + \ell n$. Then $a + b = (c + kn) + (d + \ell n) = (c + d) + (k + \ell)n$ so that $a + b = c + d \mod n$, and $ab = (c + kn)(d + \ell n) = cd + c\ell n + knd + kn\ell n = cd + (kd + \ell c + k\ell n)n$ so that $ab = cd \mod n$.

It follows that we can define addition and multiplication operations in \mathbb{Z}_n by defining [a] + [b] = [a+b] and [a] [b] = [ab] for all $a, b \in \mathbb{Z}$. It is easy to verify that these operations satisfy all of the Axioms R1 - R8 which define a commutative ring. As a sample proof, we shall verify that one half of the distributivity Axiom R7 is satisfied. Let $a, b, c \in \mathbb{Z}$. Then

$$[a]([b] + [c]) = [a] [b + c], \text{ by the definition of addition in } \mathbb{Z}_n$$
$$= [a(b + c)], \text{ by the definition of multiplication in } \mathbb{Z}_n,$$
$$= [ab + ac], \text{ by distributivity in } \mathbb{Z}.$$
$$= [ab] + [ac], \text{ by the definition of addition in } \mathbb{Z}_n,$$
$$= [a] [b] + [a] [c], \text{ by the definition of multiplication in } \mathbb{Z}_n.$$

2.26 Note: When no confusion arises, we shall often omit the square brackets from our notation so that for $a \in \mathbb{Z}$ we write $[a] \in \mathbb{Z}_n$ simply as $a \in \mathbb{Z}_n$. Using this notation, for $a, b \in \mathbb{Z}$ we have a = b in \mathbb{Z}_n if and only if $a = b \mod n$ in \mathbb{Z} .

2.27 Example: Addition and multiplication in \mathbb{Z}_6 are given by the following tables.

+	0	1	2	3	4	5	×	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	4	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

2.28 Example: Find $251 \cdot 329 + (41)^2 \mod 16$.

Solution: Since $251 = 15 \cdot 16 + 11$ and $329 = 20 \cdot 16 + 9$ and $41 = 2 \cdot 16 + 9$, working in \mathbb{Z}_{16} we have 251 = 11 and 329 = 41 = 9 so that

$$251 \cdot 329 + (41)^2 = 11 \cdot 9 + 9^2 = (11+9) \cdot 9 = 20 \cdot 9 = 4 \cdot 9 = 36 = 4.$$

Thus $251 \cdot 329 + (41)^2 = 4 \mod 16$.

2.29 Example: Show that for all $a \in \mathbb{Z}$, if $a = 3 \mod 4$ then a is not equal to the sum of 2 perfect squares.

Solution: In \mathbb{Z}_4 we have $0^2 = 0$, $1^2 = 1$, $2^2 = 4 = 0$ and $3^2 = 9 = 1$ so that $x^2 \in \{0, 1\}$ for all $x \in \mathbb{Z}_4$. It follows that for all $x, y \in \mathbb{Z}_4$ we have $x^2 + y^2 \in \{0+0, 0+1, 1+0, 1+1\} = \{0, 1, 2\}$ so that $x^2 + y^2 \neq 3$. Equivalently, for all $x, y \in \mathbb{Z}$ we have $x^2 + y^2 \neq 3 \mod 4$.

2.30 Example: Show that there do not exist integers x and y such that $3x^2 + 4 = y^3$. Solution: In \mathbb{Z}_9 we have

x	0	1	2	3	4	5	6	7	8
x^2	0	1	4	0	7	7	0	4	1
x^3	0	1	8	0	1	8	0	1	8
$3x^2$	0	3	3	0	3	3	0	3	3
$3x^2 + 4$	4	7	7	4	7	7	4	7	7

From the table we see that for all $x, y \in \mathbb{Z}_9$ we have $3x^2 + 4 \in \{4, 7\}$ and $y^3 \in \{0, 1, 8\}$ and so $3x^2 + 4 \neq y^3$. It follows that for all $x, y \in \mathbb{Z}$ we have $3x^2 + 4 \neq y^3$.

2.31 Example: There are several well known tests for divisibility which can be easily explained using modular arithmetic. Suppose that a positive integer n is written in decimal form as $n = d_{\ell} \cdots d_1 d_0$ where each d_i is a decimal digit, that is $d_i \in \{0, 1, \dots, 9\}$. This means that

$$n = \sum_{k=0}^{\ell} 10^i d_i$$

Since 2|10 we have $10 = 0 \mod 2$. It follows that in \mathbb{Z}_2 we have 10 = 0 so $n = \sum_{i=0}^{\ell} 10^i d_i = d_0$. Thus in \mathbb{Z} , we have $2|n \iff n = 0 \mod 2 \iff d_0 = 0 \mod 2 \iff 2|d_0$. In other words,

2 divides n if and only if 2 divides the final digit of n.

More generally for $k \in \mathbb{Z}$ with $1 \leq k \leq \ell$, since $2^k | 10^k$ it follows that in \mathbb{Z}_{2^k} we have $10^k = 0$, hence $10^i = 0$ for all $i \geq k$, and so $n = \sum_{i=0}^{\ell} 10^i d_i = \sum_{i=0}^{k-1} 10^i d_i$. Thus in \mathbb{Z} , we have $2^k | n$ if and only if $2^k | \sum_{i=0}^{k-1} 10^i d_i$. In other words,

 2^k divides n if and only if 2^k divides the tailing k-digit number of n. Similarly, since $5^k | 10^k$ it follows that

 5^k divides n if and only if 5^k divides the tailing k-digit number of n.

Since $10 = 1 \mod 3$ it follows that in \mathbb{Z}_3 we have 10 = 1 so that $n = \sum_{i=1}^{\ell} 10^i d_i = \sum_{i=0}^{\ell} d_i$. Thus in $\mathbb{Z}, 3 | n \iff n = 0 \mod 3 \iff \sum_{i=0}^{\ell} d_i = 0 \mod 3 \iff 3 | \sum_{i=0}^{\ell}$. In other words, 3 divides n if and only if 3 divides the sum of the digits of n. Similarly, since $10 = 1 \mod 9$,

9 divides n if and only if 9 divides the sum of the digits of n.

Since $10 = -1 \mod 11$, in \mathbb{Z}_{11} we have 10 = -1 so that $n = \sum_{i=0}^{\ell} 10^i d_i = \sum_{i=0}^{\ell} (-1)^i d_i$. Thus in \mathbb{Z} , $11 | n \Longleftrightarrow 11 | \sum_{i=0}^{\ell} (-1)^i d_i$. In other words,

11 divides n if and only if 11 divides the alternating sum of the digits of n.

2.32 Exercise: Use the divisibility tests described in the above example to find the prime factorization of the number 28880280. Also, consider the problem of factoring the number 28880281.

2.33 Remark: For $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ note that if $a = b \mod n$ so that $[a] = [b] \in \mathbb{Z}_n$ then we have gcd(a, n) = gcd(b, n) and so it makes sense to define gcd([a], n) = gcd(a, n).

2.34 Theorem: (Inverses Modulo n) Let $n \in \mathbb{Z}$ with $n \ge 2$. For $a \in \mathbb{Z}$, [a] is a unit in \mathbb{Z}_n if and only if gcd(a, n) = 1 in \mathbb{Z} .

Proof: Let $a \in \mathbb{Z}$ and let d = gcd(a, n). Suppose that [a] is a unit in \mathbb{Z}_n . Choose $b \in \mathbb{Z}$ so that $[a] [b] = [1] \in \mathbb{Z}_n$. Then $[ab] = [1] \in \mathbb{Z}_n$ and so $ab = 1 \mod n$ in \mathbb{Z} . Since $ab = 1 \mod n$ we can choose k so that ab = 1 + kn. Then we have ab - kn = 1. Since d|a and d|n it follows that d|(ax + ny) for all $x, y \in \mathbb{Z}$ so in particular d|(ab - kn), that is d|1. Since d|1 and $d \ge 0$, we must have d = 1.

Conversely, suppose that d = 1. By the Euclidean Algorithm with Back-Substitution, we can choose $s, t \in \mathbb{Z}$ so that as + nt = 1. Then we have as = 1 - nt so that $as = 1 \mod n$. Thus in \mathbb{Z}_n , we have [as] = [1] so that [a][s] = [1]. Thus [a] is a unit with $[a]^{-1} = [s]$.

2.35 Corollary: For $n \in \mathbb{Z}^+$, the ring \mathbb{Z}_n is a field if and only if n is prime.

Proof: The proof is left as an exercise.

2.36 Example: Determine whether 125 is a unit in \mathbb{Z}_{471} and if so find 125^{-1} .

Solution: The Euclidean Algorithm gives

 $471 = 3 \cdot 125 + 96$, $125 = 1 \cdot 96 + 29$, $96 = 3 \cdot 29 + 9$, $29 = 3 \cdot 9 + 2$, $9 = 4 \cdot 2 + 1$ and so $d = \gcd(125, 471) = 1$ and it follows that 125 is a unit in \mathbb{Z}_{471} . Back-Substitution gives the sequence

$$1, -4, 13, -43, 56, -211$$

so we have 125(-211) + 471(56) = 1. It follows that in \mathbb{Z}_{471} we have $125^{-1} = -211 = 260$.

2.37 Example: Solve the pair of equations 3x + 4y = 7 (1) and 11x + 15y = 8 (2) for $x, y \in \mathbb{Z}_{20}$.

Solution: We work in \mathbb{Z}_{20} . Since $3 \cdot 7 = 21 = 1$ we have $3^{-1} = 7$. Multiply both sides of Equation (1) by 7 to get x + 8y = 9, that is x = 9 - 8y (3). Substitute x = 9 - 8y into Equation (2) to get 11(9 - 8y) + 15y = 8, that is 19 - 8y + 15y = 8 or equivalently 7y = 9 (4). Multiply both sides of Equation (4) by $7^{-1} = 3$ to get y = 7. Put y = 7 into Equation (3) to get $x = 9 - 8 \cdot 7 = 9 - 16 = 13$. Thus the only solution is (x, y) = (13, 7).

2.38 Definition: A group is a set G with an element $e \in G$ and a binary operation $*: G \times G \to G$, where for $a, b \in G$ we write *(a, b) as a * b or simply as ab, such that

G1. * is associative: for all $a, b, c \in G$ we have (ab)c = a(bc),

G2. *e* is an identity element: for all $a \in G$ we have ae = ea = a, and

G3. every $a \in G$ has an inverse: for every $a \in G$ there exists $b \in G$ such that ab = ba = e.

A group G is called **abelian** when

G4. * is commutative: for all $a, b \in G$ we have ab = ba.

2.39 Definition: When R is a ring under the operations + and \times , the set R is also a group under the operation + with identity element 0. The group R under + is called the **additive group** of R. The set R is not a group under the operation \times because not every element $a \in R$ has an inverse under \times (in particular, the element 0 has no inverse). The set of all invertible elements in R, however, is a group under multiplication, and we denote it by R^* , so we have

$$R^* = \{ a \in R | a \text{ is a unit} \}.$$

The group R^* is called the **group of units** of R.

2.40 Example: When F is a field, every nonzero element in F is invertible so we have $F^* = F \setminus \{0\}$. In \mathbb{Z} , the only invertible elements are ± 1 and so $\mathbb{Z}^* = \{1, -1\}$.

2.41 Definition: For $n \in \mathbb{Z}$ with $n \geq 2$, the group of units of \mathbb{Z}_n is called the **group of units modulo** n and is denoted by U_n . Thus

$$U_n = \left\{ a \in \mathbb{Z}_n \,\middle| \, \gcd(a, n) = 1 \right\}.$$

For convenience, we also let U_1 be the trivial group $U_1 = \mathbb{Z}_1 = \{1\}$. For a set S, let |S| denote the cardinality of S, so that in particular when S is a finite set, |S| denotes the number of elements in S. We define the **Euler phi function**, also called the **Euler totient function**, $\varphi : \mathbb{Z}^+ \to \mathbb{Z}^+$ by

$$\varphi(n) = \left| U_n \right|$$

so that $\varphi(n)$ is equal to the number of elements $a \in \{1, 2, \dots, n\}$ such that gcd(a, n) = 1. **2.42 Example:** Since $U_{20} = \{1, 3, 7, 9, 11, 13, 17, 19\}$ we have $\varphi(20) = 8$.

2.43 Example: When p is a prime number and $k \in \mathbb{Z}^+$ notice that

$$U_{p^k} = \{1, 2, 3, \cdots, p^k\} \setminus \{p, 2p, 3p, \cdots, p^k\}$$

and so

$$\varphi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1) = p^k \left(1 - \frac{1}{p}\right)$$

At the end of this chapter (see Theorem 2.51) we will show, more generally, that when p_1, \dots, p_ℓ are distinct prime numbers and $k_1, \dots, k_\ell \in \mathbb{Z}^+$ we have

$$\varphi\left(\prod_{i=1}^{\ell} p_i^{k_i}\right) = \prod_{i=1}^{\ell} \varphi\left(p_i^{k_i}\right) = \prod_{i=1}^{\ell} p_i^{k_i-1}(p_i-1) = \prod_{i=1}^{\ell} p_i^{k_1}\left(1-\frac{1}{p_i}\right) = n \cdot \prod_{i=1}^{\ell} \left(1-\frac{1}{p_i}\right).$$

2.44 Theorem: (The Linear Congruence Theorem) Let $n \in \mathbb{Z}^+$, let $a, b \in \mathbb{Z}$, and let $d = \operatorname{gcd}(a, n)$. Consider the congruence $ax = b \mod n$.

(1) The congruence has a solution $x \in \mathbb{Z}$ if and only if d|b, and

(2) if x = u is one solution to the congruence, then the general solution is

 $x = u \mod \frac{n}{d}$.

Proof: Suppose that the congruence $ax = b \mod n$ has a solution. Let x = u be a solution so we have $au = b \mod n$. Since $au = b \mod n$ we can choose $k \in \mathbb{Z}$ so that au = b + kn, that is au - nk = b. Since d|a and d|n it follows that d|(ax + ny) for all $x, y \in \mathbb{Z}$, and so in particular d|(au - nk), hence d|b. Conversely, suppose that d|b. By the Linear Diophanitine Equation Theorem, the equation ax + ny = b has a solution. Choose $u, v \in \mathbb{Z}$ so that au + nv = b. Then since au = b - nv we have $au = b \mod n$ and so the congruence $ax = b \mod n$ has a solution (namely x = u).

Suppose that x = u is a solution to the given congruence, so we have $au = b \mod n$. We need to show that for every $k \in \mathbb{Z}$ if we let $x = u + k\frac{n}{d}$ then we have $ax = b \mod n$ and, conversely, that for every $x \in \mathbb{Z}$ such that $ax = b \mod n$ there exists $k \in \mathbb{Z}$ such that $x = u + k\frac{n}{d}$. Let $k \in \mathbb{Z}$ and let $x = u + k\frac{n}{d}$. Then $ax = a(u + k\frac{n}{d}) = au + \frac{ka}{d}n$. Since $ax = au + \frac{ka}{d}n$ and d|a so that $\frac{ka}{d} \in \mathbb{Z}$, it follows that $ax = au \mod n$. Since $ax = au \mod n$ and $au = b \mod n$ we have $ax = b \mod n$, as required.

Conversely, let $x \in \mathbb{Z}$ and suppose that $ax = b \mod n$. Since $ax = b \mod n$ and $au = b \mod n$ we have $ax = au \mod n$. Since $ax = au \mod n$ we can choose $\ell \in \mathbb{Z}$ so that $ax = au + \ell n$. Then we have $a(x - u) = \ell n$ and so $\frac{a}{d}(x - u) = \frac{n}{d}\ell$. Since $\frac{n}{d} |\frac{a}{d}(x - u)$ and $\gcd\left(\frac{a}{d}, \frac{n}{d}\right) = 1$, it follows that $\frac{n}{d} |(x - u)$. Thus we can choose $k \in \mathbb{Z}$ so that $x - u = k\frac{n}{d}$ and then we have $x = u + k\frac{n}{d}$, as required.

2.45 Example: Solve $221x = 595 \mod 323$.

Solution: The Euclidean Algorithm gives

 $323 = 1 \cdot 221 + 102$, $221 = 2 \cdot 102 + 17$, $102 = 6 \cdot 17 + 0$

and so gcd(221, 323) = 17. Note that $\frac{595}{17} = 35$, so the congruence has a solution. Back-Substitution gives the sequence

$$1, -2, 3$$

so we have $221 \cdot 3 - 323 \cdot 2 = 17$. Multiply by 35 to get $221 \cdot 105 - 323 \cdot 70 = 595$. Thus one solution to the given congruence is x = 105. Since $\frac{323}{17} = 19$ and $105 = 5 \cdot 19 + 10$, the general solution is given by $x = 105 = 10 \mod 19$.

2.46 Theorem: (The Chinese Remainder Theorem) Let $n, m \in \mathbb{Z}^+$ and let $a, b \in \mathbb{Z}$. Consider the pair of congruences

$$\begin{aligned} x &= a \mod n, \\ x &= b \mod m. \end{aligned}$$

(1) The pair of congruences has a solution $x \in \mathbb{Z}$ if and only if gcd(n,m)|(b-a), and (2) if x = u is one solution, then the general solution is $x = u \mod lcm(n,m)$.

Proof: Suppose that the given pair of congruences has a solution and let $d = \gcd(n, m)$. Let x = u be a solution, so we have $u = a \mod n$ and $u = b \mod m$. Since $u = a \mod n$ we can choose $k \in \mathbb{Z}$ so that u = a + kn. Since $u = b \mod m$ we can choose $\ell \in \mathbb{Z}$ so that $u = b + \ell m$. Since $u = a + kn = b + \ell n$ we have $b - a = nk - m\ell$. Since d|n and d|mit follows that d|(nx + my) for all $x, y \in \mathbb{Z}$ so in particular $d|(nk - m\ell)$, hence d|(b - a). Conversely, suppose that d|(b - a). By the Linear Diophantine Equation Theorem, the equation nx + my = b - a has a solution. Choose $k, \ell \in \mathbb{Z}$ so that $nk - m\ell = b - a$. Then we have $a + nk = b + m\ell$. Let $u = a + nk = b + m\ell$. Since u = a + nk we have $u = a \mod n$ and since $u = b + m\ell$ we have $u = b \mod m$. Thus x = u is a solution to the pair of congruence.

Now suppose that $u = a \mod n$ and $u = b \mod m$. Let $\ell = \operatorname{lcm}(n, m)$. Let $k \in \mathbb{Z}$ be arbitrary and let $x = u + k\ell$. Since $x - u = k\ell$ we have $\ell | (x - u)$. Since $n | \ell$ and $\ell | (x - u)$ we have n | (x - u) so that $x = u \mod n$. Since $x = u \mod n$ and $u = a \mod n$ we have $x = a \mod n$. Similarly $x = b \mod m$.

Conversely, let $x \in \mathbb{Z}$ and suppose that $x = a \mod n$ and $x = b \mod m$. Since $x = a \mod n$ and $u = a \mod n$ we have $x = u \mod n$ so that n | (x-u). Since $x = b \mod m$ and $u = b \mod m$ we have $x = u \mod m$ so that m | (x-u). Since n | (x-u) and m | (x-u) and $\ell = \operatorname{lcm}(n,m)$, it follows that $\ell | (x-u)$ so that $x = u \mod \ell$.

2.47 Example: Solve the pair of congruences $x = 2 \mod 15$ and $x = 13 \mod 28$.

Solution: We want to find $k, \ell \in \mathbb{Z}$ such that $x = 2+15k = 13+28\ell$. We need $15k-28\ell = 11$. The Euclidean Algorithm gives

$$28 = 1 \cdot 15 + 13$$
, $15 = 1 \cdot 13 + 2$, $13 = 6 \cdot 2 + 1$

so that gcd(15, 28) = 1 and Back-Substitution gives the sequence

$$1, -6, 7, -13$$

so that (15)(-13) + (28)(7) = 1. Multiplying by 11 gives (15)(-143) + (28)(77) = 11, so one solution to the equation $15k - 28\ell = 11$ is given by (k, l) = (-143, 77). It follows that one solution to the pair of congruences is given by $u = 2 + 15k = 2 - 15 \cdot 143 = -2143$. Since $lcm(15, 28) = 15 \cdot 28 = 420$, and $-2143 = -6 \cdot 420 + 377$, the general solution to the pair of congruences is $x = -2143 = 377 \mod 420$.

2.48 Exercise: Solve the congruence $x^3 + 2x = 18 \mod 35$.

2.49 Exercise: Solve the system $x = 17 \mod 25$, $x = 14 \mod 18$ and $x = 22 \mod 40$.

2.50 Theorem: (Euler's Totient Function) Let $n = \prod p_i^{k_i}$ where p_1, \dots, p_ℓ are distinct primes and $k_1, \dots, k_\ell \in \mathbb{Z}^+$. Then

$$\varphi(n) = \prod_{i=1}^{\ell} \varphi(p_i^{k_i}) = \prod_{i=1}^{\ell} \left(p_i^{k_i} - p_i^{k_i - 1} \right)$$

Proof: As mentioned earlier (in Example 2.43) when $n = p^k$ we have

 $U_{p^k} = \left\{1, 2, \cdots, p^k\right\} \setminus \left\{p, 2p, 3p, \cdots, p^k\right\}$

and hence $\varphi(p^k) = p^k - p^{k-1}$. Thus it suffices to prove that if $k, \ell \in \mathbb{Z}$ with $gcd(k, \ell) = 1$ then we have $\varphi(k\ell) = \varphi(k)\varphi(\ell)$.

Let $k, \ell \in \mathbb{Z}$ with $gcd(k, \ell) = 1$. Define $F : \mathbb{Z}_{k\ell} \to \mathbb{Z}_k \times \mathbb{Z}_\ell$ by F(x) = (x, x) where $x \in \mathbb{Z}$. Note that F is well-defined because if $x = y \mod kl$ then $x = y \mod k$ and $x = y \mod \ell$. Note that F is bijective by the Chinese Remainder Theorem: indeed F is surjective because given $a, b \in \mathbb{Z}$ there exists a solution $x \in \mathbb{Z}$ to the pair of congruences $x = a \mod k$ and $x = b \mod \ell$, and F is injective because the solution x is unique modulo $k\ell$. We claim that the restriction of F to $U_{k\ell}$ is a bijection from $U_{k\ell}$ to $U_k \times U_\ell$. Note that if $x \in U_{k\ell}$ then we have $gcd(x, k\ell) = 1$ so that gcd(x, k) = 1 and $gcd(x, \ell) = 1$, and hence $x \in U_k$ and $x \in U_\ell$, and so we have $F(x) = (x, x) \in U_k \times U_\ell$. Suppose, on the other hand, that $a \in U_k$ and $b \in U_\ell$ and let $xF^{-1}(a, b) \in \mathbb{Z}_{k\ell}$, so we have $x = a \mod k$ and $x = b \mod \ell$. Since $x = a \mod k$ we have gcd(x, k) = 1 and $gcd(x, \ell) = 1$) it follows that $gcd(x, k\ell) = 1$ and so we have $x \in U_{k\ell}$. Thus the restriction of F to $U_{k\ell}$ is a well-defined bijective map from $U_{k\ell}$ to $U_k \times U_\ell$. It follows that

$$\varphi(k\ell) = \left| U_{k\ell} \right| = \left| U_k \times U_\ell \right| = \left| U_k \right| \cdot \left| U_\ell \right| = \varphi(k)\varphi(\ell),$$

as required.

2.51 Theorem: (The Generalized Chinese Remainder Theorem) Let $\ell \in \mathbb{Z}^+$, let $n_i \in \mathbb{Z}^+$ and $a_i \in \mathbb{Z}$ for all indices i with $1 \leq i \leq \ell$. Consider the system of ℓ congruences $x = a_i \mod n_i$ for all indices i with $1 \leq i \leq \ell$.

(1) The system has a solution x if and only if $gcd(n_i, n_j)|(a_i - a_j)$ for all i, j, and

(2) if x = u is one solution then the general solution is $x = u \mod \operatorname{lcm}(n_1, n_2, \dots, n_\ell)$.

Proof: The proof is left as an exercise.