Chapter 2. The Ring of Integers Modulo N

2.1 Definition: A (commutative) ring (with 1) is a set R with two elements $0,1 \in R$ (usually assumed to be distinct) and two binary operations,,$+ \times: R \times R \rightarrow R$ (usually called addition and multiplication) where, for $a, b \in R$, we write $+(a, b)$ as $a+b$ and we write $\times(a, b)$ as $a \times b$ or $a \cdot b$ or $a b$, which satisfy the following axims.
R1. + is associative: $(a+b)+c=a+(b+c)$ for all $a, b, c \in R$,
R2. + is commutative: $a+b=b+a$ for all $a, b, c \in R$,
R3. 0 is an additive identity: $a+0=a$ for all $a \in R$,
R4. every $a \in R$ has an additive inverse: for all $a \in R$ there exists $b \in R$ such that $a+b=0$,
R5. \times is associative: $(a b) c=a(b c)$ for all $a, b, c \in R$,
R6. \times is commutative: $a * b=b * a$ for all $a, b \in R$,
R7. 1 is a multiplicative identity: $a \times 1=a$ for all $a \in R$, and
R8. \times is distributive over $+: a(b+c)=a b+a c$ and $(a+b) c=a c+b c$ for all $a, b, c \in R$.
For $a \in R$ we say that a is invertible (or that a is a unit) when there is an element $b \in R$ with $a b=1$. A field is a commutative ring F in which $0 \neq 1$ and
R9. every non-zero element is a unit: for all $0 \neq a \in F$ there exists $b \in F$ such that $a b=1$.
2.2 Example: \mathbb{Z} is a ring, and \mathbb{Q}, \mathbb{R} and \mathbb{C} are fields.
2.3 Example: Let $d \in \mathbb{Z}$ be a non-square (that is $d \neq s^{2}$ with $s \in \mathbb{Z}$). When $d>0$ we have $\sqrt{d} \in \mathbb{R}$ and when $d<0$ we write $\sqrt{d}=\sqrt{|d|} i \in \mathbb{C}$. Let

$$
\begin{aligned}
& \mathbb{Z}[\sqrt{d}]=\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\}, \\
& \mathbb{Q}[\sqrt{d}]=\{a+b \sqrt{d} \mid a, b \in \mathbb{Q}\} .
\end{aligned}
$$

Verify that $\mathbb{Z}[\sqrt{d}]$ is a ring and that $\mathbb{Q}[\sqrt{d}]$ is a field. When $d>0$ so $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{Q}[\sqrt{d}] \subseteq \mathbb{R}$, we say that $\mathbb{Z}[\sqrt{d}]$ is a real quadratic ring and $\mathbb{Q}[\sqrt{d}]$ is a real quadratic field, and when when $d<0$ so $\mathbb{Z}[\sqrt{d}] \subseteq \mathbb{Q}[\sqrt{d}] \subseteq \mathbb{C}$ and we say that $\mathbb{Z}[\sqrt{d}]$ is a complex quadratic ring and $\mathbb{Q}[\sqrt{d}]$ is a complex quadratic field. The ring $\mathbb{Z}[\sqrt{-1}]=\mathbb{Z}[i]$ is called the ring of Gaussian integers.
2.4 Example: Many students will be familiar with the ring \mathbb{Z}_{n} of integers modulo n. Later in this chapter, we shall define the ring \mathbb{Z}_{n} and show that \mathbb{Z}_{n} is a field if and only if n is prime.
2.5 Remark: When R is a commutative ring, the set $R[x]$ of polynomials with coefficients in R is a commutative ring and, when $n \in \mathbb{Z}$ with $n \geq 2$, the set $M_{n}(R)$ of $n \times n$ matrices with entries in R is an example of a non-commutative ring (Axiom R6 does not hold).
2.6 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then
(1) the additive identity element 0 is unique in the sense that if $e \in R$ has the property that $a+e=a$ for all $a \in R$ then $e=0$,
(2) the multiplicative identity element 1 is unique in the sense that for all $u \in R$, if $a u=a$ for all $a \in R$ then $u=1$,
(3) the additive inverse of each $a \in R$ is unique in the sense that for all $a, b, c \in R$ if $a+b=0$ and $a+c=0$ then $b=c$, and
(4) the multiplicative inverse of each unit $a \in R$ is unique in the sense that for all $a \in R$, if there exist $b, c \in R$ such that $a b=1$ and $a c=1$ then $b=c$.
Proof: The proof is left as an exercise.
2.7 Notation: Let R be a ring. For $a \in R$ we denote the unique additive inverse of $a \in R$ by $-a$, and for $a, b \in R$ we write $b-a$ for $b+(-a)$. If a is a unit we denote its unique multiplicative inverse by a^{-1}. When F is a field, and $a, b \in F$ with $b \neq 0$ we also write b^{-1} as $\frac{1}{b}$ and we write $a b^{-1}$ as $\frac{a}{b}$.
2.8 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all $a, b, c \in R$,
(1) if $a+b=a+c$ then $b=c$,
(2) if $a+b=b$ then $a=0$, and
(3) if $a+b=0$ then $a=-b$.

Proof: The proof is left as an exercise.
2.9 Note: We do not, in general, have similar rules for cancellation under multiplication. In general, for a, b, c in a ring $R, a b=a c$ does not imply that $b=c, a b=b$ does not imply that $a=1$, and $a c=0$ does not imply that $a=0$ or $b=0$ (and in the case that R is not commutative, $a c=1$ does not imply that $c a=1$). When $a c=0$ but $a \neq 0$ and $b \neq 0$, we say that a and b are zero divisors. A commutative ring with 1 which has no zero divisors is called an integral domain.
2.10 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all $a, b, c \in R$, if $a b=a c$ then either $a=0$ or $b=c$ or a is a zero divisor.

Proof: Suppose $a b=a c$. Then $a b-a c=0$ so $a(b-c)=0$. By the definition of a zero divisor, either $a=0$ or $b-c=0$ (hence $b=c$), or else both a and $b-c$ are zero divisors.
2.11 Theorem: (Basic Properties of Rings) Let R be a ring. Then
(1) $0 \cdot a=0$ for all $a \in R$,
(2) $(-a) b=-(a b)=a(-b)$ for all $a, b \in R$,
(3) $(-a)(-b)=a b$ for all $a, b \in R$,
(4) $(-1) a=-a$ for all $a \in R$.

Proof: Let $a \in R$. Then $0 \cdot a=(0+0) \cdot a=0 \cdot a+0 \cdot a$. Thus $0 \cdot a=0$ by additive cancellation. The proof that $a \cdot 0=0$ is similar, and the other proofs are left as an exercise.
2.12 Remark: In a ring R, we usually assume that $0 \neq 1$. Note that if $0=1$ then in fact $R=\{0\}$ because for all $a \in R$ we have $a=a \cdot 1=a \cdot 0=0$. The ring $R=\{0\}$ is called the trivial ring.
2.13 Notation: Let R be a ring. For $a \in R$ and $k \in \mathbb{Z}$ we define $k a \in R$ as follows. We define $0 a=0$, and for $k \in \mathbb{Z}^{+}$we define $k a=a+a+\cdots+a$ with k terms in the sum, and we define $(-k) a=k(-a)$. For $a \in R$ and $k \in \mathbb{N}$ we define $a^{k} \in R$ as follows. We define $a^{0}=1$ and for $k \in \mathbb{Z}^{+}$we define $a^{k}=a \cdot a \cdot \ldots \cdot a$ with k terms in the product. When a is a unit and $k \in \mathbb{Z}^{+}$, we also define $a^{-k}=\left(a^{-1}\right)^{k}$. For all $k, l \in \mathbb{Z}$ and all $a \in R$ we have $(k+l) a=k a+l a,(-k) a=-(k a)=k(-a),-(-a)=a,-(a+b)=-a-b$, $(k a)(l b)=(k l)(a b)$. For all $k, l \in \mathbb{N}$ and all $a \in R$ we have $a^{k+l}=a^{k} a^{l}$. When a and b are units, for all $k, l \in \mathbb{Z}$ we have $a^{k+l}=a^{k} a^{l}, a^{-k}=\left(a^{k}\right)^{-1},\left(a^{-1}\right)^{-1}=a$ and $(a b)^{-1}=b^{-1} a^{-1}$.
2.14 Definition: Let $n \in \mathbb{Z}^{+}$. For $a, b \in \mathbb{Z}$ we say that a is equal (or congruent) to b modulo n, and we write $a=b \bmod n$, when $n \mid(a-b)$ or, equivalently, when $a=b+k n$ for some $k \in \mathbb{Z}$.
2.15 Theorem: Let $n \in \mathbb{Z}^{+}$. For $a, b \in \mathbb{Z}$ we have $a=b \bmod n$ if and only if a and b have the same remainder when divided by n. In particular, for every $a \in \mathbb{Z}$ there is a unique $r \in \mathbb{Z}$ with $a=r \bmod n$ and $0 \leq r<n$.

Proof: Let $a, b \in \mathbb{Z}$. Use the Division Algorithm to write $a=q n+r$ with $0 \leq r<n$ and $b=p n+s$ with $0 \leq s<n$. We need to show that $a=b \bmod n$ if and only if $r=s$. Suppose that $a=b \bmod n$, say $a=b+k n$ where $k \in \mathbb{Z}$. Then since $a=q n+r$ and $a=b+k n=(p n+s)+k n=(p+k) n+s$ with $0 \leq r<n$ and $0 \leq s<n$, it follows that $q=p+s$ and $r=s$ by the uniqueness part of the Division Algorithm. Conversely, suppose that $r=s$. Then we have $0=r-s=(a-q n)-(b-p n)$ so that $a=b+(q-p) n$, and hence $a=b \bmod n$.
2.16 Example: Find $117 \bmod 35$.

Solution: We are being asked to find the unique integer r with $0 \leq r<n$ such that $117=r \bmod 35$ or, in other words, to find the remainder r when 117 is divided by 35 . Since $117=3 \cdot 35+12$ we have $117=12 \bmod 35$.
2.17 Definition: An equivalence relation on a set S is a binary relation \sim on S such that
E1. \sim is reflexive: for every $a \in S$ we have $a \sim a$,
E2. \sim is symmetric: for all $a, b \in S$, if $a \sim b$ then $b \sim a$, and
E3. \sim is transitive: for all $a, b, c \in S$, if $a \sim b$ and $b \sim c$ then $a \sim c$.
When \sim is an equivalence relation on S and $a \in S$, the equivalence class of a in S is the set

$$
[a]=\{x \in S \mid x \sim a\}
$$

2.18 Theorem: Let $n \in \mathbb{Z}^{+}$. Then congruence modulo n is an equivalence relation on \mathbb{Z}.

Proof: Let $a \in \mathbb{Z}$. Since $a=a+0 \cdot n$ we have $a=a \bmod n$. Thus congruence modulo n satisfies Property E1. Let $a, b \in \mathbb{Z}$ and suppose that $a=b \bmod n$, say $a=b+k n$ with $k \in \mathbb{Z}$. Then $b=a+(-k) n$ so we have $b=a \bmod n$. Thus congruence modulo n satisfies Property E2. Let $a, b, c \in \mathbb{Z}$ and suppose that $a=b \bmod n$ and $b=c \bmod n$. Since $a=b \bmod n$ we can choose $k \in \mathbb{Z}$ so that $a=b+k n$. Since $b=c \bmod n$ we can choose $\ell \in \mathbb{Z}$ so that $b=c+\ell n$. Then $a=b+k n=(c+\ell n)+k n=c+(k+\ell) n$ and so $a=c \bmod n$. Thus congruence modulo n satisfies Property E3.
2.19 Definition: A partition of a set S is a set P of nonempty disjoint subsets of S whose union is S. This means that
P1. for all $A \in P$ we have $\emptyset \neq A \subseteq S$,
P2. for all $A, B \in P$, if $A \neq B$ then $A \cap B=\emptyset$, and
P3. for every $a \in S$ we have $a \in A$ for some $A \in P$.
2.20 Example: $P=\{\{1,3,5\},\{2\},\{4,6\}\}$ is a partition of $S=\{1,2,3,4,5,6\}$.
2.21 Theorem: Let \sim be an equivalence relation on a set S. Then $P=\{[a] \mid a \in S\}$ is a partition of S.
Proof: For $a \in S$, it is clear from the definition of $[a]$ that $[a] \subseteq S$, and we have $[a] \neq \emptyset$ because $a \sim a$ so $a \in[a]$. This shows that P satisfies P1.

Let $a, b \in S$. We claim that $a \sim b$ if and only if $[a]=[b]$. Suppose that $a \sim b$. Let $x \in S$. Suppose that $x \in[a]$. Then $x \sim a$ by the definition of $[a]$. Since $x \sim a$ and $a \sim b$ we have $x \sim b$ since \sim is transitive. Since $x \sim b$ we have $x \in[b]$. This shows that $[a] \subseteq[b]$. Since $a \sim b$ implies that $b \sim a$ by symmetry, a similar argument shows that $[b] \subseteq[a]$. Thus we have $[a]=[b]$. Conversely, suppose that $[a]=[b]$. Then since $a \sim a$ we have $a \in[a]$. Since $a \in[a]$ and $[a]=[b]$, we have $a \in[b]$. Since $a \in[b]$, we have $a \sim b$. Thus $a \sim b$ if and only if $[a]=[b]$, as claimed.

Let $a, b \in S$. We claim that if $[a] \neq[b]$ then $[a] \cap[b]=\emptyset$. Suppose that $[a] \cap[b] \neq \emptyset$. Choose $c \in[a] \cap[b]$. Since $c \in[a]$ so that $c \sim a$ we have $[c]=[a]$ (by the above claim). Since $c \in[b]$ so that $c \sim b$ we have $[c]=[b]$. Thus $[a]=[c]=[b]$, as required. This completes the proof that P satisfies P2.

Finally, note that P satisfies P3 because given $a \in S$ we have $a \in[a] \in P$.
2.22 Definition: Let \sim be an equivalence relation on a set S. The quotient of the set S by the relation \sim, denoted by S / \sim, is the partition P of the above theorem, that is

$$
S / \sim=\{[a] \mid a \in S\} .
$$

2.23 Definition: Let $n \in \mathbb{Z}^{+}$. Let \sim be the equivalence relation on \mathbb{Z} defined for $a, b \in \mathbb{Z}$ by $a \sim b \Longleftrightarrow a=b \bmod n$, and write $[a]=\{x \in \mathbb{Z} \mid x \sim a\}=\{x \in \mathbb{Z} \mid x=a \bmod n\}$. The set of integers modulo \mathbf{n}, denoted by \mathbb{Z}_{n}, is defined to be the quotient set

$$
\mathbb{Z}_{n}=\mathbb{Z} / \sim=\{[a] \mid a \in \mathbb{Z}\}
$$

Since every $a \in \mathbb{Z}$ is congruent modulo n to a unique $r \in \mathbb{Z}$ with $0 \leq r<n$, we have

$$
\mathbb{Z}_{n}=\{[0],[1],[2], \cdots,[n-1]\}
$$

and the elements listed in the above set are distinct so that \mathbb{Z}_{n} is an n-element set.
2.24 Example: We have

$$
\mathbb{Z}_{3}=\{[0],[1],[2]\}=\{\{\cdots,-3,0,3,6, \cdots\},\{\cdots,-2,1,4,7, \cdots\},\{\cdots,-1,2,5,8, \cdots\}\}
$$

2.25 Theorem: (Addition and Multiplication Modulo n) Let $n \in \mathbb{Z}^{+}$. For $a, b, c, d \in \mathbb{Z}$, if $a=c \bmod n$ and $b=d \bmod n$ then $a+b=c+d \bmod n$ and $a b=c d \bmod n$. It follows that we can define addition and multiplication operations on \mathbb{Z}_{n} by defining

$$
[a]+[b]=[a+b] \text { and }[a][b]=[a b]
$$

for all $a, b \in \mathbb{Z}$. When $n \geq 2$, the set \mathbb{Z}_{n} is a commutative ring using these operations with zero and identity elements [0] and [1] (in \mathbb{Z}_{1} we have $[0]=[1]$, so \mathbb{Z}_{1} is the trivial ring).

Proof: Let $a, b, c, d \in \mathbb{Z}$. Suppose that $a=c \bmod n$ and $b=d \bmod n$. Since $a=c \bmod n$ we can choose $k \in \mathbb{Z}$ so that $a=c+k n$. Since $b=d \bmod n$ we can choose $\ell \in \mathbb{Z}$ so that $b=d+\ell n$. Then $a+b=(c+k n)+(d+\ell n)=(c+d)+(k+\ell) n$ so that $a+b=c+d \bmod n$, and $a b=(c+k n)(d+\ell n)=c d+c \ell n+k n d+k n \ell n=c d+(k d+\ell c+k \ell n) n$ so that $a b=c d \bmod n$.

It follows that we can define addition and multiplication operations in \mathbb{Z}_{n} by defining $[a]+[b]=[a+b]$ and $[a][b]=[a b]$ for all $a, b \in \mathbb{Z}$. It is easy to verify that these operations satisfy all of the Axioms R1 - R8 which define a commutative ring. As a sample proof, we shall verify that one half of the distributivity Axiom R 7 is satisfied. Let $a, b, c \in \mathbb{Z}$. Then

$$
\begin{aligned}
{[a]([b]+[c]) } & =[a][b+c], \text { by the definition of addition in } \mathbb{Z}_{n} \\
& =[a(b+c)], \text { by the definition of multiplication in } \mathbb{Z}_{n}, \\
& =[a b+a c], \text { by distributivity in } \mathbb{Z} . \\
& =[a b]+[a c], \text { by the definition of addition in } \mathbb{Z}_{n}, \\
& =[a][b]+[a][c], \text { by the definition of multiplication in } \mathbb{Z}_{n} .
\end{aligned}
$$

2.26 Note: When no confusion arises, we shall often omit the square brackets from our notation so that for $a \in \mathbb{Z}$ we write $[a] \in \mathbb{Z}_{n}$ simply as $a \in \mathbb{Z}_{n}$. Using this notation, for $a, b \in \mathbb{Z}$ we have $a=b$ in \mathbb{Z}_{n} if and only if $a=b \bmod n$ in \mathbb{Z}.
2.27 Example: Addition and multiplication in \mathbb{Z}_{6} are given by the following tables.

+	0	1	2	3	4	5	\times	0	1	2	3	4	5
0	0	1	2	3	4	5	0	0	0	0	0	0	0
1	1	2	3	4	5	0	1	0	1	2	3	4	5
2	2	3	4	5	0	1	2	0	2	4	0	2	4
3	3	4	5	0	1	2	3	0	3	0	3	0	3
4	4	5	0	1	2	4	4	0	4	2	0	4	2
5	5	0	1	2	3	4	5	0	5	4	3	2	1

2.28 Example: Find $251 \cdot 329+(41)^{2} \bmod 16$.

Solution: Since $251=15 \cdot 16+11$ and $329=20 \cdot 16+9$ and $41=2 \cdot 16+9$, working in \mathbb{Z}_{16} we have $251=11$ and $329=41=9$ so that

$$
251 \cdot 329+(41)^{2}=11 \cdot 9+9^{2}=(11+9) \cdot 9=20 \cdot 9=4 \cdot 9=36=4
$$

Thus $251 \cdot 329+(41)^{2}=4 \bmod 16$.
2.29 Example: Show that for all $a \in \mathbb{Z}$, if $a=3 \bmod 4$ then a is not equal to the sum of 2 perfect squares.
Solution: In \mathbb{Z}_{4} we have $0^{2}=0,1^{2}=1,2^{2}=4=0$ and $3^{2}=9=1$ so that $x^{2} \in\{0,1\}$ for all $x \in \mathbb{Z}_{4}$. It follows that for all $x, y \in \mathbb{Z}_{4}$ we have $x^{2}+y^{2} \in\{0+0,0+1,1+0,1+1\}=\{0,1,2\}$ so that $x^{2}+y^{2} \neq 3$. Equivalently, for all $x, y \in \mathbb{Z}$ we have $x^{2}+y^{2} \neq 3 \bmod 4$.
2.30 Example: Show that there do not exist integers x and y such that $3 x^{2}+4=y^{3}$. Solution: In \mathbb{Z}_{9} we have

$$
\begin{array}{cccccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
x^{2} & 0 & 1 & 4 & 0 & 7 & 7 & 0 & 4 & 1 \\
x^{3} & 0 & 1 & 8 & 0 & 1 & 8 & 0 & 1 & 8 \\
3 x^{2} & 0 & 3 & 3 & 0 & 3 & 3 & 0 & 3 & 3 \\
3 x^{2}+4 & 4 & 7 & 7 & 4 & 7 & 7 & 4 & 7 & 7
\end{array}
$$

From the table we see that for all $x, y \in \mathbb{Z}_{9}$ we have $3 x^{2}+4 \in\{4,7\}$ and $y^{3} \in\{0,1,8\}$ and so $3 x^{2}+4 \neq y^{3}$. It follows that for all $x, y \in \mathbb{Z}$ we have $3 x^{2}+4 \neq y^{3}$.
2.31 Example: There are several well known tests for divisibility which can be easily explained using modular arithmetic. Suppose that a positive integer n is written in decimal form as $n=d_{\ell} \cdots d_{1} d_{0}$ where each d_{i} is a decimal digit, that is $d_{i} \in\{0,1, \cdots, 9\}$. This means that

$$
n=\sum_{k=0}^{\ell} 10^{i} d_{i} .
$$

Since $2 \mid 10$ we have $10=0 \bmod 2$. It follows that in \mathbb{Z}_{2} we have $10=0$ so $n=\sum_{i=0}^{\ell} 10^{i} d_{i}=d_{0}$. Thus in \mathbb{Z}, we have $2\left|n \Longleftrightarrow n=0 \bmod 2 \Longleftrightarrow d_{0}=0 \bmod 2 \Longleftrightarrow 2\right| d_{0}$. In other words,

2 divides n if and only if 2 divides the final digit of n.
More generally for $k \in \mathbb{Z}$ with $1 \leq k \leq \ell$, since $2^{k} \mid 10^{k}$ it follows that in $\mathbb{Z}_{2^{k}}$ we have $10^{k}=0$, hence $10^{i}=0$ for all $i \geq k$, and so $n=\sum_{i=0}^{\ell} 10^{i} d_{i}=\sum_{i=0}^{k-1} 10^{i} d_{i}$. Thus in \mathbb{Z}, we have $2^{k} \mid n$ if and only if $2^{k} \mid \sum_{i=0}^{k-1} 10^{i} d_{i}$. In other words,
2^{k} divides n if and only if 2^{k} divides the tailing k-digit number of n.
Similarly, since $5^{k} \mid 10^{k}$ it follows that
5^{k} divides n if and only if 5^{k} divides the tailing k-digit number of n.
Since $10=1 \bmod 3$ it follows that in \mathbb{Z}_{3} we have $10=1$ so that $n=\sum_{i=1}^{\ell} 10^{i} d_{i}=\sum_{i=0}^{\ell} d_{i}$. Thus in $\mathbb{Z}, 3\left|n \Longleftrightarrow n=0 \bmod 3 \Longleftrightarrow \sum_{i=0}^{\ell} d_{i}=0 \bmod 3 \Longleftrightarrow 3\right| \sum_{i=0}^{\ell}$. In other words, 3 divides n if and only if 3 divides the sum of the digits of n. Similarly, since $10=1 \bmod 9$,

9 divides n if and only if 9 divides the sum of the digits of n.
Since $10=-1 \bmod 11$, in \mathbb{Z}_{11} we have $10=-1$ so that $n=\sum_{i=0}^{\ell} 10^{i} d_{i}=\sum_{i=0}^{\ell}(-1)^{i} d_{i}$. Thus in $\mathbb{Z}, 11|n \Longleftrightarrow 11| \sum_{i=0}^{\ell}(-1)^{i} d_{i}$. In other words,

11 divides n if and only if 11 divides the alternating sum of the digits of n.
2.32 Exercise: Use the divisibility tests described in the above example to find the prime factorization of the number 28880280. Also, consider the problem of factoring the number 28880281.
2.33 Remark: For $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^{+}$note that if $a=b \bmod n$ so that $[a]=[b] \in \mathbb{Z}_{n}$ then we have $\operatorname{gcd}(a, n)=\operatorname{gcd}(b, n)$ and so it makes sense to define $\operatorname{gcd}([a], n)=\operatorname{gcd}(a, n)$.
2.34 Theorem: (Inverses Modulo n) Let $n \in \mathbb{Z}$ with $n \geq 2$. For $a \in \mathbb{Z}$, $[a]$ is a unit in \mathbb{Z}_{n} if and only if $\operatorname{gcd}(a, n)=1$ in \mathbb{Z}.
Proof: Let $a \in \mathbb{Z}$ and let $d=\operatorname{gcd}(a, n)$. Suppose that $[a]$ is a unit in \mathbb{Z}_{n}. Choose $b \in \mathbb{Z}$ so that $[a][b]=[1] \in \mathbb{Z}_{n}$. Then $[a b]=[1] \in \mathbb{Z}_{n}$ and so $a b=1 \bmod n$ in \mathbb{Z}. Since $a b=1 \bmod n$ we can choose k so that $a b=1+k n$. Then we have $a b-k n=1$. Since $d \mid a$ and $d \mid n$ it follows that $d \mid(a x+n y)$ for all $x, y \in \mathbb{Z}$ so in particular $d \mid(a b-k n)$, that is $d \mid 1$. Since $d \mid 1$ and $d \geq 0$, we must have $d=1$.

Conversely, suppose that $d=1$. By the Euclidean Algorithm with Back-Substitution, we can choose $s, t \in \mathbb{Z}$ so that $a s+n t=1$. Then we have $a s=1-n t$ so that $a s=1 \bmod n$. Thus in \mathbb{Z}_{n}, we have $[a s]=[1]$ so that $[a][s]=[1]$. Thus $[a]$ is a unit with $[a]^{-1}=[s]$.
2.35 Corollary: For $n \in \mathbb{Z}^{+}$, the ring \mathbb{Z}_{n} is a field if and only if n is prime.

Proof: The proof is left as an exercise.
2.36 Example: Determine whether 125 is a unit in \mathbb{Z}_{471} and if so find 125^{-1}.

Solution: The Euclidean Algorithm gives

$$
471=3 \cdot 125+96,125=1 \cdot 96+29,96=3 \cdot 29+9,29=3 \cdot 9+2,9=4 \cdot 2+1
$$

and so $d=\operatorname{gcd}(125,471)=1$ and it follows that 125 is a unit in \mathbb{Z}_{471}. Back-Substitution gives the sequence

$$
1,-4,13,-43,56,-211
$$

so we have $125(-211)+471(56)=1$. It follows that in \mathbb{Z}_{471} we have $125^{-1}=-211=260$.
2.37 Example: Solve the pair of equations $3 x+4 y=7$ (1) and $11 x+15 y=8$ (2) for $x, y \in \mathbb{Z}_{20}$.
Solution: We work in \mathbb{Z}_{20}. Since $3 \cdot 7=21=1$ we have $3^{-1}=7$. Multiply both sides of Equation (1) by 7 to get $x+8 y=9$, that is $x=9-8 y$ (3). Substitute $x=9-8 y$ into Equation (2) to get $11(9-8 y)+15 y=8$, that is $19-8 y+15 y=8$ or equivalently $7 y=9$ (4). Multiply both sides of Equation (4) by $7^{-1}=3$ to get $y=7$. Put $y=7$ into Equation (3) to get $x=9-8 \cdot 7=9-16=13$. Thus the only solution is $(x, y)=(13,7)$.
2.38 Definition: A group is a set G with an element $e \in G$ and a binary operation *: $G \times G \rightarrow G$, where for $a, b \in G$ we write $*(a, b)$ as $a * b$ or simply as $a b$, such that
G1. $*$ is associative: for all $a, b, c \in G$ we have $(a b) c=a(b c)$,
G2. e is an identity element: for all $a \in G$ we have $a e=e a=a$, and
G3. every $a \in G$ has an inverse: for every $a \in G$ there exists $b \in G$ such that $a b=b a=e$.
A group G is called abelian when
G4. $*$ is commutative: for all $a, b \in G$ we have $a b=b a$.
2.39 Definition: When R is a ring under the operations + and \times, the set R is also a group under the operation + with identity element 0 . The group R under + is called the additive group of R. The set R is not a group under the operation \times because not every element $a \in R$ has an inverse under \times (in particular, the element 0 has no inverse). The set of all invertible elements in R, however, is a group under multiplication, and we denote it by R^{*}, so we have

$$
R^{*}=\{a \in R \mid a \text { is a unit }\}
$$

The group R^{*} is called the group of units of R.
2.40 Example: When F is a field, every nonzero element in F is invertible so we have $F^{*}=F \backslash\{0\}$. In \mathbb{Z}, the only invertible elements are ± 1 and so $\mathbb{Z}^{*}=\{1,-1\}$.
2.41 Definition: For $n \in \mathbb{Z}$ with $n \geq 2$, the group of units of \mathbb{Z}_{n} is called the group of units modulo n and is denoted by U_{n}. Thus

$$
U_{n}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}
$$

For convenience, we also let U_{1} be the trivial group $U_{1}=\mathbb{Z}_{1}=\{1\}$. For a set S, let $|S|$ denote the cardinality of S, so that in particular when S is a finite set, $|S|$ denotes the number of elements in S. We define the Euler phi function, also called the Euler totient function, $\varphi: \mathbb{Z}^{+} \rightarrow \mathbb{Z}^{+}$by

$$
\varphi(n)=\left|U_{n}\right|
$$

so that $\varphi(n)$ is equal to the number of elements $a \in\{1,2, \cdots, n\}$ such that $\operatorname{gcd}(a, n)=1$.
2.42 Example: Since $U_{20}=\{1,3,7,9,11,13,17,19\}$ we have $\varphi(20)=8$.
2.43 Example: When p is a prime number and $k \in \mathbb{Z}^{+}$notice that

$$
U_{p^{k}}=\left\{1,2,3, \cdots, p^{k}\right\} \backslash\left\{p, 2 p, 3 p, \cdots, p^{k}\right\}
$$

and so

$$
\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)=p^{k}\left(1-\frac{1}{p}\right)
$$

At the end of this chapter (see Theorem 2.51) we will show, more generally, that when p_{1}, \cdots, p_{ℓ} are distinct prime numbers and $k_{1}, \cdots, k_{\ell} \in \mathbb{Z}^{+}$we have

$$
\varphi\left(\prod_{i=1}^{\ell} p_{i}^{k_{i}}\right)=\prod_{i=1}^{\ell} \varphi\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{\ell} p_{i}^{k_{i}-1}\left(p_{i}-1\right)=\prod_{i=1}^{\ell} p_{i}^{k_{1}}\left(1-\frac{1}{p_{i}}\right)=n \cdot \prod_{i=1}^{\ell}\left(1-\frac{1}{p_{i}}\right) .
$$

2.44 Theorem: (The Linear Congruence Theorem) Let $n \in \mathbb{Z}^{+}$, let $a, b \in \mathbb{Z}$, and let $d=\operatorname{gcd}(a, n)$. Consider the congruence $a x=b \bmod n$.
(1) The congruence has a solution $x \in \mathbb{Z}$ if and only if $d \mid b$, and
(2) if $x=u$ is one solution to the congruence, then the general solution is

$$
x=u \bmod \frac{n}{d} .
$$

Proof: Suppose that the congruence $a x=b \bmod n$ has a solution. Let $x=u$ be a solution so we have $a u=b \bmod n$. Since $a u=b \bmod n$ we can choose $k \in \mathbb{Z}$ so that $a u=b+k n$, that is $a u-n k=b$. Since $d \mid a$ and $d \mid n$ it follows that $d \mid(a x+n y)$ for all $x, y \in \mathbb{Z}$, and so in particular $d \mid(a u-n k)$, hence $d \mid b$. Conversely, suppose that $d \mid b$. By the Linear Diophanitine Equation Theorem, the equation $a x+n y=b$ has a solution. Choose $u, v \in \mathbb{Z}$ so that $a u+n v=b$. Then since $a u=b-n v$ we have $a u=b \bmod n$ and so the congruence $a x=b \bmod n$ has a solution (namely $x=u$).

Suppose that $x=u$ is a solution to the given congruence, so we have $a u=b \bmod n$. We need to show that for every $k \in \mathbb{Z}$ if we let $x=u+k \frac{n}{d}$ then we have $a x=b \bmod n$ and, conversely, that for every $x \in \mathbb{Z}$ such that $a x=b \bmod n$ there exists $k \in \mathbb{Z}$ such that $x=u+k \frac{n}{d}$. Let $k \in \mathbb{Z}$ and let $x=u+k \frac{n}{d}$. Then $a x=a\left(u+k \frac{n}{d}\right)=a u+\frac{k a}{d} n$. Since $a x=a u+\frac{k a}{d} n$ and $d \mid a$ so that $\frac{k a}{d} \in \mathbb{Z}$, it follows that $a x=a u \bmod n$. Since $a x=a u \bmod n$ and $a u=b \bmod n$ we have $a x=b \bmod n$, as required.

Conversely, let $x \in \mathbb{Z}$ and suppose that $a x=b \bmod n$. Since $a x=b \bmod n$ and $a u=b \bmod n$ we have $a x=a u \bmod n$. Since $a x=a u \bmod n$ we can choose $\ell \in \mathbb{Z}$ so that $a x=a u+\ell n$. Then we have $a(x-u)=\ell n$ and so $\frac{a}{d}(x-u)=\frac{n}{d} \ell$. Since $\frac{n}{d} \left\lvert\, \frac{a}{d}(x-u)\right.$ and $\operatorname{gcd}\left(\frac{a}{d}, \frac{n}{d}\right)=1$, it follows that $\left.\frac{n}{d} \right\rvert\,(x-u)$. Thus we can choose $k \in \mathbb{Z}$ so that $x-u=k \frac{n}{d}$ and then we have $x=u+k \frac{n}{d}$, as required.
2.45 Example: Solve $221 x=595 \bmod 323$.

Solution: The Euclidean Algorithm gives

$$
323=1 \cdot 221+102,221=2 \cdot 102+17,102=6 \cdot 17+0
$$

and so $\operatorname{gcd}(221,323)=17$. Note that $\frac{595}{17}=35$, so the congruence has a solution. BackSubstitution gives the sequence

$$
1,-2,3
$$

so we have $221 \cdot 3-323 \cdot 2=17$. Multiply by 35 to get $221 \cdot 105-323 \cdot 70=595$. Thus one solution to the given congruence is $x=105$. Since $\frac{323}{17}=19$ and $105=5 \cdot 19+10$, the general solution is given by $x=105=10 \bmod 19$.
2.46 Theorem: (The Chinese Remainder Theorem) Let $n, m \in \mathbb{Z}^{+}$and let $a, b \in \mathbb{Z}$. Consider the pair of congruences

$$
\begin{aligned}
& x=a \bmod n, \\
& x=b \bmod m .
\end{aligned}
$$

(1) The pair of congruences has a solution $x \in \mathbb{Z}$ if and only if $\operatorname{gcd}(n, m) \mid(b-a)$, and
(2) if $x=u$ is one solution, then the general solution is $x=u \bmod \operatorname{lcm}(n, m)$.

Proof: Suppose that the given pair of congruences has a solution and let $d=\operatorname{gcd}(n, m)$. Let $x=u$ be a solution, so we have $u=a \bmod n$ and $u=b \bmod m$. Since $u=a \bmod n$ we can choose $k \in \mathbb{Z}$ so that $u=a+k n$. Since $u=b \bmod m$ we can choose $\ell \in \mathbb{Z}$ so that $u=b+\ell m$. Since $u=a+k n=b+\ell n$ we have $b-a=n k-m \ell$. Since $d \mid n$ and $d \mid m$ it follows that $d \mid(n x+m y)$ for all $x, y \in \mathbb{Z}$ so in particular $d \mid(n k-m \ell)$, hence $d \mid(b-a)$. Conversely, suppose that $d \mid(b-a)$. By the Linear Diophantine Equation Theorem, the equation $n x+m y=b-a$ has a solution. Choose $k, \ell \in \mathbb{Z}$ so that $n k-m \ell=b-a$. Then we have $a+n k=b+m \ell$. Let $u=a+n k=b+m \ell$. Since $u=a+n k$ we have $u=a \bmod n$ and since $u=b+m \ell$ we have $u=b \bmod m$. Thus $x=u$ is a solution to the pair of congruence.

Now suppose that $u=a \bmod n$ and $u=b \bmod m$. Let $\ell=\operatorname{lcm}(n, m)$. Let $k \in \mathbb{Z}$ be arbitrary and let $x=u+k \ell$. Since $x-u=k \ell$ we have $\ell \mid(x-u)$. Since $n \mid \ell$ and $\ell \mid(x-u)$ we have $n \mid(x-u)$ so that $x=u \bmod n$. Since $x=u \bmod n$ and $u=a \bmod n$ we have $x=a \bmod n$. Similarly $x=b \bmod m$.

Conversely, let $x \in \mathbb{Z}$ and suppose that $x=a \bmod n$ and $x=b \bmod m$. Since $x=a \bmod n$ and $u=a \bmod n$ we have $x=u \bmod n$ so that $n \mid(x-u)$. Since $x=b \bmod m$ and $u=b \bmod m$ we have $x=u \bmod m$ so that $m \mid(x-u)$. Since $n \mid(x-u)$ and $m \mid(x-u)$ and $\ell=\operatorname{lcm}(n, m)$, it follows that $\ell \mid(x-u)$ so that $x=u \bmod \ell$.
2.47 Example: Solve the pair of congruences $x=2 \bmod 15$ and $x=13 \bmod 28$.

Solution: We want to find $k, \ell \in \mathbb{Z}$ such that $x=2+15 k=13+28 \ell$. We need $15 k-28 \ell=11$. The Euclidean Algorithm gives

$$
28=1 \cdot 15+13,15=1 \cdot 13+2,13=6 \cdot 2+1
$$

so that $\operatorname{gcd}(15,28)=1$ and Back-Substitution gives the sequence

$$
1,-6,7,-13
$$

so that $(15)(-13)+(28)(7)=1$. Multiplying by 11 gives $(15)(-143)+(28)(77)=11$, so one solution to the equation $15 k-28 \ell=11$ is given by $(k, l)=(-143,77)$. It follows that one solution to the pair of congruences is given by $u=2+15 k=2-15 \cdot 143=-2143$. Since $\operatorname{lcm}(15,28)=15 \cdot 28=420$, and $-2143=-6 \cdot 420+377$, the general solution to the pair of congruences is $x=-2143=377 \bmod 420$.
2.48 Exercise: Solve the congruence $x^{3}+2 x=18 \bmod 35$.
2.49 Exercise: Solve the system $x=17 \bmod 25, x=14 \bmod 18$ and $x=22 \bmod 40$.
2.50 Theorem: (Euler's Totient Function) Let $n=\prod p_{i}{ }^{k_{i}}$ where p_{1}, \cdots, p_{ℓ} are distinct primes and $k_{1}, \cdots, k_{\ell} \in \mathbb{Z}^{+}$. Then

$$
\varphi(n)=\prod_{i=1}^{\ell} \varphi\left(p_{i}^{k_{i}}\right)=\prod_{i=1}^{\ell}\left(p_{i}^{k_{i}}-p_{i}^{k_{i}-1}\right)
$$

Proof: As mentioned earlier (in Example 2.43) when $n=p^{k}$ we have

$$
U_{p^{k}}=\left\{1,2, \cdots, p^{k}\right\} \backslash\left\{p, 2 p, 3 p, \cdots, p^{k}\right\}
$$

and hence $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}$. Thus it suffices to prove that if $k, \ell \in \mathbb{Z}$ with $\operatorname{gcd}(k, \ell)=1$ then we have $\varphi(k \ell)=\varphi(k) \varphi(\ell)$.

Let $k, \ell \in \mathbb{Z}$ with $\operatorname{gcd}(k, \ell)=1$. Define $F: \mathbb{Z}_{k \ell} \rightarrow \mathbb{Z}_{k} \times \mathbb{Z}_{\ell}$ by $F(x)=(x, x)$ where $x \in \mathbb{Z}$. Note that F is well-defined because if $x=y \bmod k l$ then $x=y \bmod k$ and $x=y \bmod \ell$. Note that F is bijective by the Chinese Remainder Theorem: indeed F is surjective because given $a, b \in \mathbb{Z}$ there exists a solution $x \in \mathbb{Z}$ to the pair of congruences $x=a \bmod k$ and $x=b \bmod \ell$, and F is injective because the solution x is unique modulo $k \ell$. We claim that the restriction of F to $U_{k \ell}$ is a bijection from $U_{k \ell}$ to $U_{k} \times U_{\ell}$. Note that if $x \in U_{k \ell}$ then we have $\operatorname{gcd}(x, k \ell)=1$ so that $\operatorname{gcd}(x, k)=1$ and $\operatorname{gcd}(x, \ell)=1$, and hence $x \in U_{k}$ and $x \in U_{\ell}$, and so we have $F(x)=(x, x) \in U_{k} \times U_{\ell}$. Suppose, on the other hand, that $a \in U_{k}$ and $b \in U_{\ell}$ and let $x F^{-1}(a, b) \in \mathbb{Z}_{k \ell}$, so we have $x=a \bmod k$ and $x=b \bmod \ell$. Since $x=a \bmod k$ we have $\operatorname{gcd}(x, k)=\operatorname{gcd}(a, k)=1$ and since $x=b \bmod \ell$ we have $\operatorname{gcd}(x, \ell)=\operatorname{gcd}(b, \ell)=1$. Since $\operatorname{gcd}(x, k)=1$ and $\operatorname{gcd}(x, \ell=1)$ it follows that $\operatorname{gcd}(x, k \ell)=1$ and so we have $x \in U_{k \ell}$. Thus the restriction of F to $U_{k \ell}$ is a well-defined bijective map from $U_{k \ell}$ to $U_{k} \times U_{\ell}$. It follows that

$$
\varphi(k \ell)=\left|U_{k \ell}\right|=\left|U_{k} \times U_{\ell}\right|=\left|U_{k}\right| \cdot\left|U_{\ell}\right|=\varphi(k) \varphi(\ell)
$$

as required.
2.51 Theorem: (The Generalized Chinese Remainder Theorem) Let $\ell \in \mathbb{Z}^{+}$, let $n_{i} \in \mathbb{Z}^{+}$ and $a_{i} \in \mathbb{Z}$ for all indices i with $1 \leq i \leq \ell$. Consider the system of ℓ congruences $x=a_{i} \bmod n_{i}$ for all indices i with $1 \leq i \leq \ell$.
(1) The system has a solution x if and only if $\operatorname{gcd}\left(n_{i}, n_{j}\right) \mid\left(a_{i}-a_{j}\right)$ for all i, j, and
(2) if $x=u$ is one solution then the general solution is $x=u \bmod \operatorname{lcm}\left(n_{1}, n_{2}, \cdots, n_{\ell}\right)$.

Proof: The proof is left as an exercise.

