1.1 Definition: For $a, b \in \mathbb{Z}$ we say that a divides b (or that a is a factor of b, or that b is a multiple of a), and we write a|b, when b = ak for some $k \in \mathbb{Z}$.

1.2 Theorem: (Basic Properties of Divisors) Let $a, b, c \in \mathbb{Z}$. Then

(1) a|0 for all $a \in \mathbb{Z}$ and $0|a \iff a = 0$, (2) $a|1 \iff a = \pm 1$ and 1|a for all $a \in \mathbb{Z}$. (3) If a|b and b|c then a|c. (4) If a|b and b|a then $b = \pm a$. (5) If a|b then $|a| \le |b|$. (6) If a|b and a|c then a|(bx + cy) for all $x, y \in \mathbb{Z}$.

Proof: The proof is left as an exercise.

1.3 Theorem: (The Division Algorithm) Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Then there exist unique integers q and r such that

$$a = qb + r$$
 and $0 \le r < |b|$.

The integers q and r are called the **quotient** and **remainder** when a is divided by b.

Proof: To prove this, we shall use the floor and ceiling properties of \mathbb{Z} in \mathbb{R} : for every $x \in \mathbb{R}$, there exists a unique positive integer n with $x - 1 < n \leq x$ (this integer n is called the **floor** of x we write $n = \lfloor x \rfloor$), and there exists a unique positive integer m with $x \leq m < x + 1$ (the integer m is called the **ceiling** of x and we write $m = \lfloor x \rfloor$).

Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Case 1: suppose that b > 0 and note that |b| = b. Choose $q = \lfloor \frac{a}{b} \rfloor$ then choose r = a - qb so that a = bq + r. Since $\frac{a}{b} - 1 < q \leq \frac{a}{b}$ and b > 0 we have $a - b < qb \leq a$, hence $-a \leq -qb < -a + b$, and hence $0 \leq a - qb < b$, that is $0 \leq r < |b|$. Case 2: suppose that b < 0 and note that |b| = -b. Choose $q = \lfloor \frac{a}{b} \rfloor$ then choose r = a - qb so that a = qb + r. Since $\frac{a}{b} \leq q < \frac{a}{b} + 1$ and -b > 0 we have $-a \leq -qb < -a - b$ hence $0 \leq a - qb < -a - b$ hence $0 \leq a - qb < -b$, that is $0 \leq r < |b|$. In either case, we have found q and r, as required.

It remains to verify that the values of q and r are unique. Suppose that a = qb + rwith $0 \le r < |b|$ and a = pb + s with $0 \le s < |b|$. Suppose, for a contradiction, that $r \ne s$ and say r < s so that we have $0 \le r < s < |b|$. Since a = qb + r = pb + s we have s - r = qb - pb = (q - p)b so that b|(s - r). Since b|(s - r) we have $|b| \le |s - r| = s - r$ (by one of the basic properties of divisors). But since s < |b| and $r \ge 0$ we have s - r < |b|giving the desired contradiction. Thus we have r = s. Since r = s and s - r = (q - p)b we have 0 = (q - p)b hence p = q (since $b \ne 0$).

1.4 Note: For $a, b \in \mathbb{Z}$, when we write a = qb + r with $q, r \in \mathbb{Z}$ and $0 \le r < |b|$, we have b|a if and only if r = 0. Indeed if r = 0 then a = qb so that b|a and, conversely, if b|a with say a = pb = pb + 0, then we must have q = p and r = 0 by the uniqueness of the quotient and remainder.

1.5 Definition: Let $a, b \in \mathbb{Z}$. A common divisor of a and b is an integer d such that d|a and d|b. When a and b are not both 0, we denote the **greatest common divisor** of a and b by gcd(a, b). For convenience, we also define gcd(0, 0) = 0.

1.6 Theorem: (Basic Properties of the Greatest Common Divisor) Let $a, b, q, r \in \mathbb{Z}$.

(1) gcd(a, b) = gcd(b, a). (2) gcd(a, b) = gcd(|a|, |b|). (3) If a|b then gcd(a, b) = |a|. In particular, gcd(a, 0) = |a|. (4) If b = qa + r then gcd(a, b) = gcd(a, r).

Proof: The proof is left as an exercise.

1.7 Theorem: (Bézout's Identity) Let a and b be integers and let d = gcd(a, b). Then there exist integers s and t such that as + bt = d. The proof provides explicit procedures for finding d and for finding s and t.

Proof: We can find d using the following procedure, called the **Euclidean Algorithm**. If b|a then we have d = |b|. Otherwise, let $r_{-1} = a$ and $r_0 = b$ and use the division algorithm repeatedly to obtain integers q_i and r_i such that

Since $r_{n-1} = q_{n+1}r_n$ we have $r_n | r_{n-1}$ so $gcd(r_{n-1}, r_n) = r_n$. Since $r_{k-2} = q_k r_{k-1} + r_k$ we have $gcd(r_{k-2}, r_{k-1}) = gcd(r_{k-1}, r_k)$ and so

$$d = \gcd(a, b) = \gcd(b, r_1) = \gcd(r_1, r_2) = \dots = \gcd(r_{n-2}, r_{n-1}) = \gcd(r_{n-1}, r_n) = r_n.$$

Having found d using the Euclidean algorithm, as above, we can find s and t using the following procedure, which is known as **Back-Substitution**. If b|a so that d = |b|, then we can take s = 0 and $t = \pm 1$ to get as + bt = d. Otherwise, we let

$$s_0 = 1$$
, $s_1 = -q_n$, and $s_{\ell+1} = s_{\ell-1} - q_{n-\ell}s_\ell$ for $1 \le \ell \le n-1$

and then we can take $s = s_{n-1}$ and $t = s_n$ to get as + bt = d, because, writing $k = n - \ell$,

$$d = r_n = r_{n-2} - q_n r_{n-1} = s_1 r_{n-1} + s_0 r_{n-2}$$

$$\vdots$$

$$= \dots = s_\ell r_{n-\ell} + s_{\ell-1} r_{n-\ell-1} = s_{n-k} r_k + s_{n-k-1} r_{k-1}$$

$$= s_{n-k} (r_{k-2} - q_k r_{k-1}) + s_{n-k-1} r_{k-1} = (s_{n-k-1} - q_k s_{n-k}) r_{k-1} + s_{n-k} r_{k-2}$$

$$= (s_{\ell-1} - q_{n-\ell} s_\ell) r_{n-\ell-1} + s_\ell r_{n-\ell-2} = s_{\ell+1} r_{n-\ell-1} + s_\ell r_{n-\ell-2}$$

$$\vdots$$

$$= \dots = s_n r_0 + s_{n-1} r_{-1} = s_n b + s_{n-1} a.$$

1.8 Example: Let a = 5151 and b = 1632. Find d = gcd(a, b) and then find integers s and t so that as + bt = d.

Solution: The Euclidean Algorithm gives

$$5151 = 3 \cdot 1632 + 255$$
$$1632 = 6 \cdot 255 + 102$$
$$255 = 2 \cdot 102 + 51$$
$$102 = 2 \cdot 51 + 0$$

so d = 51. Using the quotients $q_1 = 3$, $q_2 = 6$ and $q_3 = 2$, Back-Substitution gives

$$s_0 = 1$$

$$s_1 = -q_3 = -2$$

$$s_2 = s_0 - q_2 s_1 = 1 - 6(-2) = 13$$

$$s_3 = s_1 - q_1 s_2 = -2 - 3(13) = -41$$

so we take $s = s_2 = 13$ and $t = s_3 = -41$. (It is a good idea to check that indeed we have (1632)(-41) + (5151)(13) = 51).

1.9 Example: Let a = 754 and b = -3973. Find d = gcd(a, b) then find integers s and t such that as + bt = d.

Solution: The Euclidean Algorithm gives

 $3973 = 5 \cdot 754 + 203$, $754 = 3 \cdot 203 + 145$, $203 = 1 \cdot 145 + 58$, $145 = 2 \cdot 58 + 29$, $58 = 2 \cdot 29 + 0$ so that d = 29. Then Back-Substitution gives rise to the sequence

 $1 \ , \ -2 \ , \ 3 \ , \ -11 \ , \ 58$

so we have (754)(58) + (3973)(-11) = 29, that is (754)(58) + (-3973)(11) = 29. Thus we can take s = 58 and t = 11.

1.10 Theorem: (More Properties of the Greatest Common Divisor) Let $a, b, c, d \in \mathbb{Z}$.

(1) If c|a and c|b then $c| \operatorname{gcd}(a, b)$.

(3) We have gcd(a, b) = 1 if and only if there exist $x, y \in \mathbb{Z}$ such that ax + by = 1.

(4) If $d = \gcd(a, b) \neq 0$ then $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.

(5) If a|bc and gcd(a, b) = 1 then a|c.

Proof: These properties all follow from Bézout's Identity. We shall prove Parts 1 and 5 and leave the proofs of the remaining parts as an exercise. To prove Part 1, suppose that c|a and c|b, say a = ck and b = cl. Let $d = \gcd(a, b)$ and choose $s, t \in \mathbb{Z}$ so that as + bt = d. Then we have d = as + bt = cks + clt = c(ks + lt) and so c|d.

To prove Part 5, suppose that a|bc and gcd(a, b) = 1. Since a|bc we can choose $k \in \mathbb{Z}$ so that bc = ak. Since gcd(a, b) = 1, by the Bézout's Identity, we can choose $s, t \in \mathbb{Z}$ with as + bt = 1. Then we have

$$c = c \cdot 1 = c(as + bt) = acs + bct = acs + akt = a(cs + kt),$$

and so a|c, as required.

1.11 Definition: A **diophantine equation** is a polynomial equation in which the variables represent integers. Some diophantine equations are fairly easy to solve while others can be extremely difficult.

1.12 Theorem: (Linear Diophantine Equations) Let $a, b, c \in \mathbb{Z}$ with $(a, b) \neq (0, 0)$. Let $d = \gcd(a, b)$ and note that $d \neq 0$. Consider the Diophantine equation ax + by = c. (1) The equation has a solution $(x, y) \in \mathbb{Z}^2$ if and only if d|c, and

(2) if $(u, v) \in \mathbb{Z}^2$ is one solution to the equation then the general solution is given by

$$(x,y) = (u,v) + k\left(-\frac{b}{d}, \frac{a}{d}\right)$$
 for some $k \in \mathbb{Z}$.

Proof: Suppose that the equation ax + by = c has a solution $(x, y) \in \mathbb{Z}^2$. Choose $(s, t) \in \mathbb{Z}^2$ so that as + bt = c. Since d|a and d|b, it follows that d|(ax + by) for all $x, y \in \mathbb{Z}$, so in particular d|(as + bt), that is d|c. Conversely, suppose that d|c, say $c = d\ell$ with $\ell \in \mathbb{Z}$. Use the Euclidean Algorithm with Back-Substitution to find $s, t \in \mathbb{Z}$ such that as + bt = d. Multiply by ℓ to get $a(s\ell) + b(t\ell) = d\ell = c$. Thus we can take $x = e\ell$ and $y = t\ell$ to obtain a solution $(x, y) \in \mathbb{Z}^2$ to the equation ax + by = c. This proves Part (1)

Now suppose that $(u, v) \in \mathbb{Z}^2$ is a solution to the given equation, so we have au+bv = c. To prove Part (2), we need to prove that for all $k \in \mathbb{Z}$, if we let $(x, y) = (u, v) + k\left(-\frac{b}{d}, \frac{a}{d}\right)$ then (x, y) is a solution to ax + by = c and, conversely, that if (x, y) is a solution then there exists $k \in \mathbb{Z}$ such that $(x, y) = (u, v) + k\left(-\frac{b}{d}, \frac{a}{d}\right)$.

Let
$$k \in \mathbb{Z}$$
 and let $(x, y) = (u, v) + k\left(-\frac{b}{d}, \frac{a}{d}\right)$. Then $x = u - \frac{kb}{d}$ and $y = v + \frac{ka}{d}$ and so $ax + by = a\left(u - \frac{kb}{d}\right) + b\left(v + \frac{ka}{d}\right) = (au + bv) - \frac{kab}{d} + \frac{kab}{d} = au + bv = c$.

Conversely, let (x, y) be a solution to the given equation, so we have ax + by = c. Suppose that $a \neq 0$ (we leave the case a = 0 as an exercise). Since ax + by = c and au + bu = c we have ax + by = au + bv and so a(x - u) = -b(y - v). Divide both sides by d to get $\frac{a}{d}(x - u) = -\frac{b}{d}(y - v)$. Since $\frac{a}{d}\left|\frac{b}{d}(y - v)\right|$ and $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$, it follows that $\frac{a}{d}\left|(y - v)\right|$. Choose $k \in \mathbb{Z}$ so that $y - v = \frac{ka}{d}$. Since $a \neq 0$ and $a(x - u) = -b(y - v) = -\frac{kab}{d}$, we have $x - u = -\frac{kb}{d}$ and so $(x, y) = (u, v) + k\left(-\frac{b}{d}, \frac{a}{d}\right)$, as required.

1.13 Example: Let a = 426, b = 132 and c = 42. Find all $x, y \in \mathbb{Z}$ such that ax + by = c. Solution: The Euclidean Algorithm gives

$$426 = 3 \cdot 132 + 30$$
, $132 = 4 \cdot 30 + 12$, $30 = 2 \cdot 12 + 6$, $12 = 2 \cdot 6 + 0$

so that d = gcd(a, b) = 6. Note that d|c, indeed $c = d\ell$ with $\ell = 7$, so a solution does exist. Back-Substitution gives the sequence

$$1, -2, 9, -29$$

so we have a(9) + b(-29) = d. Multiply by $\ell = 7$ to get a(63) + b(-203) = c, so one solution is given by (x, y) = (63, -203). Since $\frac{a}{d} = \frac{426}{6} = 71$ and $\frac{b}{d} = \frac{132}{6} = 22$. The general solution is (x, y) = (63, -203) + k(-22, 71).

1.14 Exercise: Let a = 4123, b = 17689 and c = 798. Find all $x, y \in \mathbb{Z}$ with $0 \le y \le 100$ such that ax + by = c.

1.15 Definition: Let *n* be a positive integer. We say that *n* is a **prime number** when $n \ge 2$ and *n* has no factor $a \in \mathbb{Z}$ with 1 < a < n. We say that *n* is **composite** when $n \ge 2$ and *n* is not prime, that is when *n* does have a factor $a \in \mathbb{Z}$ with 1 < a < n.

1.16 Theorem: (Basic Properties of Primes) Let p be a prime number.

(1) For all $a \in \mathbb{Z}$ we have $gcd(a, p) \in \{1, p\}$ with gcd(a, p) = p if and only if p|a.

(2) For all $a, b \in \mathbb{Z}$, if p|ab then either p|a or p|b.

Proof: Part 1 follows directly from the definition of a prime number the definition of gcd(a, p). Part 2 then follows from Part 5 of Theorem 1.10.

1.17 Theorem: Every integer $n \ge 2$ has a prime factor. Every composite integer $n \ge 2$ has a prime factor p with $p \le \sqrt{n}$.

Proof: Let $n \ge 2$. Suppose, inductively, that every integer k with $2 \le k < n$ has a prime factor. If n is prime, then n is a prime factor of itself, so n has a prime factor. Suppose that n is composite. Let a be a factor of n with 1 < a < n. By the induction hypothesis, a has a prime factor. Let p be a prime factor of a. Since p|a and a|n we have p|n, and so p is a prime factor of n. It follows, by induction, that every integer $n \ge 2$ has a prime factor.

Now suppose that n is composite. Write n = ab where $a, b \in \mathbb{Z}$ with $1 < a \leq b < n$. Note that $a \leq \sqrt{n}$ because if we had $a > \sqrt{n}$ then we would also have $b \geq a > \sqrt{n}$ so that $n = ab > \sqrt{n}\sqrt{n} = n$ which is impossible. Let p be a prime factor of a. Since p|a and a|n we have p|n so that p is a prime factor of n. Since p|a and $a \leq \sqrt{n}$ we have $p \leq a \leq \sqrt{n}$.

1.18 Note: Given an integer $n \ge 2$, we can list all primes p with $p \le n$ using the following procedure, which is called the **Sieve of Eratosthenes**. We begin by listing all the integers from 1 to n, and we cross off the number 1 (1 is a unit; it is not a prime). We circle the smallest remaining number p_1 (namely $p_1 = 2$, which is prime) then we cross off all other multiples of p_1 (which are composite). We circle the smallest remaining number p_2 (namely $p_2 = 3$, which is prime) then we cross off all other multiples of p_2 (which are all composite). At the k^{th} step of the procedure, when we circle the smallest remaining number p_k , it must be prime because if p_k was composite then it would have a prime factor p_i with $p_i < p_k$, but we have already found all primes $p_i < p_k$ and we have already crossed off all their multiples. We continue the procedure until we have circle a prime p_ℓ with $p_\ell \ge \sqrt{n}$ and crossed off its multiples. At this stage we circle all of the remaining numbers in the list because they are all prime. Indeed, if a remaining number m was composite then it would have a prime factor p with $p \le \sqrt{n}$ and crossed off all their multiples.

1.19 Exercise: Use the Sieve of Eratosthenes to list all primes p with $p \leq 100$.

1.20 Theorem: (Euclid) There exist infinitely many prime numbers.

Proof: Suppose, for a contradiction, that there exist finitely many prime numbers. Let p_1, p_2, \dots, p_ℓ be all of the prime numbers. Consider the number $n = p_1 p_2 \dots p_\ell + 1$. By Theorem 1.17, the number n has a prime factor and so $p_k | n$ for some index k. But p_k is not a factor of n because when we write $n = qp_k + r$ as in the Division Algorithm, we find that the remainder is $r = 1 \neq 0$ (and the quotient is $q = \prod_{i=\ell}^{l} p_i$).

1.21 Example: Note that there exist arbitrarily large gaps between consecutive prime numbers because, given a positive integer $m \ge 2$, we have 2|(m!+2), 3|(m!+3), 4|(m!+4) and so on, so the consecutive numbers $m!+2, m!+3, m!+4, \cdots, m!+m$ are all composite.

1.22 Remark: Here are a few facts about prime numbers which are difficult to prove.

(1) Bertrand's Postulate: for every integer $n \ge 1$ there exists a prime p with n .

(2) Dirichlet's Theorem: for all positive integers a, b with gcd(a, b) = 1, there exist infinitely many primes of the form p = a + kb for some $k \in \mathbb{N}$.

(3) The Prime Number Theorem: for $x \in \mathbb{R}$, let $\pi(x)$ be the number of primes p with $p \leq x$. Then $\lim_{x \to \infty} \frac{\pi(x)}{x/\ln x} = 1$.

1.23 Remark: Here are a few statements about prime numbers which are conjectured to be true, but for which no proof has, as yet, been found.

(1) Legendre's Conjecture: for every $n \in \mathbb{Z}^+$ there exists a prime p with $n^2 .$

- (2) Goldbach's Conjecture: every even integer $n \ge 4$ is the sum of two prime numbers.
- (3) Twin Primes Conjecture: there exist infinitely many p for which p and p+2 are prime.
- (4) The $n^2 + 1$ Conjecture: there exist infinitely many primes $p = n^2 + 1$ with $n \in \mathbb{Z}^+$.
- (5) Mersenne Primes Conjecture: there exist infinitely many primes $p = 2^k 1$ with $k \in \mathbb{Z}^+$.
- (6) Fermat Primes Conjecture: there exist finitely many primes $p = 2^k + 1$ with $k \in \mathbb{N}$.

1.24 Theorem: (The Fundamental Theorem of Arithmetic, or The Unique Factorization Theorem) Every integer $n \ge 2$ can be written uniquely in the form $n = \prod_{k=1}^{\ell} p_k = p_1 p_2 \cdots p_\ell$ where $\ell \in \mathbb{Z}^+$ and the p_k are primes with $p_1 \le p_2 \le \cdots \le p_\ell$.

Proof: First we prove the existence of such a factorization. Let n be an integer with $n \ge 2$ and suppose, inductively, that every integer k with $2 \le k < n$ can be written in the required form. If n is prime then we can write $n = \prod_{k=1}^{\ell} p_k = p_1$ with $\ell = 1$ and $p_1 = n$. Suppose that n is composite. Write n = ab where $a, b \in \mathbb{Z}$ with 1 < a < n and 1 < b < n. By the induction hypothesis, we can write $a = q_1q_2 \cdots q_\ell$ and $b = r_1r_2 \cdots r_m$ where $\ell, m \in \mathbb{Z}^+$ and the p_i and q_i are primes with $p_1 \le p_2 \le \cdots \le p_\ell$ and $q_1 \le q_2 \le \cdots \le q_m$. Then $n = q_1q_2 \cdots q_\ell r_1r_2 \cdots r_m = p_1p_2 \cdots p_{\ell+m}$ where the ordered $(\ell+m)$ -tuple $(p_1, p_2, \cdots, p_{\ell+m})$ is obtained from the ordered $(\ell+m)$ -tuple $(q_1, q_2, \cdots, q_\ell, r_1, r_2, \cdots, r_m)$ by rearranging the terms into non-decreasing order.

Let us prove uniqueness. Suppose that $n = p_1 p_2 \cdots p_\ell = q_1 q_2 \cdots q_m$ where $\ell, m \in \mathbb{Z}^+$ and the p_i and q_j are primes with $p_1 \leq p_2 \leq \cdots \leq p_\ell$ and $q_1 \leq q_2 \leq \cdots \leq q_m$. We need to prove that $\ell = m$ and that $p_i = q_i$ for every index *i*. Since $n = p_1 p_2 \cdots p_\ell$ we see that $p_1 | n$ and so $p | q_1 q_2 \cdots q_m$. By applying Part (2) of Theorem 5.12 repeatedly, it follows that $p_1 | q_i$ for some index *i*. Since $p_1 | q_i$ and q_i is prime, we must have $p_1 \in \{\pm 1, \pm q_i\}$. Since p_1 is prime, we have $p_1 > 1$. Since $p_1 > 1$ and $p_1 \in \{\pm 1, \pm q_i\}$ it follows that $p_1 = q_i$. A similar argument shows that $q_1 = p_j$ for some index *j*. Since $p_1 = q_i \geq q_1 = p_j \geq p_1$, it follows that $p_1 = q_1$.

Since $p_1p_2\cdots p_\ell = q_1q_2\cdots q_m$ and $p_1 = q_1$, we can divide both sides by p_1 to get $p_2p_3\cdots p_\ell = q_2q_3\cdots q_m$. By repeating the above argument, we can show that $p_2 = q_2$, then we can divide both sides by $p_2 = q_2$ to get $p_3\cdots p_\ell = q_3\cdots q_m$ and so on.

If we had $\ell \neq m$, say $\ell < m$, repeating the above procedure would eventually yield $p_{\ell} = q_{\ell}q_{\ell+1}\cdots q_m$ with $p_{\ell} = q_{\ell}$ and then $1 = q_{\ell+1}\cdots q_m$ which is not possible since each $q_i > 1$. Thus we must have $\ell = m$ and repeating the above procedure gives $p_i = q_i$ for all indices i, as required.

1.25 Note: Here are two alternate ways of expressing the Unique Factorization Theorem.

(1) Every integer $n \ge 2$ can be written uniquely in the form $n = \prod_{i=1}^{\ell} p_i^{m_i} = p_1^{m_1} \cdots p_{\ell}^{m_{\ell}}$ where $\ell \in \mathbb{Z}^+$ and the p_i are distinct primes with $p_1 < p_2 < \cdots < p_{\ell}$ and each $m_i \in \mathbb{Z}^+$. (2) Given distinct primes $p_1, p_2, \cdots, p_{\ell}$, every $n \in \mathbb{Z}^+$ whose prime factors are included in $\{p_1, \cdots, p_{\ell}\}$ can be written uniquely in the form $n = \prod_{i=1}^{\ell} p_i^{m_i} = p_1^{m_1} \cdots p_{\ell}^{m_{\ell}}$ with $m_i \in \mathbb{N}$.

1.26 Theorem: (Unique Factorization and Divisors) Let $n = p_1^{m_1} p_2^{m_2} \cdots p_\ell^{m_\ell}$ where $\ell \in \mathbb{Z}^+$, the p_i are distinct primes, and each $m_i \in \mathbb{N}$. Then the positive divisors of n are the numbers of the form $a = p_1^{j_1} p_2^{j_2} \cdots p_\ell^{j_\ell}$ where each $j_i \in \mathbb{Z}$ with $0 \leq j_i \leq m_i$.

Proof: Suppose that $n = p_1^{m_1} p_2^{m_2} \cdots p_\ell^{m_\ell}$ and $a = p_1^{j_1} p_2^{j_2} \cdots p_\ell^{j_\ell}$ where p_1, p_2, \cdots, p_ℓ are distinct primes and $0 \leq j_i \leq m_i$ for all indices *i*. Let $b = p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell}$ where $k_i = m_i - j_i$ (note that $k_i \geq 0$ since $j_i \leq m_i$). Then

$$ab = (p_1^{j_1} \cdots p_\ell^{j\ell})(p_1^{k_1} \cdots p_\ell^{k_\ell}) = p_1^{j_1 + k_1} \cdots p_\ell^{j_\ell + k_\ell} = p_1^{m_1} \cdots p_\ell^{m_\ell} = n$$

and so a|n.

Conversely, suppose that $n = p_1^{m_1} p_2^{m_2} \cdots p_{\ell}^{m_{\ell}}$, as above, and let a be a positive divisor of n. Let p be any prime factor of a. Since p|a and a|n we have p|n. Since p|n and $n = p_1^{m_1} p_2^{m_2} \cdots p_{\ell}^{m_{\ell}}$ we have $p|p_i$ for some index i. Since p and p_i are both prime and $p|p_i$, we have $p = p_i$. This proves that every prime factor of a is among the primes $p_1, p_2, \cdots, p_{\ell}$. It follows that a can be written in the form $a = p_1^{j_1} p_2^{j_2} \cdots p_{\ell}^{j_{\ell}}$ with each $j_i \in \mathbb{N}$. It remains to show that $j_i \leq m_i$.

Since a|n we can choose $b \in \mathbb{Z}$ so that n = ab. Since n and a are positive, so is b. Since b is a positive factor of n, the above argument shows that every prime factor of b is among the primes p_1, p_2, \dots, p_ℓ and so we can write $b = p_1^{k_1} p_2^{k_2} \cdots p_\ell^{k_\ell}$ for some $k_i \in \mathbb{N}$. Since n = ab we have

$$p_1^{m_1} p_2^{m_2} \cdots p_{\ell}^{m_{\ell}} = n = ab = (p_1^{j_1} \cdots p_{\ell}^{j_{\ell}})(p_1^{k_1} \cdots p_{\ell}^{k_{\ell}}) = p_1^{j_1 + k_1} \cdots p_{\ell}^{j_{\ell} + k_{\ell}}.$$

By the uniqueness of prime factorization, it follows that $m_i = j_i + k_i$ for all indices *i*. Since $k_i \ge 0$ it follows that $j_i = m_i - k_i \le m_i$, as required.

1.27 Definition: For $a, b \in \mathbb{Z}$, a **common multiple** of a and b is an integer m such that a|m and b|m. When a and b are nonzero, we define lcm(a, b) to be the smallest positive common multiple of a and b. For convenience, we also define lcm(a, 0) = lcm(0, a) = 0 for $a \in \mathbb{Z}$.

1.28 Theorem: Let $a = \prod_{i=1}^{\ell} p_i^{j_i}$ and $b = \prod_{i=1}^{\ell} p_i^{k_i}$ where $\ell \in \mathbb{Z}^+$, the p_i are distinct primes, and $j_i, k_i \in \mathbb{N}$. Then

(1)
$$gcd(a,b) = \prod_{i=1}^{\ell} p_i^{\min\{j_i,k_i\}},$$

(2) $lcm(a,b) = \prod_{i=1}^{\ell} p_i^{\max\{j_i,k_i\}},$ and

(3)
$$gcd(a,b) \cdot lcm(a,b) = ab.$$

Proof: The proof is left as an exercise.

1.29 Exercise: Define and find similar formulas for $gcd(a_1, \dots, a_\ell)$ and $lcm(a_1, \dots, a_\ell)$.

1.30 Definition: For a prime p and a positive integer n, the **exponent** of p in (the prime factorization of) n, denoted by e(p, n), is defined as follows. We write n in the form $n = p_1^{m_1} p_2^{m_2} \cdots p_{\ell}^{m_{\ell}}$ where the p_i are distinct primes and each $m_i \in \mathbb{N}$, then we define $e(p, n) = m_i$ if $p = p_i$ and we define e(p, n) = 0 if $p \neq p_i$ for any index i.

1.31 Exercise: Show that $e(p, n!) = \lfloor \frac{n}{p} \rfloor + \lfloor \frac{n}{p^2} \rfloor + \lfloor \frac{n}{p^3} \rfloor + \cdots$ and that $\lfloor \frac{n}{p^{k+1}} \rfloor = \lfloor \lfloor \frac{n}{p^k} \rfloor / p \rfloor$.

1.32 Example: Since $e(5, 100!) = \lfloor \frac{100}{5} \rfloor + \lfloor \frac{100}{25} \rfloor + \lfloor \frac{100}{125} \rfloor + \cdots = 20 + 4 + 0 = 24$ and e(2, 100!) > 24, it follows that the number 100! ends with exactly 24 zeros in its decimal representation.

1.33 Definition: For a positive integer n, we write $\tau(n)$ to denote the number of positive divisors of n, we write $\sigma(n)$ to denote the sum of the positive divisors of n, and we write $\rho(n)$ to denote the product of the positive divisors of n. It is common to write

$$\tau(n) = \sum\limits_{d \mid n} 1$$
 , $\sigma(n) = \sum\limits_{d \mid n} d$, and $\rho(n) = \prod\limits_{d \mid n} d$.

1.34 Theorem: Let $n = \prod_{i=1}^{\ell} p_i^{k_i}$ where $p_1, p_2, \dots, p_{\ell}$ are distinct primes and each $k_i \in \mathbb{N}$. Then we have $\tau(n) = \prod_{i=1}^{\ell} (k_i + 1), \sigma(n) = \prod_{i=1}^{\ell} \frac{p_i^{k_i+1}-1}{p_i-1}$ and $\rho(n) = n^{\tau(n)/2}$.

Proof: The positive divisors of n are of the form $d = p_1^{j_1} p_2^{j_2} \cdots p_\ell^{j_\ell}$ with $0 \le j_i \le k_i$ for each index i. Since there are $(k_i + 1)$ choices for the index i, there are a total of $(k_1+1)(k_2+1)\cdots(k_\ell+1)$ choices for the positive divisor d, so we have $\tau(n) = \prod_{i=1}^{\ell} (k_i+1)$. Also, again since the positive divisors of n are of the form $d = p_1^{j_1} p_2^{j_2} \cdots p_\ell^{j_\ell}$ with

Also, again since the positive divisors of n are of the form $d = p_1^{j_1} p_2^{j_2} \cdots p_\ell^{j_\ell}$ with $0 \le j_i \le k_i$ for each index i, we have

$$\begin{aligned} \sigma_n &= \sum_{0 \le j_1 \le k_1} \sum_{0 \le j_2 \le k_2} \cdots \sum_{0 \le j_{\ell-1} \le k_{\ell-1}} \sum_{0 \le j_\ell \le k_\ell} p_1^{j_1} p_2^{j_2} \cdots p_{\ell-1}^{k_{\ell-1}} p_\ell^{j_\ell} \\ &= \sum_{0 \le j_1 \le k_1} \sum_{0 \le j_2 \le k_2} \cdots \sum_{0 \le j_{\ell-1} \le k_{\ell-1}} p_1^{j_1} p_2^{j_2} \cdots p_{\ell-1}^{k_{\ell-1}} \left(\sum_{0 \le j_\ell \le k_\ell} p_\ell^{j_\ell}\right) \\ &= \cdots = \left(\sum_{0 \le j_1 \le k_1} p_1^{j_1}\right) \left(\sum_{0 \le j_2 \le k_2} p_2^{j_2}\right) \cdots \left(\sum_{0 \le j_\ell \le k_\ell} p_\ell^{j_\ell}\right) \\ &= \left(1 + p_1 + p_1^2 + \cdots + p_1^{k_1}\right) \left(1 + p_2 + \cdots + p_2^{k_2}\right) \cdots \left(1 + p_\ell + \cdots + p_\ell^{k_\ell}\right) \\ &= \left(\frac{p_1^{k_1+1}-1}{p_1-1}\right) \left(\frac{p_2^{k_2+1}-1}{p_2-1}\right) \cdots \left(\frac{p_\ell^{k_\ell+1}-1}{p_\ell-1}\right) = \prod_{i=1}^\ell \frac{p_i^{k_i+1}-1}{p_i-1}.\end{aligned}$$

To obtain the formula for $\rho(n)$, note that each positive factor d of n can be paired with the corresponding positive factor $\frac{n}{d}$ so we have $\rho(n)^2 = \prod_{d|n} d \cdot \frac{n}{d} = \prod_{d|n} n = n^{\tau(n)}$.

1.35 Definition: An arithmetic function is any real- or complex-valued function whose domain is the set of positive integers \mathbb{Z}^+ . For an arithmetic function f, we say that f is **multiplicative** when f(ab) = f(a)f(b) for all $a, b \in \mathbb{Z}^+$ with gcd(a, b) = 1, and we say that f is **completely multiplicative** when f(ab) = f(a)f(b) for all $a, b \in \mathbb{Z}^+$.

1.36 Example: The divisors function τ and the sum of divisors function σ are both multiplicative arithmetic functions. The product of divisors function ρ is not multiplicative.