
Chapter 2. The Ring of Integers Modulo N

2.1 Definition: A (commutative) ring (with 1) is a set R with two elements 0, 1 ∈ R
(usually assumed to be distinct) and two binary operations, +,× : R × R → R (usually
called addition and multiplication) where, for a, b ∈ R, we write +(a, b) as a + b and we
write ×(a, b) as a× b or a · b or ab, which satisfy the following axims.

R1. + is associative: (a + b) + c = a + (b + c) for all a, b, c ∈ R,
R2. + is commutative: a + b = b + a for all a, b, c ∈ R,
R3. 0 is an additive identity: a + 0 = a for all a ∈ R,
R4. every a∈R has an additive inverse: for all a∈R there exists b∈R such that a+ b = 0,
R5. × is associative: (ab)c = a(bc) for all a, b, c ∈ R,
R6. × is commutative: a ∗ b = b ∗ a for all a, b ∈ R,
R7. 1 is a multiplicative identity: a× 1 = a for all a ∈ R, and
R8. × is distributive over +: a(b + c) = ab + ac and (a + b)c = ac + bc for all a, b, c ∈ R.

For a ∈ R we say that a is invertible (or that a is a unit) when there is an element b ∈ R
with ab = 1. A field is a commutative ring F in which 0 6= 1 and

R9. every non-zero element is a unit: for all 0 6= a ∈ F there exists b ∈ F such that ab = 1.

2.2 Example: Z is a ring, and Q, R and C are fields.

2.3 Example: Let d ∈ Z be a non-square (that is d 6= s2 with s ∈ Z). When d > 0 we
have

√
d ∈ R and when d < 0 we write

√
d =

√
|d| i ∈ C. Let

Z
[√

d
]

=
{
a + b

√
d
∣∣ a, b ∈ Z

}
,

Q
[√

d
]

=
{
a + b

√
d
∣∣ a, b ∈ Q

}
.

Verify that Z
[√

d
]

is a ring and that Q
[√

d
]

is a field. When d > 0 so Z[
√
d] ⊆ Q[

√
d] ⊆ R,

we say that Z[
√
d] is a real quadratic ring and Q[

√
d] is a real quadratic field, and

when when d < 0 so Z[
√
d] ⊆ Q[

√
d] ⊆ C and we say that Z[

√
d] is a complex quadratic

ring and Q[
√
d] is a complex quadratic field. The ring Z[

√
−1] = Z[i] is called the ring

of Gaussian integers.

2.4 Example: Many students will be familiar with the ring Zn of integers modulo n.
Later in this chapter, we shall define the ring Zn and show that Zn is a field if and only if
n is prime.

2.5 Remark: When R is a commutative ring, the set R[x] of polynomials with coefficients
in R is a commutative ring and, when n ∈ Z with n ≥ 2, the set Mn(R) of n× n matrices
with entries in R is an example of a non-commutative ring (Axiom R6 does not hold).

2.6 Theorem: (Uniqueness of Identity and Inverse) Let R be a ring. Then

(1) the additive identity element 0 is unique in the sense that if e ∈ R has the property
that a + e = a for all a ∈ R then e = 0,
(2) the multiplicative identity element 1 is unique in the sense that for all u ∈ R, if au = a
for all a ∈ R then u = 1,
(3) the additive inverse of each a ∈ R is unique in the sense that for all a, b, c ∈ R if
a + b = 0 and a + c = 0 then b = c, and
(4) the multiplicative inverse of each unit a ∈ R is unique in the sense that for all a ∈ R,
if there exist b, c ∈ R such that ab = 1 and ac = 1 then b = c.

Proof: The proof is left as an exercise.
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2.7 Notation: Let R be a ring. For a ∈ R we denote the unique additive inverse of a ∈ R
by −a, and for a, b ∈ R we write b − a for b + (−a). If a is a unit we denote its unique
multiplicative inverse by a−1. When F is a field, and a, b ∈ F with b 6= 0 we also write
b−1 as 1

b and we write ab−1 as a
b .

2.8 Theorem: (Cancellation Under Addition) Let R be a ring. Then for all a, b, c ∈ R,

(1) if a + b = a + c then b = c,
(2) if a + b = b then a = 0, and
(3) if a + b = 0 then a = −b.

Proof: The proof is left as an exercise.

2.9 Note: We do not, in general, have similar rules for cancellation under multiplication.
In general, for a, b, c in a ring R, ab = ac does not imply that b = c, ab = b does not imply
that a = 1, and ac = 0 does not imply that a = 0 or b = 0 (and in the case that R is not
commutative, ac = 1 does not imply that ca = 1). When ac = 0 but a 6= 0 and b 6= 0, we
say that a and b are zero divisors. A commutative ring with 1 which has no zero divisors
is called an integral domain.

2.10 Theorem: (Cancellation Under Multiplication) Let R be a ring. For all a, b, c ∈ R,
if ab = ac then either a = 0 or b = c or a is a zero divisor.

Proof: Suppose ab = ac. Then ab − ac = 0 so a(b − c) = 0. By the definition of a zero
divisor, either a = 0 or b− c = 0 (hence b = c), or else both a and b− c are zero divisors.

2.11 Theorem: (Basic Properties of Rings) Let R be a ring. Then

(1) 0 · a = 0 for all a ∈ R,
(2) (−a)b = −(ab) = a(−b) for all a, b ∈ R,
(3) (−a)(−b) = ab for all a, b ∈ R,
(4) (−1)a = −a for all a ∈ R.

Proof: Let a ∈ R. Then 0 · a = (0 + 0) · a = 0 · a + 0 · a. Thus 0 · a = 0 by additive
cancellation. The proof that a ·0 = 0 is similar, and the other proofs are left as an exercise.

2.12 Remark: In a ring R, we usually assume that 0 6= 1. Note that if 0 = 1 then in fact
R = {0} because for all a ∈ R we have a = a · 1 = a · 0 = 0. The ring R = {0} is called
the trivial ring.

2.13 Notation: Let R be a ring. For a ∈ R and k ∈ Z we define ka ∈ R as follows. We
define 0a = 0, and for k ∈ Z+ we define ka = a + a + · · · + a with k terms in the sum,
and we define (−k)a = k(−a). For a ∈ R and k ∈ N we define ak ∈ R as follows. We
define a0 = 1 and for k ∈ Z+ we define ak = a · a · . . . · a with k terms in the product.
When a is a unit and k ∈ Z+, we also define a−k = (a−1)k. For all k, l ∈ Z and all a ∈ R
we have (k + l)a = ka + la, (−k)a = −(ka) = k(−a), −(−a) = a, −(a + b) = −a − b,
(ka)(lb) = (kl)(ab). For all k, l ∈ N and all a ∈ R we have ak+l = akal. When a and b are
units, for all k, l ∈ Z we have ak+l = akal, a−k = (ak)−1, (a−1)−1 = a and (ab)−1 = b−1a−1.
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2.14 Definition: Let n ∈ Z+. For a, b ∈ Z we say that a is equal (or congruent) to b
modulo n, and we write a = b mod n, when n

∣∣(a − b) or, equivalently, when a = b + kn
for some k ∈ Z.

2.15 Theorem: Let n ∈ Z+. For a, b ∈ Z we have a = b mod n if and only if a and b have
the same remainder when divided by n. In particular, for every a ∈ Z there is a unique
r ∈ Z with a = r mod n and 0 ≤ r < n.

Proof: Let a, b ∈ Z. Use the Division Algorithm to write a = qn + r with 0 ≤ r < n and
b = pn + s with 0 ≤ s < n. We need to show that a = b mod n if and only if r = s.
Suppose that a = b mod n, say a = b + kn where k ∈ Z. Then since a = qn + r and
a = b + kn = (pn + s) + kn = (p + k)n + s with 0 ≤ r < n and 0 ≤ s < n, it follows that
q = p+s and r = s by the uniqueness part of the Division Algorithm. Conversely, suppose
that r = s. Then we have 0 = r − s = (a − qn) − (b − pn) so that a = b + (q − p)n, and
hence a = b mod n.

2.16 Example: Find 117 mod 35.

Solution: We are being asked to find the unique integer r with 0 ≤ r < n such that
117 = r mod 35 or, in other words, to find the remainder r when 117 is divided by 35.
Since 117 = 3 · 35 + 12 we have 117 = 12 mod 35.

2.17 Definition: An equivalence relation on a set S is a binary relation ∼ on S such
that

E1. ∼ is reflexive: for every a ∈ S we have a ∼ a,
E2. ∼ is symmetric: for all a, b ∈ S, if a ∼ b then b ∼ a, and
E3. ∼ is transitive: for all a, b, c ∈ S, if a ∼ b and b ∼ c then a ∼ c.

When ∼ is an equivalence relation on S and a ∈ S, the equivalence class of a in S is the
set

[a] =
{
x ∈ S

∣∣x ∼ a
}
.

2.18 Theorem: Let n ∈ Z+. Then congruence modulo n is an equivalence relation on Z.

Proof: Let a ∈ Z. Since a = a + 0 · n we have a = a mod n. Thus congruence modulo
n satisfies Property E1. Let a, b ∈ Z and suppose that a = b mod n, say a = b + kn
with k ∈ Z. Then b = a + (−k)n so we have b = a mod n. Thus congruence modulo n
satisfies Property E2. Let a, b, c ∈ Z and suppose that a = b mod n and b = c mod n.
Since a = b mod n we can choose k ∈ Z so that a = b + kn. Since b = c mod n we can
choose ` ∈ Z so that b = c + `n. Then a = b + kn = (c + `n) + kn = c + (k + `)n and so
a = c mod n. Thus congruence modulo n satisfies Property E3.

2.19 Definition: A partition of a set S is a set P of nonempty disjoint subsets of S
whose union is S. This means that

P1. for all A ∈ P we have ∅ 6= A ⊆ S,
P2. for all A,B ∈ P , if A 6= B then A ∩B = ∅, and
P3. for every a ∈ S we have a ∈ A for some A ∈ P .

2.20 Example: P =
{
{1, 3, 5}, {2}, {4, 6}

}
is a partition of S = {1, 2, 3, 4, 5, 6}.
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2.21 Theorem: Let ∼ be an equivalence relation on a set S. Then P =
{

[a]
∣∣a ∈ S

}
is a

partition of S.

Proof: For a ∈ S, it is clear from the definition of [a] that [a] ⊆ S, and we have [a] 6= ∅
because a ∼ a so a ∈ [a]. This shows that P satisfies P1.

Let a, b ∈ S. We claim that a ∼ b if and only if [a] = [b]. Suppose that a ∼ b. Let
x ∈ S. Suppose that x ∈ [a]. Then x ∼ a by the definition of [a]. Since x ∼ a and a ∼ b
we have x ∼ b since ∼ is transitive. Since x ∼ b we have x ∈ [b]. This shows that [a] ⊆ [b].
Since a ∼ b implies that b ∼ a by symmetry, a similar argument shows that [b] ⊆ [a]. Thus
we have [a] = [b]. Conversely, suppose that [a] = [b]. Then since a ∼ a we have a ∈ [a].
Since a ∈ [a] and [a] = [b], we have a ∈ [b]. Since a ∈ [b], we have a ∼ b. Thus a ∼ b if and
only if [a] = [b], as claimed.

Let a, b ∈ S. We claim that if [a] 6= [b] then [a] ∩ [b] = ∅. Suppose that [a] ∩ [b] 6= ∅.
Choose c ∈ [a]∩[b]. Since c ∈ [a] so that c ∼ a we have [c] = [a] (by the above claim). Since
c ∈ [b] so that c ∼ b we have [c] = [b]. Thus [a] = [c] = [b], as required. This completes the
proof that P satisfies P2.

Finally, note that P satisfies P3 because given a ∈ S we have a ∈ [a] ∈ P .

2.22 Definition: Let ∼ be an equivalence relation on a set S. The quotient of the set
S by the relation ∼, denoted by S

/
∼, is the partition P of the above theorem, that is

S
/
∼ =

{
[a]
∣∣a ∈ S

}
.

2.23 Definition: Let n ∈ Z+. Let ∼ be the equivalence relation on Z defined for a, b ∈ Z
by a ∼ b⇐⇒ a = b mod n, and write [a] = {x ∈ Z|x ∼ a} = {x ∈ Z|x = a mod n}. The
set of integers modulo n, denoted by Zn, is defined to be the quotient set

Zn = Z
/
∼ =

{
[a]
∣∣a ∈ Z

}
.

Since every a ∈ Z is congruent modulo n to a unique r ∈ Z with 0 ≤ r < n, we have

Zn =
{

[0], [1], [2], · · · , [n− 1]
}

and the elements listed in the above set are distinct so that Zn is an n-element set.

2.24 Example: We have

Z3 =
{

[0], [1], [2]
}

=
{
{· · · ,−3, 0, 3, 6, · · ·} , {· · · ,−2, 1, 4, 7, · · ·} , {· · · ,−1, 2, 5, 8, · · ·}

}
.
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2.25 Theorem: (Addition and Multiplication Modulo n) Let n ∈ Z+. For a, b, c, d ∈ Z,
if a = c mod n and b = d mod n then a + b = c + d mod n and ab = cd mod n. It follows
that we can define addition and multiplication operations on Zn by defining

[a] + [b] = [a + b] and [a] [b] = [ab]

for all a, b ∈ Z. When n ≥ 2, the set Zn is a commutative ring using these operations with
zero and identity elements [0] and [1] (in Z1 we have [0] = [1], so Z1 is the trivial ring).

Proof: Let a, b, c, d ∈ Z. Suppose that a = c mod n and b = d mod n. Since a = c mod n
we can choose k ∈ Z so that a = c + kn. Since b = d mod n we can choose ` ∈ Z so that
b = d+`n. Then a+b = (c+kn)+(d+`n) = (c+d)+(k+`)n so that a+b = c+d mod n,
and ab = (c + kn)(d + `n) = cd + c`n + knd + kn`n = cd + (kd + `c + k`n)n so that
ab = cd mod n.

It follows that we can define addition and multiplication operations in Zn by defining
[a] + [b] = [a+ b] and [a] [b] = [ab] for all a, b ∈ Z. It is easy to verify that these operations
satisfy all of the Axioms R1 - R8 which define a commutative ring. As a sample proof, we
shall verify that one half of the distributivity Axiom R7 is satisfied. Let a, b, c ∈ Z. Then

[a]
(
[b] + [c]

)
= [a] [b + c] , by the definition of addition in Zn

=
[
a(b + c)

]
, by the definition of multiplication in Zn,

= [ab + ac] , by distributivity in Z.

= [ab] + [ac] , by the definition of addition in Zn,

= [a] [b] + [a] [c] , by the definition of multiplication in Zn.

2.26 Note: When no confusion arises, we shall often omit the square brackets from our
notation so that for a ∈ Z we write [a] ∈ Zn simply as a ∈ Zn. Using this notation, for
a, b ∈ Z we have a = b in Zn if and only if a = b mod n in Z.

2.27 Example: Addition and multiplication in Z6 are given by the following tables.

+ 0 1 2 3 4 5

0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 4
5 5 0 1 2 3 4

× 0 1 2 3 4 5

0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

2.28 Example: Find 251 · 329 + (41)2 mod 16.

Solution: Since 251 = 15 · 16 + 11 and 329 = 20 · 16 + 9 and 41 = 2 · 16 + 9, working in Z16

we have 251 = 11 and 329 = 41 = 9 so that

251 · 329 + (41)2 = 11 · 9 + 92 = (11 + 9) · 9 = 20 · 9 = 4 · 9 = 36 = 4.

Thus 251 · 329 + (41)2 = 4 mod 16.

2.29 Example: Show that for all a ∈ Z, if a = 3 mod 4 then a is not equal to the sum of
2 perfect squares.

Solution: In Z4 we have 02 = 0, 12 = 1, 22 = 4 = 0 and 32 = 9 = 1 so that x2 ∈ {0, 1} for all
x ∈ Z4. It follows that for all x, y ∈ Z4 we have x2+y2 ∈ {0+0, 0+1, 1+0, 1+1} = {0, 1, 2}
so that x2 + y2 6= 3. Equivalently, for all x, y ∈ Z we have x2 + y2 6= 3 mod 4.
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2.30 Example: Show that there do not exist integers x and y such that 3x2 + 4 = y3.

Solution: In Z9 we have

x 0 1 2 3 4 5 6 7 8

x2 0 1 4 0 7 7 0 4 1
x3 0 1 8 0 1 8 0 1 8
3x2 0 3 3 0 3 3 0 3 3

3x2 + 4 4 7 7 4 7 7 4 7 7

From the table we see that for all x, y ∈ Z9 we have 3x2 + 4 ∈ {4, 7} and y3 ∈ {0, 1, 8} and
so 3x2 + 4 6= y3. It follows that for all x, y ∈ Z we have 3x2 + 4 6= y3.

2.31 Example: There are several well known tests for divisibility which can be easily
explained using modular arithmetic. Suppose that a positive integer n is written in decimal
form as n = d` · · · d1d0 where each di is a decimal digit, that is di ∈ {0, 1, · · · , 9}. This
means that

n =
∑̀
k=0

10idi.

Since 2
∣∣10 we have 10 = 0 mod 2. It follows that in Z2 we have 10 = 0 so n =

∑̀
i=0

10idi = d0.

Thus in Z, we have 2|n⇐⇒n = 0 mod 2⇐⇒ d0 = 0 mod 2⇐⇒ 2|d0. In other words,

2 divides n if and only if 2 divides the final digit of n.

More generally for k ∈ Z with 1 ≤ k ≤ `, since 2k
∣∣10k it follows that in Z2k we have

10k = 0, hence 10i = 0 for all i ≥ k, and so n =
∑̀
i=0

10idi =
k−1∑
i=0

10idi. Thus in Z, we have

2k
∣∣n if and only if 2k

∣∣∣ k−1∑
i=0

10idi. In other words,

2k divides n if and only if 2k divides the tailing k-digit number of n.

Similarly, since 5k
∣∣10k it follows that

5k divides n if and only if 5k divides the tailing k-digit number of n.

Since 10 = 1 mod 3 it follows that in Z3 we have 10 = 1 so that n =
∑̀
i=1

10idi =
∑̀
i=0

di.

Thus in Z, 3|n⇐⇒n = 0 mod 3⇐⇒
∑̀
i=0

di = 0 mod 3⇐⇒ 3
∣∣ ∑̀
i=0

. In other words, 3 divides

n if and only if 3 divides the sum of the digits of n. Similarly, since 10 = 1 mod 9,

9 divides n if and only if 9 divides the sum of the digits of n.

Since 10 = −1 mod 11, in Z11 we have 10 = −1 so that n =
∑̀
i=0

10idi =
∑̀
i=0

(−1)idi. Thus

in Z, 11
∣∣n⇐⇒ 11

∣∣ ∑̀
i=0

(−1)idi. In other words,

11 divides n if and only if 11 divides the alternating sum of the digits of n.

2.32 Exercise: Use the divisibility tests described in the above example to find the prime
factorization of the number 28880280. Also, consider the problem of factoring the number
28880281.
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2.33 Remark: For a, b ∈ Z and n ∈ Z+ note that if a = b mod n so that [a] = [b] ∈ Zn

then we have gcd(a, n) = gcd(b, n) and so it makes sense to define gcd([a], n) = gcd(a, n).

2.34 Theorem: (Inverses Modulo n) Let n ∈ Z with n ≥ 2. For a ∈ Z, [a] is a unit in Zn

if and only if gcd(a, n) = 1 in Z.

Proof: Let a ∈ Z and let d = gcd(a, n). Suppose that [a] is a unit in Zn. Choose b ∈ Z so
that [a] [b] = [1] ∈ Zn. Then [ab] = [1] ∈ Zn and so ab = 1 mod n in Z. Since ab = 1 mod n
we can choose k so that ab = 1 + kn. Then we have ab − kn = 1. Since d|a and d|n it
follows that d

∣∣(ax + ny) for all x, y ∈ Z so in particular d
∣∣(ab− kn), that is d|1. Since d|1

and d ≥ 0, we must have d = 1.
Conversely, suppose that d = 1. By the Euclidean Algorithm with Back-Substitution,

we can choose s, t ∈ Z so that as+nt = 1. Then we have as = 1−nt so that as = 1 mod n.
Thus in Zn, we have [as] = [1] so that [a][s] = [1]. Thus [a] is a unit with [a]−1 = [s].

2.35 Corollary: For n ∈ Z+, the ring Zn is a field if and only if n is prime.

Proof: The proof is left as an exercise.

2.36 Example: Determine whether 125 is a unit in Z471 and if so find 125−1.

Solution: The Euclidean Algorithm gives

471 = 3 · 125 + 96 , 125 = 1 · 96 + 29 , 96 = 3 · 29 + 9 , 29 = 3 · 9 + 2 , 9 = 4 · 2 + 1

and so d = gcd(125, 471) = 1 and it follows that 125 is a unit in Z471. Back-Substitution
gives the sequence

1 , −4 , 13 , −43 , 56 , −211

so we have 125(−211) + 471(56) = 1. It follows that in Z471 we have 125−1 = −211 = 260.

2.37 Example: Solve the pair of equations 3x + 4y = 7 (1) and 11x + 15y = 8 (2) for
x, y ∈ Z20.

Solution: We work in Z20. Since 3 · 7 = 21 = 1 we have 3−1 = 7. Multiply both sides
of Equation (1) by 7 to get x + 8y = 9, that is x = 9 − 8y (3). Substitute x = 9 − 8y
into Equation (2) to get 11(9 − 8y) + 15y = 8, that is 19 − 8y + 15y = 8 or equivalently
7y = 9 (4). Multiply both sides of Equation (4) by 7−1 = 3 to get y = 7. Put y = 7 into
Equation (3) to get x = 9− 8 · 7 = 9− 16 = 13. Thus the only solution is (x, y) = (13, 7).

2.38 Definition: A group is a set G with an element e ∈ G and a binary operation
∗ : G×G→ G, where for a, b ∈ G we write ∗(a, b) as a ∗ b or simply as ab, such that

G1. ∗ is associative: for all a, b, c ∈ G we have (ab)c = a(bc),
G2. e is an identity element: for all a ∈ G we have ae = ea = a, and
G3. every a ∈ G has an inverse: for every a ∈ G there exists b ∈ G such that ab = ba = e.

A group G is called abelian when

G4. ∗ is commutative: for all a, b ∈ G we have ab = ba.

2.39 Definition: When R is a ring under the operations + and ×, the set R is also a
group under the operation + with identity element 0. The group R under + is called the
additive group of R. The set R is not a group under the operation × because not every
element a ∈ R has an inverse under × (in particular, the element 0 has no inverse). The
set of all invertible elements in R, however, is a group under multiplication, and we denote
it by R∗, so we have

R∗ =
{
a ∈ R

∣∣a is a unit
}
.

The group R∗ is called the group of units of R.
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2.40 Example: When F is a field, every nonzero element in F is invertible so we have
F ∗ = F \ {0}. In Z, the only invertible elements are ±1 and so Z∗ = {1,−1}.
2.41 Definition: For n ∈ Z with n ≥ 2, the group of units of Zn is called the group of
units modulo n and is denoted by Un. Thus

Un =
{
a ∈ Zn

∣∣ gcd(a, n) = 1
}
.

For convenience, we also let U1 be the trivial group U1 = Z1 = {1}. For a set S, let
|S| denote the cardinality of S, so that in particular when S is a finite set, |S| denotes
the number of elements in S. We define the Euler phi function, also called the Euler
totient function, ϕ : Z+ → Z+ by

ϕ(n) =
∣∣Un

∣∣
so that ϕ(n) is equal to the number of elements a ∈ {1, 2, · · · , n} such that gcd(a, n) = 1.

2.42 Example: Since U20 = {1, 3, 7, 9, 11, 13, 17, 19} we have ϕ(20) = 8.

2.43 Example: When p is a prime number and k ∈ Z+ notice that

Upk = {1, 2, 3, · · · , pk} \ {p, 2p, 3p, · · · , pk}
and so

ϕ(pk) = pk − pk−1 = pk−1(p− 1) = pk
(
1− 1

p

)
.

At the end of this chapter (see Theorem 2.51) we will show, more generally, that when
p1, · · · , p` are distinct prime numbers and k1, · · · , k` ∈ Z+ we have

ϕ
( ∏̀
i=1

pi
ki
)

=
∏̀
i=1

ϕ
(
pi

ki
)

=
∏̀
i=1

pki−1
i (pi − 1) =

∏̀
i=1

pi
k1
(
1− 1

pi

)
= n ·

∏̀
i=1

(
1− 1

pi

)
.

2.44 Theorem: (The Linear Congruence Theorem) Let n ∈ Z+, let a, b ∈ Z, and let
d = gcd(a, n). Consider the congruence ax = b mod n.

(1) The congruence has a solution x ∈ Z if and only if d|b, and
(2) if x = u is one solution to the congruence, then the general solution is

x = u mod n
d .

Proof: Suppose that the congruence ax = b mod n has a solution. Let x = u be a solution
so we have au = b mod n. Since au = b mod n we can choose k ∈ Z so that au = b + kn,
that is au − nk = b. Since d|a and d|n it follows that d|(ax + ny) for all x, y ∈ Z, and
so in particular d

∣∣(au − nk), hence d|b. Conversely, suppose that d|b. By the Linear
Diophanitine Equation Theorem, the equation ax+ny = b has a solution. Choose u, v ∈ Z
so that au+nv = b. Then since au = b−nv we have au = b mod n and so the congruence
ax = b mod n has a solution (namely x = u).

Suppose that x = u is a solution to the given congruence, so we have au = b mod n.
We need to show that for every k ∈ Z if we let x = u + k n

d then we have ax = b mod n
and, conversely, that for every x ∈ Z such that ax = b mod n there exists k ∈ Z such
that x = u + k n

d . Let k ∈ Z and let x = u + k n
d . Then ax = a

(
u + k n

d

)
= au + ka

d n.

Since ax = au + ka
d n and d|a so that ka

d ∈ Z, it follows that ax = au mod n. Since
ax = au mod n and au = b mod n we have ax = b mod n, as required.

Conversely, let x ∈ Z and suppose that ax = b mod n. Since ax = b mod n and
au = b mod n we have ax = au mod n. Since ax = au mod n we can choose ` ∈ Z so that
ax = au + `n. Then we have a(x− u) = `n and so a

d (x− u) = n
d `. Since n

d

∣∣a
d (x− u) and

gcd
(
a
d ,

n
d

)
= 1, it follows that n

d

∣∣(x − u). Thus we can choose k ∈ Z so that x − u = k n
d

and then we have x = u + k n
d , as required.
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2.45 Example: Solve 221x = 595 mod 323.

Solution: The Euclidean Algorithm gives

323 = 1 · 221 + 102 , 221 = 2 · 102 + 17 , 102 = 6 · 17 + 0

and so gcd(221, 323) = 17. Note that 595
17 = 35, so the congruence has a solution. Back-

Substitution gives the sequence
1 , −2 , 3

so we have 221 · 3 − 323 · 2 = 17. Multiply by 35 to get 221 · 105 − 323 · 70 = 595. Thus
one solution to the given congruence is x = 105. Since 323

17 = 19 and 105 = 5 · 19 + 10, the
general solution is given by x = 105 = 10 mod 19.

2.46 Theorem: (The Chinese Remainder Theorem) Let n,m ∈ Z+ and let a, b ∈ Z.
Consider the pair of congruences

x = a mod n,

x = b mod m.

(1) The pair of congruences has a solution x ∈ Z if and only if gcd(n,m)
∣∣(b− a), and

(2) if x = u is one solution, then the general solution is x = u mod lcm(n,m).

Proof: Suppose that the given pair of congruences has a solution and let d = gcd(n,m).
Let x = u be a solution, so we have u = a mod n and u = b mod m. Since u = a mod n
we can choose k ∈ Z so that u = a + kn. Since u = b mod m we can choose ` ∈ Z so that
u = b + `m. Since u = a + kn = b + `n we have b − a = nk − m`. Since d|n and d|m
it follows that d

∣∣(nx + my) for all x, y ∈ Z so in particular d
∣∣(nk −m`), hence d|(b − a).

Conversely, suppose that d|(b − a). By the Linear Diophantine Equation Theorem, the
equation nx + my = b− a has a solution. Choose k, ` ∈ Z so that nk −m` = b− a. Then
we have a+nk = b+m`. Let u = a+nk = b+m`. Since u = a+nk we have u = a mod n
and since u = b + m` we have u = b mod m. Thus x = u is a solution to the pair of
congruence.

Now suppose that u = a mod n and u = b mod m. Let ` = lcm(n,m). Let k ∈ Z be
arbitrary and let x = u + k`. Since x− u = k` we have `

∣∣(x− u). Since n|` and `
∣∣(x− u)

we have n
∣∣(x − u) so that x = u mod n. Since x = u mod n and u = a mod n we have

x = a mod n. Similarly x = b mod m.
Conversely, let x ∈ Z and suppose that x = a mod n and x = b mod m. Since

x = a mod n and u = a mod n we have x = u mod n so that n
∣∣(x−u). Since x = b mod m

and u = b mod m we have x = u mod m so that m
∣∣(x−u). Since n

∣∣(x−u) and m
∣∣(x−u)

and ` = lcm(n,m), it follows that `
∣∣(x− u) so that x = u mod `.
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2.47 Example: Solve the pair of congruences x = 2 mod 15 and x = 13 mod 28.

Solution: We want to find k, ` ∈ Z such that x = 2+15k = 13+28`. We need 15k−28` = 11.
The Euclidean Algorithm gives

28 = 1 · 15 + 13 , 15 = 1 · 13 + 2 , 13 = 6 · 2 + 1

so that gcd(15, 28) = 1 and Back-Substitution gives the sequence

1 , −6 , 7 , −13

so that (15)(−13) + (28)(7) = 1. Multiplying by 11 gives (15)(−143) + (28)(77) = 11, so
one solution to the equation 15k− 28` = 11 is given by (k, l) = (−143, 77). It follows that
one solution to the pair of congruences is given by u = 2 + 15k = 2 − 15 · 143 = −2143.
Since lcm(15, 28) = 15 · 28 = 420, and −2143 = −6 · 420 + 377, the general solution to the
pair of congruences is x = −2143 = 377 mod 420.

2.48 Exercise: Solve the congruence x3 + 2x = 18 mod 35.

2.49 Exercise: Solve the system x = 17 mod 25, x = 14 mod 18 and x = 22 mod 40.

2.50 Theorem: (Euler’s Totient Function) Let n =
∏

pi
ki where p1, · · · , p` are distinct

primes and k1, · · · , k` ∈ Z+. Then

ϕ(n) =
∏̀
i=1

ϕ(pi
ki) =

∏̀
i=1

(
pi

ki − pi
ki−1

)
.

Proof: As mentioned earlier (in Example 2.43) when n = pk we have

Upk =
{

1, 2, · · · , pk
}
\
{
p, 2p, 3p, · · · , pk

}
and hence ϕ(pk) = pk − pk−1. Thus it suffices to prove that if k, ` ∈ Z with gcd(k, `) = 1
then we have ϕ(k`) = ϕ(k)ϕ(`).

Let k, ` ∈ Z with gcd(k, `) = 1. Define F : Zk` → Zk × Z` by F (x) = (x, x) where
x ∈ Z. Note that F is well-defined because if x = y mod kl then x = y mod k and
x = y mod `. Note that F is bijective by the Chinese Remainder Theorem: indeed F is
surjective because given a, b ∈ Z there exists a solution x ∈ Z to the pair of congruences
x = a mod k and x = b mod `, and F is injective because the solution x is unique modulo
k`. We claim that the restriction of F to Uk` is a bijection from Uk` to Uk × U`. Note
that if x ∈ Uk` then we have gcd(x, k`) = 1 so that gcd(x, k) = 1 and gcd(x, `) = 1, and
hence x ∈ Uk and x ∈ U`, and so we have F (x) = (x, x) ∈ Uk ×U`. Suppose, on the other
hand, that a ∈ Uk and b ∈ U` and let xF−1(a, b) ∈ Zk`, so we have x = a mod k and
x = b mod `. Since x = a mod k we have gcd(x, k) = gcd(a, k) = 1 and since x = b mod `
we have gcd(x, `) = gcd(b, `) = 1. Since gcd(x, k) = 1 and gcd(x, ` = 1) it follows that
gcd(x, k`) = 1 and so we have x ∈ Uk`. Thus the restriction of F to Uk` is a well-defined
bijective map from Uk` to Uk × U`. It follows that

ϕ(k`) =
∣∣Uk`

∣∣ =
∣∣Uk × U`

∣∣ =
∣∣Uk

∣∣ · ∣∣U`

∣∣ = ϕ(k)ϕ(`),

as required.

2.51 Theorem: (The Generalized Chinese Remainder Theorem) Let ` ∈ Z+, let ni ∈ Z+

and ai ∈ Z for all indices i with 1 ≤ i ≤ `. Consider the system of ` congruences
x = ai mod ni for all indices i with 1 ≤ i ≤ `.

(1) The system has a solution x if and only if gcd(ni, nj)
∣∣(ai − aj) for all i, j, and

(2) if x = u is one solution then the general solution is x = u mod lcm(n1, n2, · · · , n`).

Proof: The proof is left as an exercise.
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