Chapter 1. The Euclidean Algorithm and Unique Factorization

1.1 Definition: For $a, b \in \mathbb{Z}$ we say that a divides b (or that a is a factor of b, or that b is a multiple of a), and we write $a \mid b$, when $b=a k$ for some $k \in \mathbb{Z}$.
1.2 Theorem: (Basic Properties of Divisors) Let $a, b, c \in \mathbb{Z}$. Then
(1) $a \mid 0$ for all $a \in \mathbb{Z}$ and $0 \mid a \Longleftrightarrow a=0$,
(2) $a \mid 1 \Longleftrightarrow a= \pm 1$ and $1 \mid a$ for all $a \in \mathbb{Z}$.
(3) If $a \mid b$ and $b \mid c$ then $a \mid c$.
(4) If $a \mid b$ and $b \mid a$ then $b= \pm a$.
(5) If $a \mid b$ then $|a| \leq|b|$.
(6) If $a \mid b$ and $a \mid c$ then $a \mid(b x+c y)$ for all $x, y \in \mathbb{Z}$.

Proof: The proof is left as an exercise.
1.3 Theorem: (The Division Algorithm) Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Then there exist unique integers q and r such that

$$
a=q b+r \text { and } 0 \leq r<|b| .
$$

The integers q and r are called the quotient and remainder when a is divided by b.
Proof: To prove this, we shall use the floor and ceiling properties of \mathbb{Z} in \mathbb{R} : for every $x \in \mathbb{R}$, there exists a unique positive integer n with $x-1<n \leq x$ (this integer n is called the floor of x we write $n=\lfloor x\rfloor$), and there exists a unique positive integer m with $x \leq m<x+1$ (the integer m is called the ceiling of x and we write $m=\lceil x\rceil$).

Let $a, b \in \mathbb{Z}$ with $b \neq 0$. Case 1: suppose that $b>0$ and note that $|b|=b$. Choose $q=\left\lfloor\frac{a}{b}\right\rfloor$ then choose $r=a-q b$ so that $a=b q+r$. Since $\frac{a}{b}-1<q \leq \frac{a}{b}$ and $b>0$ we have $a-b<q b \leq a$, hence $-a \leq-q b<-a+b$, and hence $0 \leq a-q b<b$, that is $0 \leq r<|b|$. Case 2: suppose that $b<0$ and note that $|b|=-b$. Choose $q=\left\lceil\frac{a}{b}\right\rceil$ then choose $r=a-q b$ so that $a=q b+r$. Since $\frac{a}{b} \leq q<\frac{a}{b}+1$ and $-b>0$ we have $-a \leq-q b<-a-b$ hence $0 \leq a-q b<-b$, that is $0 \leq r<|b|$. In either case, we have found q and r, as required.

It remains to verify that the values of q and r are unique. Suppose that $a=q b+r$ with $0 \leq r<|b|$ and $a=p b+s$ with $0 \leq s<|b|$. Suppose, for a contradiction, that $r \neq s$ and say $r<s$ so that we have $0 \leq r<s<|b|$. Since $a=q b+r=p b+s$ we have $s-r=q b-p b=(q-p) b$ so that $b \mid(s-r)$. Since $b \mid(s-r)$ we have $|b| \leq|s-r|=s-r$ (by one of the basic properties of divisors). But since $s<|b|$ and $r \geq 0$ we have $s-r<|b|$ giving the desired contradiction. Thus we have $r=s$. Since $r=s$ and $s-r=(q-p) b$ we have $0=(q-p) b$ hence $p=q$ (since $b \neq 0)$.
1.4 Note: For $a, b \in \mathbb{Z}$, when we write $a=q b+r$ with $q, r \in \mathbb{Z}$ and $0 \leq r<|b|$, we have $b \mid a$ if and only if $r=0$. Indeed if $r=0$ then $a=q b$ so that $b \mid a$ and, conversely, if $b \mid a$ with say $a=p b=p b+0$, then we must have $q=p$ and $r=0$ by the uniqueness of the quotient and remainder.
1.5 Definition: Let $a, b \in \mathbb{Z}$. A common divisor of a and b is an integer d such that $d \mid a$ and $d \mid b$. When a and b are not both 0 , we denote the greatest common divisor of a and b by $\operatorname{gcd}(a, b)$. For convenience, we also define $\operatorname{gcd}(0,0)=0$.
1.6 Theorem: (Basic Properties of the Greatest Common Divisor) Let $a, b, q, r \in \mathbb{Z}$.
(1) $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, a)$.
(2) $\operatorname{gcd}(a, b)=\operatorname{gcd}(|a|,|b|)$.
(3) If $a \mid b$ then $\operatorname{gcd}(a, b)=|a|$. In particular, $\operatorname{gcd}(a, 0)=|a|$.
(4) If $b=q a+r$ then $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, r)$.

Proof: The proof is left as an exercise.
1.7 Theorem: (Bézout's Identity) Let a and b be integers and let $d=\operatorname{gcd}(a, b)$. Then there exist integers s and t such that $a s+b t=d$. The proof provides explicit procedures for finding d and for finding s and t.

Proof: We can find d using the following procedure, called the Euclidean Algorithm. If $b \mid a$ then we have $d=|b|$. Otherwise, let $r_{-1}=a$ and $r_{0}=b$ and use the division algorithm repeatedly to obtain integers q_{i} and r_{i} such that

Since $r_{n-1}=q_{n+1} r_{n}$ we have $r_{n} \mid r_{n-1}$ so $\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=r_{n}$. Since $r_{k-2}=q_{k} r_{k-1}+r_{k}$ we have $\operatorname{gcd}\left(r_{k-2}, r_{k-1}\right)=\operatorname{gcd}\left(r_{k-1}, r_{k}\right)$ and so

$$
d=\operatorname{gcd}(a, b)=\operatorname{gcd}\left(b, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right)=\cdots=\operatorname{gcd}\left(r_{n-2}, r_{n-1}\right)=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=r_{n} .
$$

Having found d using the Euclidean algorithm, as above, we can find s and t using the following procedure, which is known as Back-Substitution. If $b \mid a$ so that $d=|b|$, then we can take $s=0$ and $t= \pm 1$ to get $a s+b t=d$. Otherwise, we let

$$
s_{0}=1, s_{1}=-q_{n}, \text { and } s_{\ell+1}=s_{\ell-1}-q_{n-\ell} s_{\ell} \text { for } 1 \leq \ell \leq n-1
$$

and then we can take $s=s_{n-1}$ and $t=s_{n}$ to get $a s+b t=d$, because, writing $k=n-\ell$,

$$
\begin{aligned}
d= & r_{n}=r_{n-2}-q_{n} r_{n-1}=s_{1} r_{n-1}+s_{0} r_{n-2} \\
& \vdots \\
= & \cdots=s_{\ell} r_{n-\ell}+s_{\ell-1} r_{n-\ell-1}=s_{n-k} r_{k}+s_{n-k-1} r_{k-1} \\
= & s_{n-k}\left(r_{k-2}-q_{k} r_{k-1}\right)+s_{n-k-1} r_{k-1}=\left(s_{n-k-1}-q_{k} s_{n-k}\right) r_{k-1}+s_{n-k} r_{k-2} \\
= & \left(s_{\ell-1}-q_{n-\ell} s_{\ell}\right) r_{n-\ell-1}+s_{\ell} r_{n-\ell-2}=s_{\ell+1} r_{n-\ell-1}+s_{\ell} r_{n-\ell-2} \\
& \vdots \\
= & \cdots=s_{n} r_{0}+s_{n-1} r_{-1}=s_{n} b+s_{n-1} a .
\end{aligned}
$$

1.8 Example: Let $a=5151$ and $b=1632$. Find $d=\operatorname{gcd}(a, b)$ and then find integers s and t so that $a s+b t=d$.

Solution: The Euclidean Algorithm gives

$$
\begin{aligned}
5151 & =3 \cdot 1632+255 \\
1632 & =6 \cdot 255+102 \\
255 & =2 \cdot 102+51 \\
102 & =2 \cdot 51+0
\end{aligned}
$$

so $d=51$. Using the quotients $q_{1}=3, q_{2}=6$ and $q_{3}=2$, Back-Substitution gives

$$
\begin{aligned}
& s_{0}=1 \\
& s_{1}=-q_{3}=-2 \\
& s_{2}=s_{0}-q_{2} s_{1}=1-6(-2)=13 \\
& s_{3}=s_{1}-q_{1} s_{2}=-2-3(13)=-41,
\end{aligned}
$$

so we take $s=s_{2}=13$ and $t=s_{3}=-41$. (It is a good idea to check that indeed we have $(1632)(-41)+(5151)(13)=51)$.
1.9 Example: Let $a=754$ and $b=-3973$. Find $d=\operatorname{gcd}(a, b)$ then find integers s and t such that $a s+b t=d$.

Solution: The Euclidean Algorithm gives
$3973=5 \cdot 754+203,754=3 \cdot 203+145,203=1 \cdot 145+58,145=2 \cdot 58+29,58=2 \cdot 29+0$ so that $d=29$. Then Back-Substitution gives rise to the sequence

$$
1,-2,3,-11,58
$$

so we have $(754)(58)+(3973)(-11)=29$, that is $(754)(58)+(-3973)(11)=29$. Thus we can take $s=58$ and $t=11$.
1.10 Theorem: (More Properties of the Greatest Common Divisor) Let $a, b, c, d \in \mathbb{Z}$.
(1) If $c \mid a$ and $c \mid b$ then $c \mid \operatorname{gcd}(a, b)$.
(3) We have $\operatorname{gcd}(a, b)=1$ if and only if there exist $x, y \in \mathbb{Z}$ such that $a x+b y=1$.
(4) If $d=\operatorname{gcd}(a, b) \neq 0$ then $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$.
(5) If $a \mid b c$ and $\operatorname{gcd}(a, b)=1$ then $a \mid c$.

Proof: These properties all follow from Bézout's Identity. We shall prove Parts 1 and 5 and leave the proofs of the remaining parts as an exercise. To prove Part 1, suppose that $c \mid a$ and $c \mid b$, say $a=c k$ and $b=c l$. Let $d=\operatorname{gcd}(a, b)$ and choose $s, t \in \mathbb{Z}$ so that $a s+b t=d$. Then we have $d=a s+b t=c k s+c l t=c(k s+l t)$ and so $c \mid d$.

To prove Part 5 , suppose that $a \mid b c$ and $\operatorname{gcd}(a, b)=1$. Since $a \mid b c$ we can choose $k \in \mathbb{Z}$ so that $b c=a k$. Since $\operatorname{gcd}(a, b)=1$, by the Bézout's Identity, we can choose $s, t \in \mathbb{Z}$ with $a s+b t=1$. Then we have

$$
c=c \cdot 1=c(a s+b t)=a c s+b c t=a c s+a k t=a(c s+k t),
$$

and so $a \mid c$, as required.
1.11 Definition: A diophantine equation is a polynomial equation in which the variables represent integers. Some diophantine equations are fairly easy to solve while others can be extremely difficult.
1.12 Theorem: (Linear Diophantine Equations) Let $a, b, c \in \mathbb{Z}$ with $(a, b) \neq(0,0)$. Let $d=\operatorname{gcd}(a, b)$ and note that $d \neq 0$. Consider the Diophantine equation $a x+b y=c$.
(1) The equation has a solution $(x, y) \in \mathbb{Z}^{2}$ if and only if $d \mid c$, and
(2) if $(u, v) \in \mathbb{Z}^{2}$ is one solution to the equation then the general solution is given by

$$
(x, y)=(u, v)+k\left(-\frac{b}{d}, \frac{a}{d}\right) \text { for some } k \in \mathbb{Z} .
$$

Proof: Suppose that the equation $a x+b y=c$ has a solution $(x, y) \in \mathbb{Z}^{2}$. Choose $(s, t) \in \mathbb{Z}^{2}$ so that $a s+b t=c$. Since $d \mid a$ and $d \mid b$, it follows that $d \mid(a x+b y)$ for all $x, y \in \mathbb{Z}$, so in particular $d \mid(a s+b t)$, that is $d \mid c$. Conversely, suppose that $d \mid c$, say $c=d \ell$ with $\ell \in \mathbb{Z}$. Use the Euclidean Algorithm with Back-Substitution to find $s, t \in \mathbb{Z}$ such that $a s+b t=d$. Multiply by ℓ to get $a(s \ell)+b(t \ell)=d \ell=c$. Thus we can take $x=e \ell$ and $y=t \ell$ to obtain a solution $(x, y) \in \mathbb{Z}^{2}$ to the equation $a x+b y=c$. This proves Part (1)

Now suppose that $(u, v) \in \mathbb{Z}^{2}$ is a solution to the given equation, so we have $a u+b v=c$. To prove Part (2), we need to prove that for all $k \in \mathbb{Z}$, if we let $(x, y)=(u, v)+k\left(-\frac{b}{d}, \frac{a}{d}\right)$ then (x, y) is a solution to $a x+b y=c$ and, conversely, that if (x, y) is a solution then there exists $k \in \mathbb{Z}$ such that $(x, y)=(u, v)+k\left(-\frac{b}{d}, \frac{a}{d}\right)$.

Let $k \in \mathbb{Z}$ and let $(x, y)=(u, v)+k\left(-\frac{b}{d}, \frac{a}{d}\right)$. Then $x=u-\frac{k b}{d}$ and $y=v+\frac{k a}{d}$ and so

$$
a x+b y=a\left(u-\frac{k b}{d}\right)+b\left(v+\frac{k a}{d}\right)=(a u+b v)-\frac{k a b}{d}+\frac{k a b}{d}=a u+b v=c .
$$

Conversely, let (x, y) be a solution to the given equation, so we have $a x+b y=c$. Suppose that $a \neq 0$ (we leave the case $a=0$ as an exercise). Since $a x+b y=c$ and $a u+b u=c$ we have $a x+b y=a u+b v$ and so $a(x-u)=-b(y-v)$. Divide both sides by d to get $\frac{a}{d}(x-u)=-\frac{b}{d}(y-v)$. Since $\frac{a}{d} \left\lvert\, \frac{b}{d}(y-v)\right.$ and $\operatorname{gcd}\left(\frac{a}{d}, \frac{b}{d}\right)=1$, it follows that $\left.\frac{a}{d} \right\rvert\,(y-v)$. Choose $k \in \mathbb{Z}$ so that $y-v=\frac{k a}{d}$. Since $a \neq 0$ and $a(x-u)=-b(y-v)=-\frac{k a b}{d}$, we have $x-u=-\frac{k b}{d}$ and so $(x, y)=(u, v)+k\left(-\frac{b}{d}, \frac{a}{d}\right)$, as required.
1.13 Example: Let $a=426, b=132$ and $c=42$. Find all $x, y \in \mathbb{Z}$ such that $a x+b y=c$.

Solution: The Euclidean Algorithm gives

$$
426=3 \cdot 132+30,132=4 \cdot 30+12,30=2 \cdot 12+6,12=2 \cdot 6+0
$$

so that $d=\operatorname{gcd}(a, b)=6$. Note that $d \mid c$, indeed $c=d \ell$ with $\ell=7$, so a solution does exist. Back-Substitution gives the sequence

$$
1,-2,9,-29
$$

so we have $a(9)+b(-29)=d$. Multiply by $\ell=7$ to get $a(63)+b(-203)=c$, so one solution is given by $(x, y)=(63,-203)$. Since $\frac{a}{d}=\frac{426}{6}=71$ and $\frac{b}{d}=\frac{132}{6}=22$, The general solution is $(x, y)=(63,-203)+k(-22,71)$.
1.14 Exercise: Let $a=4123, b=17689$ and $c=798$. Find all $x, y \in \mathbb{Z}$ with $0 \leq y \leq 100$ such that $a x+b y=c$.
1.15 Definition: Let n be a positive integer. We say that n is a prime number when $n \geq 2$ and n has no factor $a \in \mathbb{Z}$ with $1<a<n$. We say that n is composite when $n \geq 2$ and n is not prime, that is when n does have a factor $a \in \mathbb{Z}$ with $1<a<n$.
1.16 Theorem: (Basic Properties of Primes) Let p be a prime number.
(1) For all $a \in \mathbb{Z}$ we have $\operatorname{gcd}(a, p) \in\{1, p\}$ with $\operatorname{gcd}(a, p)=p$ if and only if $p \mid a$.
(2) For all $a, b \in \mathbb{Z}$, if $p \mid a b$ then either $p \mid a$ or $p \mid b$.

Proof: Part 1 follows directly from the definition of a prime number the definition of $\operatorname{gcd}(a, p)$. Part 2 then follows from Part 5 of Theorem 1.10.
1.17 Theorem: Every integer $n \geq 2$ has a prime factor. Every composite integer $n \geq 2$ has a prime factor p with $p \leq \sqrt{n}$.
Proof: Let $n \geq 2$. Suppose, inductively, that every integer k with $2 \leq k<n$ has a prime factor. If n is prime, then n is a prime factor of itself, so n has a prime factor. Suppose that n is composite. Let a be a factor of n with $1<a<n$. By the induction hypothesis, a has a prime factor. Let p be a prime factor of a. Since $p \mid a$ and $a \mid n$ we have $p \mid n$, and so p is a prime factor of n. It follows, by induction, that every integer $n \geq 2$ has a prime factor.

Now suppose that n is composite. Write $n=a b$ where $a, b \in \mathbb{Z}$ with $1<a \leq b<n$. Note that $a \leq \sqrt{n}$ because if we had $a>\sqrt{n}$ then we would also have $b \geq a>\sqrt{n}$ so that $n=a b>\sqrt{n} \sqrt{n}=n$ which is impossible. Let p be a prime factor of a. Since $p \mid a$ and $a \mid n$ we have $p \mid n$ so that p is a prime factor of n. Since $p \mid a$ and $a \leq \sqrt{n}$ we have $p \leq a \leq \sqrt{n}$.
1.18 Note: Given an integer $n \geq 2$, we can list all primes p with $p \leq n$ using the following procedure, which is called the Sieve of Eratosthenes. We begin by listing all the integers from 1 to n, and we cross off the number 1 (1 is a unit; it is not a prime). We circle the smallest remaining number p_{1} (namely $p_{1}=2$, which is prime) then we cross off all other multiples of p_{1} (which are composite). We circle the smallest remaining number p_{2} (namely $p_{2}=3$, which is prime) then we cross off all other multiples of p_{2} (which are all composite). At the $k^{\text {th }}$ step of the procedure, when we circle the smallest remaining number p_{k}, it must be prime because if p_{k} was composite then it would have a prime factor p_{i} with $p_{i}<p_{k}$, but we have already found all primes $p_{i}<p_{k}$ and we have already crossed off all their multiples. We continue the procedure until we have circled a prime p_{ℓ} with $p_{\ell} \geq \sqrt{n}$ and crossed off its multiples. At this stage we circle all of the remaining numbers in the list because they are all prime. Indeed, if a remaining number m was composite then it would have a prime factor p with $p \leq \sqrt{m} \leq \sqrt{n}$, but we have already found all primes p with $\leq \sqrt{n}$ and crossed off all their multiples.
1.19 Exercise: Use the Sieve of Eratosthenes to list all primes p with $p \leq 100$.
1.20 Theorem: (Euclid) There exist infinitely many prime numbers.

Proof: Suppose, for a contradiction, that there exist finitely many prime numbers. Let $p_{1}, p_{2}, \cdots, p_{\ell}$ be all of the prime numbers. Consider the number $n=p_{1} p_{2} \cdots p_{\ell}+1$. By Theorem 1.17, the number n has a prime factor and so $p_{k} \mid n$ for some index k. But p_{k} is not a factor of n because when we write $n=q p_{k}+r$ as in the Division Algorithm, we find that the remainder is $r=1 \neq 0$ (and the quotient is $q=\prod_{i \neq k} p_{i}$).
1.21 Example: Note that there exist arbitrarily large gaps between consecutive prime numbers because, given a positive integer $m \geq 2$, we have $2|(m!+2), 3|(m!+3), 4 \mid(m!+4)$ and so on, so the consecutive numbers $m!+2, m!+3, m!+4, \cdots, m!+m$ are all composite.
1.22 Remark: Here are a few facts about prime numbers which are difficult to prove.
(1) Bertrand's Postulate: for every integer $n \geq 1$ there exists a prime p with $n<p \leq 2 n$.
(2) Dirichlet's Theorem: for all positive integers a, b with $\operatorname{gcd}(a, b)=1$, there exist infinitely many primes of the form $p=a+k b$ for some $k \in \mathbb{N}$.
(3) The Prime Number Theorem: for $x \in \mathbb{R}$, let $\pi(x)$ be the number of primes p with $p \leq x$. Then $\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1$.
1.23 Remark: Here are a few statements about prime numbers which are conjectured to be true, but for which no proof has, as yet, been found.
(1) Legendre's Conjecture: for every $n \in \mathbb{Z}^{+}$there exists a prime p with $n^{2}<p<(n+1)^{2}$.
(2) Goldbach's Conjecture: every even integer $n \geq 4$ is the sum of two prime numbers.
(3) Twin Primes Conjecture: there exist infinitely many p for which p and $p+2$ are prime.
(4) The $n^{2}+1$ Conjecture: there exist infinitely many primes $p=n^{2}+1$ with $n \in \mathbb{Z}^{+}$.
(5) Mersenne Primes Conjecture: there exist infinitely many primes $p=2^{k}-1$ with $k \in \mathbb{Z}^{+}$.
(6) Fermat Primes Conjecture: there exist finitely many primes $p=2^{k}+1$ with $k \in \mathbb{N}$.
1.24 Theorem: (The Fundamental Theorem of Arithmetic, or The Unique Factorization Theorem) Every integer $n \geq 2$ can be written uniquely in the form $n=\prod_{k=1}^{\ell} p_{k}=p_{1} p_{2} \cdots p_{\ell}$ where $\ell \in \mathbb{Z}^{+}$and the p_{k} are primes with $p_{1} \leq p_{2} \leq \cdots \leq p_{\ell}$.
Proof: First we prove the existence of such a factorization. Let n be an integer with $n \geq 2$ and suppose, inductively, that every integer k with $2 \leq k<n$ can be written in the required form. If n is prime then we can write $n=\prod_{k=1}^{\ell} p_{k}=p_{1}$ with $\ell=1$ and $p_{1}=n$. Suppose that n is composite. Write $n=a b$ where $a, b \in \mathbb{Z}$ with $1<a<n$ and $1<b<n$. By the induction hypothesis, we can write $a=q_{1} q_{2} \cdots q_{\ell}$ and $b=r_{1} r_{2} \cdots r_{m}$ where $\ell, m \in \mathbb{Z}^{+}$ and the p_{i} and q_{i} are primes with $p_{1} \leq p_{2} \leq \cdots \leq p_{\ell}$ and $q_{1} \leq q_{2} \leq \cdots \leq q_{m}$. Then $n=q_{1} q_{2} \cdots q_{\ell} r_{1} r_{2} \cdots r_{m}=p_{1} p_{2} \cdots p_{\ell+m}$ where the ordered $(\ell+m)$-tuple $\left(p_{1}, p_{2}, \cdots, p_{\ell+m}\right)$ is obtained from the ordered $(\ell+m)$-tuple $\left(q_{1}, q_{2}, \cdots, q_{\ell}, r_{1}, r_{2}, \cdots, r_{m}\right)$ by rearranging the terms into non-decreasing order.

Let us prove uniqueness. Suppose that $n=p_{1} p_{2} \cdots p_{\ell}=q_{1} q_{2} \cdots q_{m}$ where $\ell, m \in \mathbb{Z}^{+}$ and the p_{i} and q_{j} are primes with $p_{1} \leq p_{2} \leq \cdots \leq p_{\ell}$ and $q_{1} \leq q_{2} \leq \cdots \leq q_{m}$. We need to prove that $\ell=m$ and that $p_{i}=q_{i}$ for every index i. Since $n=p_{1} p_{2} \cdots p_{\ell}$ we see that $p_{1} \mid n$ and so $p \mid q_{1} q_{2} \cdots q_{m}$. By applying Part (2) of Theorem 5.12 repeatedly, it follows that $p_{1} \mid q_{i}$ for some index i. Since $p_{1} \mid q_{i}$ and q_{i} is prime, we must have $p_{1} \in\left\{ \pm 1, \pm q_{i}\right\}$. Since p_{1} is prime, we have $p_{1}>1$. Since $p_{1}>1$ and $p_{1} \in\left\{ \pm 1, \pm q_{i}\right\}$ it follows that $p_{1}=q_{i}$. A similar argument shows that $q_{1}=p_{j}$ for some index j. Since $p_{1}=q_{i} \geq q_{1}=p_{j} \geq p_{1}$, it follows that $p_{1}=q_{1}$.

Since $p_{1} p_{2} \cdots p_{\ell}=q_{1} q_{2} \cdots q_{m}$ and $p_{1}=q_{1}$, we can divide both sides by p_{1} to get $p_{2} p_{3} \cdots p_{\ell}=q_{2} q_{3} \cdots q_{m}$. By repeating the above argument, we can show that $p_{2}=q_{2}$, then we can divide both sides by $p_{2}=q_{2}$ to get $p_{3} \cdots p_{\ell}=q_{3} \cdots q_{m}$ and so on.

If we had $\ell \neq m$, say $\ell<m$, repeating the above procedure would eventually yield $p_{\ell}=q_{\ell} q_{\ell+1} \cdots q_{m}$ with $p_{\ell}=q_{\ell}$ and then $1=q_{\ell+1} \cdots q_{m}$ which is not possible since each $q_{i}>1$. Thus we must have $\ell=m$ and repeating the above procedure gives $p_{i}=q_{i}$ for all indices i, as required.
1.25 Note: Here are two alternate ways of expressing the Unique Factorization Theorem.
(1) Every integer $n \geq 2$ can be written uniquely in the form $n=\prod_{i=1}^{\ell} p_{i}{ }^{m_{i}}=p_{1} m_{1} \cdots p_{\ell}{ }^{m_{\ell}}$ where $\ell \in \mathbb{Z}^{+}$and the p_{i} are distinct primes with $p_{1}<p_{2}<\cdots<p_{\ell}$ and each $m_{i} \in \mathbb{Z}^{+}$.
(2) Given distinct primes $p_{1}, p_{2}, \cdots, p_{\ell}$, every $n \in \mathbb{Z}^{+}$whose prime factors are included in $\left\{p_{1}, \cdots, p_{\ell}\right\}$ can be written uniquely in the form $n=\prod_{i=1}^{\ell} p_{i}^{m_{i}}=p_{1} m_{1} \cdots p_{\ell}{ }^{m_{\ell}}$ with $m_{i} \in \mathbb{N}$.
1.26 Theorem: (Unique Factorization and Divisors) Let $n=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{\ell}{ }^{m_{\ell}}$ where $\ell \in \mathbb{Z}^{+}$, the p_{i} are distinct primes, and each $m_{i} \in \mathbb{N}$. Then the positive divisors of n are the numbers of the form $a=p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{\ell}{ }^{j_{l}}$ where each $j_{i} \in \mathbb{Z}$ with $0 \leq j_{i} \leq m_{i}$.
Proof: Suppose that $n=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{\ell}{ }^{m_{\ell}}$ and $a=p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{\ell}{ }^{j_{\ell}}$ where $p_{1}, p_{2}, \cdots, p_{\ell}$ are distinct primes and $0 \leq j_{i} \leq m_{i}$ for all indices i. Let $b=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdots p_{\ell}{ }^{k_{\ell}}$ where $k_{i}=m_{i}-j_{i}$ (note that $k_{i} \geq 0$ since $j_{i} \leq m_{i}$). Then

$$
a b=\left(p_{1}{ }^{j_{1}} \cdots p_{\ell}{ }^{j \ell}\right)\left(p_{1}{ }^{k_{1}} \cdots p_{\ell}{ }^{k_{\ell}}\right)=p_{1}{ }^{j_{1}+k_{1}} \cdots p_{\ell}{ }^{j_{\ell}+k_{\ell}}=p_{1}{ }^{m_{1}} \cdots p_{\ell}{ }^{m_{\ell}}=n
$$

and so $a \mid n$.
Conversely, suppose that $n=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{\ell}{ }^{m_{\ell}}$, as above, and let a be a positive divisor of n. Let p be any prime factor of a. Since $p \mid a$ and $a \mid n$ we have $p \mid n$. Since $p \mid n$ and $n=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{\ell}{ }^{m_{\ell}}$ we have $p \mid p_{i}$ for some index i. Since p and p_{i} are both prime and $p \mid p_{i}$, we have $p=p_{i}$. This proves that every prime factor of a is among the primes $p_{1}, p_{2}, \cdots, p_{\ell}$. It follows that a can be written in the form $a=p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{\ell}{ }^{j_{\ell}}$ with each $j_{i} \in \mathbb{N}$. It remains to show that $j_{i} \leq m_{i}$.

Since $a \mid n$ we can choose $b \in \mathbb{Z}$ so that $n=a b$. Since n and a are positive, so is b. Since b is a positive factor of n, the above argument shows that every prime factor of b is among the primes $p_{1}, p_{2}, \cdots, p_{\ell}$ and so we can write $b=p_{1}{ }^{k_{1}} p_{2}{ }^{k_{2}} \cdots p_{\ell}{ }^{k_{\ell}}$ for some $k_{i} \in \mathbb{N}$. Since $n=a b$ we have

$$
p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{\ell}{ }^{m_{\ell}}=n=a b=\left(p_{1}^{j_{1}} \cdots p_{\ell}^{j_{\ell}}\right)\left(p_{1}^{k_{1}} \cdots p_{\ell}^{k_{\ell}}\right)=p_{1}^{j_{1}+k_{1}} \cdots p_{\ell}^{j_{\ell}+k_{\ell}} .
$$

By the uniqueness of prime factorization, it follows that $m_{i}=j_{i}+k_{i}$ for all indices i. Since $k_{i} \geq 0$ it follows that $j_{i}=m_{i}-k_{i} \leq m_{i}$, as required.
1.27 Definition: For $a, b \in \mathbb{Z}$, a common multiple of a and b is an integer m such that $a \mid m$ and $b \mid m$. When a and b are nonzero, we define $\operatorname{lcm}(a, b)$ to be the smallest positive common multiple of a and b. For convenience, we also define $\operatorname{lcm}(a, 0)=\operatorname{lcm}(0, a)=0$ for $a \in \mathbb{Z}$.
1.28 Theorem: Let $a=\prod_{i=1}^{\ell} p_{i}{ }^{j_{i}}$ and $b=\prod_{i=1}^{\ell} p_{i}{ }^{k_{i}}$ where $\ell \in \mathbb{Z}^{+}$, the p_{i} are distinct primes, and $j_{i}, k_{i} \in \mathbb{N}$. Then
(1) $\operatorname{gcd}(a, b)=\prod_{i=1}^{\ell} p_{i}{ }^{\min \left\{j_{i}, k_{i}\right\}}$,
(2) $\operatorname{lcm}(a, b)=\prod_{i=1}^{\ell} p_{i}{ }^{\max \left\{j_{i}, k_{i}\right\}}$, and
(3) $\operatorname{gcd}(a, b) \cdot \operatorname{lcm}(a, b)=a b$.

Proof: The proof is left as an exercise.
1.29 Exercise: Define and find similar formulas for $\operatorname{gcd}\left(a_{1}, \cdots, a_{\ell}\right)$ and $\operatorname{lcm}\left(a_{1}, \cdots, a_{\ell}\right)$.
1.30 Definition: For a prime p and a positive integer n, the exponent of p in (the prime factorization of) n, denoted by $e(p, n)$, is defined as follows. We write n in the form $n=p_{1}{ }^{m_{1}} p_{2}{ }^{m_{2}} \cdots p_{\ell}{ }^{m_{\ell}}$ where the p_{i} are distinct primes and each $m_{i} \in \mathbb{N}$, then we define $e(p, n)=m_{i}$ if $p=p_{i}$ and we define $e(p, n)=0$ if $p \neq p_{i}$ for any index i.
1.31 Exercise: Show that $e(p, n!)=\left\lfloor\frac{n}{p}\right\rfloor+\left\lfloor\frac{n}{p^{2}}\right\rfloor+\left\lfloor\frac{n}{p^{3}}\right\rfloor+\cdots$ and that $\left\lfloor\frac{n}{p^{k+1}}\right\rfloor=\left\lfloor\left\lfloor\frac{n}{p^{k}}\right\rfloor / p\right\rfloor$.
1.32 Example: Since $e(5,100!)=\left\lfloor\frac{100}{5}\right\rfloor+\left\lfloor\frac{100}{25}\right\rfloor+\left\lfloor\frac{100}{125}\right\rfloor+\cdots=20+4+0=24$ and $e(2,100!)>24$, it follows that the number 100 ! ends with exactly 24 zeros in its decimal representation.
1.33 Definition: For a positive integer n, we write $\tau(n)$ to denote the number of positive divisors of n, we write $\sigma(n)$ to denote the sum of the positive divisors of n, and we write $\rho(n)$ to denote the product of the positive divisors of n. It is common to write

$$
\tau(n)=\sum_{d \mid n} 1, \sigma(n)=\sum_{d \mid n} d, \text { and } \rho(n)=\prod_{d \mid n} d
$$

1.34 Theorem: Let $n=\prod_{i=1}^{\ell} p_{i}^{k_{i}}$ where $p_{1}, p_{2}, \cdots, p_{\ell}$ are distinct primes and each $k_{i} \in \mathbb{N}$.

Then we have $\tau(n)=\prod_{i=1}^{\ell}\left(k_{i}+1\right), \sigma(n)=\prod_{i=1}^{\ell} \frac{p_{i}{ }^{k_{i}+1}-1}{p_{i}-1}$ and $\rho(n)=n^{\tau(n) / 2}$.
Proof: The positive divisors of n are of the form $d=p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{\ell}{ }^{j_{\ell}}$ with $0 \leq j_{i} \leq k_{i}$ for each index i. Since there are $\left(k_{i}+1\right)$ choices for the index i, there are a total of $\left(k_{1}+1\right)\left(k_{2}+1\right) \cdots\left(k_{\ell}+1\right)$ choices for the positive divisor d, so we have $\tau(n)=\prod_{i=1}^{\ell}\left(k_{i}+1\right)$.

Also, again since the positive divisors of n are of the form $d=p_{1}{ }^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{\ell}{ }^{j_{\ell}}$ with $0 \leq j_{i} \leq k_{i}$ for each index i, we have

$$
\begin{aligned}
\sigma_{n} & =\sum_{0 \leq j_{1} \leq k_{1}} \sum_{0 \leq j_{2} \leq k_{2}} \cdots \sum_{0 \leq j_{\ell-1} \leq k_{\ell-1}} \sum_{0 \leq j_{\ell} \leq k_{\ell}} p_{1}^{j_{1}} p_{2}{ }^{j_{2}} \cdots p_{\ell-1}{ }^{k_{\ell-1}} p_{\ell}{ }^{j_{\ell}} \\
& =\sum_{0 \leq j_{1} \leq k_{1}} \sum_{0 \leq j_{2} \leq k_{2}} \cdots \sum_{0 \leq j_{\ell-1} \leq k_{\ell-1}} p_{1}^{j_{1}} p_{2}^{j_{2}} \cdots p_{\ell-1}{ }^{k_{\ell-1}}\left(\sum_{0 \leq j_{\ell} \leq k_{\ell}} p_{\ell}^{j_{\ell}}\right) \\
& =\cdots=\left(\sum_{0 \leq j_{1} \leq k_{1}} p_{1}^{j_{1}}\right)\left(\sum_{0 \leq j_{2} \leq k_{2}} p_{2}^{j_{2}}\right) \cdots\left(\sum_{0 \leq j_{\ell} \leq k_{\ell}} p_{\ell^{j_{\ell}}}\right) \\
& =\left(1+p_{1}+p_{1}{ }^{2}+\cdots+p_{1}{ }^{k_{1}}\right)\left(1+p_{2}+\cdots+p_{2}^{k_{2}}\right) \cdots\left(1+p_{\ell}+\cdots+p_{\ell}^{k_{\ell}}\right) \\
& =\left(\frac{p_{1}^{k_{1}+1}-1}{p_{1}-1}\right)\left(\frac{p_{2}^{k_{2}+1}-1}{p_{2}-1}\right) \cdots\left(\frac{p_{\ell}{ }^{k_{\ell}+1}-1}{p_{\ell}-1}\right)=\prod_{i=1}^{\ell} \frac{p_{i}^{k_{i}+1}-1}{p_{i}-1} .
\end{aligned}
$$

To obtain the formula for $\rho(n)$, note that each positive factor d of n can be paired with the corresponding positive factor $\frac{n}{d}$ so we have $\rho(n)^{2}=\prod_{d \mid n} d \cdot \frac{n}{d}=\prod_{d \mid n} n=n^{\tau(n)}$.
1.35 Definition: An arithmetic function is any real- or complex-valued function whose domain is the set of positive integers \mathbb{Z}^{+}. For an arithmetic function f, we say that f is multiplicative when $f(a b)=f(a) f(b)$ for all $a, b \in \mathbb{Z}^{+}$with $\operatorname{gcd}(a, b)=1$, and we say that f is completely multiplicative when $f(a b)=f(a) f(b)$ for all $a, b \in \mathbb{Z}^{+}$.
1.36 Example: The divisors function τ and the sum of divisors function σ are both multiplicative arithmetic functions. The product of divisors function ρ is not multiplicative.

