
Chapter 1. The Euclidean Algorithm and Unique Factorization

1.1 Definition: For a, b ∈ Z we say that a divides b (or that a is a factor of b, or that
b is a multiple of a), and we write a

∣∣b, when b = ak for some k ∈ Z.

1.2 Theorem: (Basic Properties of Divisors) Let a, b, c ∈ Z. Then

(1) a|0 for all a ∈ Z and 0|a⇐⇒ a = 0,
(2) a|1⇐⇒ a = ±1 and 1|a for all a ∈ Z.
(3) If a|b and b|c then a|c.
(4) If a|b and b|a then b = ±a.
(5) If a|b then |a| ≤ |b|.
(6) If a|b and a|c then a

∣∣(bx+ cy) for all x, y ∈ Z.

Proof: The proof is left as an exercise.

1.3 Theorem: (The Division Algorithm) Let a, b ∈ Z with b 6= 0. Then there exist unique
integers q and r such that

a = qb+ r and 0 ≤ r < |b|.

The integers q and r are called the quotient and remainder when a is divided by b.

Proof: To prove this, we shall use the floor and ceiling properties of Z in R: for every
x ∈ R, there exists a unique positive integer n with x − 1 < n ≤ x (this integer n is
called the floor of x we write n = bxc), and there exists a unique positive integer m with
x ≤ m < x+ 1 (the integer m is called the ceiling of x and we write m = dxe).

Let a, b ∈ Z with b 6= 0. Case 1: suppose that b > 0 and note that |b| = b. Choose
q =

⌊
a
b c then choose r = a− qb so that a = bq+ r. Since a

b − 1 < q ≤ a
b and b > 0 we have

a− b < qb ≤ a, hence −a ≤ −qb < −a+ b, and hence 0 ≤ a− qb < b, that is 0 ≤ r < |b|.
Case 2: suppose that b < 0 and note that |b| = −b. Choose q =

⌈
a
b

⌉
then choose r = a−qb

so that a = qb + r. Since a
b ≤ q < a

b + 1 and −b > 0 we have −a ≤ −qb < −a − b hence
0 ≤ a− qb < −b, that is 0 ≤ r < |b|. In either case, we have found q and r, as required.

It remains to verify that the values of q and r are unique. Suppose that a = qb + r
with 0 ≤ r < |b| and a = pb + s with 0 ≤ s < |b|. Suppose, for a contradiction, that
r 6= s and say r < s so that we have 0 ≤ r < s < |b|. Since a = qb + r = pb + s we have
s − r = qb − pb = (q − p)b so that b|(s − r). Since b

∣∣(s − r) we have |b| ≤ |s − r| = s − r
(by one of the basic properties of divisors). But since s < |b| and r ≥ 0 we have s− r < |b|
giving the desired contradiction. Thus we have r = s. Since r = s and s− r = (q− p)b we
have 0 = (q − p)b hence p = q (since b 6= 0).

1.4 Note: For a, b ∈ Z, when we write a = qb+ r with q, r ∈ Z and 0 ≤ r < |b|, we have
b|a if and only if r = 0. Indeed if r = 0 then a = qb so that b|a and, conversely, if b|a with
say a = pb = pb+ 0, then we must have q = p and r = 0 by the uniqueness of the quotient
and remainder.

1.5 Definition: Let a, b ∈ Z. A common divisor of a and b is an integer d such that
d|a and d|b. When a and b are not both 0, we denote the greatest common divisor of
a and b by gcd(a, b). For convenience, we also define gcd(0, 0) = 0.
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1.6 Theorem: (Basic Properties of the Greatest Common Divisor) Let a, b, q, r ∈ Z.

(1) gcd(a, b) = gcd(b, a).
(2) gcd(a, b) = gcd(|a|, |b|).
(3) If a|b then gcd(a, b) = |a|. In particular, gcd(a, 0) = |a|.
(4) If b = qa+ r then gcd(a, b) = gcd(a, r).

Proof: The proof is left as an exercise.

1.7 Theorem: (Bézout’s Identity) Let a and b be integers and let d = gcd(a, b). Then
there exist integers s and t such that as+ bt = d. The proof provides explicit procedures
for finding d and for finding s and t.

Proof: We can find d using the following procedure, called the Euclidean Algorithm. If
b
∣∣a then we have d = |b|. Otherwise, let r−1 = a and r0 = b and use the division algorithm

repeatedly to obtain integers qi and ri such that

r−1 = a = q1b+ r1 0 < r1 < |a|
r0 = b = q2r1 + r2 0 < r2 < r1
r1 = q3r2 + r3 0 < r3 < r2

...
...

rk−2 = qkrk−1 + rk 0 < rk < rk−1
...

...
rn−2 = qnrn−1 + rn 0 < rn < rn−1
rn−1 = qn+1rn + rn+1 rn+1 = 0 .

Since rn−1 = qn+1rn we have rn
∣∣rn−1 so gcd(rn−1, rn) = rn. Since rk−2 = qkrk−1 + rk we

have gcd(rk−2, rk−1) = gcd(rk−1, rk) and so

d = gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = · · · = gcd(rn−2, rn−1) = gcd(rn−1, rn) = rn .

Having found d using the Euclidean algorithm, as above, we can find s and t using
the following procedure, which is known as Back-Substitution. If b

∣∣a so that d = |b|,
then we can take s = 0 and t = ±1 to get as+ bt = d. Otherwise, we let

s0 = 1 , s1 = −qn , and s`+1 = s`−1 − qn−`s` for 1 ≤ ` ≤ n− 1

and then we can take s = sn−1 and t = sn to get as+ bt = d, because, writing k = n− `,
d = rn = rn−2 − qnrn−1 = s1rn−1 + s0rn−2

...

= · · · = s`rn−` + s`−1rn−`−1 = sn−krk + sn−k−1rk−1

= sn−k
(
rk−2 − qkrk−1

)
+ sn−k−1rk−1 =

(
sn−k−1 − qksn−k

)
rk−1 + sn−krk−2

= (s`−1 − qn−`s`)rn−`−1 + s`rn−`−2 = s`+1rn−`−1 + s`rn−`−2

...

= · · · = snr0 + sn−1r−1 = snb+ sn−1a .
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1.8 Example: Let a = 5151 and b = 1632. Find d = gcd(a, b) and then find integers s
and t so that as+ bt = d.

Solution: The Euclidean Algorithm gives

5151 = 3 · 1632 + 255

1632 = 6 · 255 + 102

255 = 2 · 102 + 51

102 = 2 · 51 + 0

so d = 51. Using the quotients q1 = 3, q2 = 6 and q3 = 2, Back-Substitution gives

s0 = 1

s1 = −q3 = −2

s2 = s0 − q2s1 = 1− 6(−2) = 13

s3 = s1 − q1s2 = −2− 3(13) = −41 ,

so we take s = s2 = 13 and t = s3 = −41. (It is a good idea to check that indeed we have
(1632)(−41) + (5151)(13) = 51).

1.9 Example: Let a = 754 and b = −3973. Find d = gcd(a, b) then find integers s and t
such that as+ bt = d.

Solution: The Euclidean Algorithm gives

3973 = 5·754+203 , 754 = 3·203+145 , 203 = 1·145+58 , 145 = 2·58+29 , 58 = 2·29+0

so that d = 29. Then Back-Substitution gives rise to the sequence

1 , −2 , 3 , −11 , 58

so we have (754)(58) + (3973)(−11) = 29, that is (754)(58) + (−3973)(11) = 29. Thus we
can take s = 58 and t = 11.

1.10 Theorem: (More Properties of the Greatest Common Divisor) Let a, b, c, d ∈ Z.

(1) If c|a and c|b then c
∣∣ gcd(a, b).

(3) We have gcd(a, b) = 1 if and only if there exist x, y ∈ Z such that ax+ by = 1.
(4) If d = gcd(a, b) 6= 0 then gcd

(
a
d ,

b
d

)
= 1.

(5) If a|bc and gcd(a, b) = 1 then a|c.

Proof: These properties all follow from Bézout’s Identity. We shall prove Parts 1 and 5
and leave the proofs of the remaining parts as an exercise. To prove Part 1, suppose that
c|a and c|b, say a = ck and b = cl. Let d = gcd(a, b) and choose s, t ∈ Z so that as+bt = d.
Then we have d = as+ bt = cks+ clt = c(ks+ lt) and so c|d.

To prove Part 5, suppose that a|bc and gcd(a, b) = 1. Since a|bc we can choose k ∈ Z
so that bc = ak. Since gcd(a, b) = 1, by the Bézout’s Identity, we can choose s, t ∈ Z with
as+ bt = 1. Then we have

c = c · 1 = c(as+ bt) = acs+ bct = acs+ akt = a(cs+ kt),

and so a|c, as required.
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1.11 Definition: A diophantine equation is a polynomial equation in which the vari-
ables represent integers. Some diophantine equations are fairly easy to solve while others
can be extremely difficult.

1.12 Theorem: (Linear Diophantine Equations) Let a, b, c ∈ Z with (a, b) 6= (0, 0). Let
d = gcd(a, b) and note that d 6= 0. Consider the Diophantine equation ax+ by = c.

(1) The equation has a solution (x, y) ∈ Z2 if and only if d|c, and

(2) if (u, v) ∈ Z2 is one solution to the equation then the general solution is given by

(x, y) = (u, v) + k
(
− b

d ,
a
d

)
for some k ∈ Z.

Proof: Suppose that the equation ax+by = c has a solution (x, y) ∈ Z2. Choose (s, t) ∈ Z2

so that as + bt = c. Since d|a and d|b, it follows that d|(ax + by) for all x, y ∈ Z, so in
particular d|(as+ bt), that is d|c. Conversely, suppose that d|c, say c = d` with ` ∈ Z. Use
the Euclidean Algorithm with Back-Substitution to find s, t ∈ Z such that as + bt = d.
Multiply by ` to get a(s`) + b(t`) = d` = c. Thus we can take x = e` and y = t` to obtain
a solution (x, y) ∈ Z2 to the equation ax+ by = c. This proves Part (1)

Now suppose that (u, v) ∈ Z2 is a solution to the given equation, so we have au+bv = c.
To prove Part (2), we need to prove that for all k ∈ Z, if we let (x, y) = (u, v) + k

(
− b

d ,
a
d

)
then (x, y) is a solution to ax + by = c and, conversely, that if (x, y) is a solution then
there exists k ∈ Z such that (x, y) = (u, v) + k

(
− b

d ,
a
d

)
.

Let k ∈ Z and let (x, y) = (u, v) + k
(
− b

d ,
a
d

)
. Then x = u− kb

d and y = v+ ka
d and so

ax+ by = a
(
u− kb

d

)
+ b
(
v + ka

d

)
= (au+ bv)− kab

d + kab
d = au+ bv = c.

Conversely, let (x, y) be a solution to the given equation, so we have ax+ by = c. Suppose
that a 6= 0 (we leave the case a = 0 as an exercise). Since ax + by = c and au + bu = c
we have ax + by = au + bv and so a(x − u) = −b(y − v). Divide both sides by d to get
a
d (x − u) = − b

d (y − v). Since a
d

∣∣∣ bd (y − v) and gcd
(
a
d ,

b
d

)
= 1, it follows that a

d

∣∣∣(y − v).

Choose k ∈ Z so that y − v = ka
d . Since a 6= 0 and a(x− u) = −b(y − v) = −kabd , we have

x− u = −kbd and so (x, y) = (u, v) + k
(
− b

d ,
a
d

)
, as required.

1.13 Example: Let a = 426, b = 132 and c = 42. Find all x, y ∈ Z such that ax+ by = c.

Solution: The Euclidean Algorithm gives

426 = 3 · 132 + 30 , 132 = 4 · 30 + 12 , 30 = 2 · 12 + 6 , 12 = 2 · 6 + 0

so that d = gcd(a, b) = 6. Note that d|c, indeed c = d` with ` = 7, so a solution does exist.
Back-Substitution gives the sequence

1 , −2 , 9 , −29

so we have a(9) + b(−29) = d. Multiply by ` = 7 to get a(63) + b(−203) = c, so one
solution is given by (x, y) = (63,−203). Since a

d = 426
6 = 71 and b

d = 132
6 = 22, The

general solution is (x, y) = (63,−203) + k(−22, 71).

1.14 Exercise: Let a = 4123, b = 17689 and c = 798. Find all x, y ∈ Z with 0 ≤ y ≤ 100
such that ax+ by = c.
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1.15 Definition: Let n be a positive integer. We say that n is a prime number when
n ≥ 2 and n has no factor a ∈ Z with 1 < a < n. We say that n is composite when n ≥ 2
and n is not prime, that is when n does have a factor a ∈ Z with 1 < a < n.

1.16 Theorem: (Basic Properties of Primes) Let p be a prime number.

(1) For all a ∈ Z we have gcd(a, p) ∈ {1, p} with gcd(a, p) = p if and only if p|a.

(2) For all a, b ∈ Z, if p|ab then either p|a or p|b.
Proof: Part 1 follows directly from the definition of a prime number the definition of
gcd(a, p). Part 2 then follows from Part 5 of Theorem 1.10.

1.17 Theorem: Every integer n ≥ 2 has a prime factor. Every composite integer n ≥ 2
has a prime factor p with p ≤

√
n.

Proof: Let n ≥ 2. Suppose, inductively, that every integer k with 2 ≤ k < n has a prime
factor. If n is prime, then n is a prime factor of itself, so n has a prime factor. Suppose
that n is composite. Let a be a factor of n with 1 < a < n. By the induction hypothesis,
a has a prime factor. Let p be a prime factor of a. Since p|a and a|n we have p|n, and
so p is a prime factor of n. It follows, by induction, that every integer n ≥ 2 has a prime
factor.

Now suppose that n is composite. Write n = ab where a, b ∈ Z with 1 < a ≤ b < n.
Note that a ≤

√
n because if we had a >

√
n then we would also have b ≥ a >

√
n so that

n = ab >
√
n
√
n = n which is impossible. Let p be a prime factor of a. Since p|a and a|n

we have p|n so that p is a prime factor of n. Since p|a and a ≤
√
n we have p ≤ a ≤

√
n.

1.18 Note: Given an integer n ≥ 2, we can list all primes p with p ≤ n using the
following procedure, which is called the Sieve of Eratosthenes. We begin by listing all
the integers from 1 to n, and we cross off the number 1 (1 is a unit; it is not a prime). We
circle the smallest remaining number p1 (namely p1 = 2, which is prime) then we cross off
all other multiples of p1 (which are composite). We circle the smallest remaining number
p2 (namely p2 = 3, which is prime) then we cross off all other multiples of p2 (which are
all composite). At the kth step of the procedure, when we circle the smallest remaining
number pk, it must be prime because if pk was composite then it would have a prime factor
pi with pi < pk, but we have already found all primes pi < pk and we have already crossed
off all their multiples. We continue the procedure until we have circled a prime p` with
p` ≥

√
n and crossed off its multiples. At this stage we circle all of the remaining numbers

in the list because they are all prime. Indeed, if a remaining number m was composite
then it would have a prime factor p with p ≤

√
m ≤

√
n, but we have already found all

primes p with ≤
√
n and crossed off all their multiples.

1.19 Exercise: Use the Sieve of Eratosthenes to list all primes p with p ≤ 100.

1.20 Theorem: (Euclid) There exist infinitely many prime numbers.

Proof: Suppose, for a contradiction, that there exist finitely many prime numbers. Let
p1, p2, · · · , p` be all of the prime numbers. Consider the number n = p1p2 · · · p` + 1. By
Theorem 1.17, the number n has a prime factor and so pk|n for some index k. But pk is
not a factor of n because when we write n = qpk + r as in the Division Algorithm, we find
that the remainder is r = 1 6= 0 (and the quotient is q =

∏
i 6=k

pi).

1.21 Example: Note that there exist arbitrarily large gaps between consecutive prime
numbers because, given a positive integer m ≥ 2, we have 2

∣∣(m!+2), 3
∣∣(m!+3), 4

∣∣(m!+4)
and so on, so the consecutive numbers m!+2, m!+3, m!+4 , · · · , m!+m are all composite.
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1.22 Remark: Here are a few facts about prime numbers which are difficult to prove.

(1) Bertrand’s Postulate: for every integer n ≥ 1 there exists a prime p with n < p ≤ 2n.

(2) Dirichlet’s Theorem: for all positive integers a, b with gcd(a, b) = 1, there exist infinitely
many primes of the form p = a+ kb for some k ∈ N.

(3) The Prime Number Theorem: for x ∈ R, let π(x) be the number of primes p with

p ≤ x. Then lim
x→∞

π(x)

x/ lnx
= 1.

1.23 Remark: Here are a few statements about prime numbers which are conjectured to
be true, but for which no proof has, as yet, been found.

(1) Legendre’s Conjecture: for every n ∈ Z+ there exists a prime p with n2 < p < (n+1)2.

(2) Goldbach’s Conjecture: every even integer n ≥ 4 is the sum of two prime numbers.

(3) Twin Primes Conjecture: there exist infinitely many p for which p and p+ 2 are prime.

(4) The n2 + 1 Conjecture: there exist infinitely many primes p = n2 + 1 with n ∈ Z+.

(5) Mersenne Primes Conjecture: there exist infinitely many primes p = 2k−1 with k ∈ Z+.

(6) Fermat Primes Conjecture: there exist finitely many primes p = 2k + 1 with k ∈ N.

1.24 Theorem: (The Fundamental Theorem of Arithmetic, or The Unique Factorization

Theorem) Every integer n ≥ 2 can be written uniquely in the form n =
∏̀
k=1

pk = p1p2 · · · p`

where ` ∈ Z+ and the pk are primes with p1 ≤ p2 ≤ · · · ≤ p`.

Proof: First we prove the existence of such a factorization. Let n be an integer with n ≥ 2
and suppose, inductively, that every integer k with 2 ≤ k < n can be written in the required

form. If n is prime then we can write n =
∏̀
k=1

pk = p1 with ` = 1 and p1 = n. Suppose

that n is composite. Write n = ab where a, b ∈ Z with 1 < a < n and 1 < b < n. By
the induction hypothesis, we can write a = q1q2 · · · q` and b = r1r2 · · · rm where `,m ∈ Z+

and the pi and qi are primes with p1 ≤ p2 ≤ · · · ≤ p` and q1 ≤ q2 ≤ · · · ≤ qm. Then
n = q1q2 · · · q`r1r2 · · · rm = p1p2 · · · p`+m where the ordered (`+m)-tuple (p1, p2, · · · , p`+m)
is obtained from the ordered (`+m)-tuple (q1, q2, · · · , q`, r1, r2, · · · , rm) by rearranging the
terms into non-decreasing order.

Let us prove uniqueness. Suppose that n = p1p2 · · · p` = q1q2 · · · qm where `,m ∈ Z+

and the pi and qj are primes with p1 ≤ p2 ≤ · · · ≤ p` and q1 ≤ q2 ≤ · · · ≤ qm. We need
to prove that ` = m and that pi = qi for every index i. Since n = p1p2 · · · p` we see that
p1|n and so p

∣∣q1q2 · · · qm. By applying Part (2) of Theorem 5.12 repeatedly, it follows that

p1
∣∣qi for some index i. Since p1|qi and qi is prime, we must have p1 ∈ {±1,±qi}. Since

p1 is prime, we have p1 > 1. Since p1 > 1 and p1 ∈ {±1,±qi} it follows that p1 = qi. A
similar argument shows that q1 = pj for some index j. Since p1 = qi ≥ q1 = pj ≥ p1, it
follows that p1 = q1.

Since p1p2 · · · p` = q1q2 · · · qm and p1 = q1, we can divide both sides by p1 to get
p2p3 · · · p` = q2q3 · · · qm. By repeating the above argument, we can show that p2 = q2,
then we can divide both sides by p2 = q2 to get p3 · · · p` = q3 · · · qm and so on.

If we had ` 6= m, say ` < m, repeating the above procedure would eventually yield
p` = q`q`+1 · · · qm with p` = q` and then 1 = q`+1 · · · qm which is not possible since each
qi > 1. Thus we must have ` = m and repeating the above procedure gives pi = qi for all
indices i, as required.
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1.25 Note: Here are two alternate ways of expressing the Unique Factorization Theorem.

(1) Every integer n ≥ 2 can be written uniquely in the form n =
∏̀
i=1

pi
mi = p1

m1 · · · p`m`

where ` ∈ Z+ and the pi are distinct primes with p1 < p2 < · · · < p` and each mi ∈ Z+.

(2) Given distinct primes p1, p2, · · · , p`, every n ∈ Z+ whose prime factors are included in

{p1, · · · , p`} can be written uniquely in the form n =
∏̀
i=1

pi
mi = p1

m1 · · · p`m` with mi ∈ N.

1.26 Theorem: (Unique Factorization and Divisors) Let n = p1
m1p2

m2 · · · p`m` where
` ∈ Z+, the pi are distinct primes, and each mi ∈ N. Then the positive divisors of n are
the numbers of the form a = p1

j1p2
j2 · · · p`jl where each ji ∈ Z with 0 ≤ ji ≤ mi.

Proof: Suppose that n = p1
m1p2

m2 · · · p`m` and a = p1
j1p2

j2 · · · p`j` where p1, p2, · · · , p`
are distinct primes and 0 ≤ ji ≤ mi for all indices i. Let b = p1

k1p2
k2 · · · p`k` where

ki = mi − ji (note that ki ≥ 0 since ji ≤ mi). Then

ab = (p1
j1 · · · p`j`)(p1k1 · · · p`k`) = p1

j1+k1 · · · p`j`+k` = p1
m1 · · · p`m` = n

and so a|n.
Conversely, suppose that n = p1

m1p2
m2 · · · p`m` , as above, and let a be a positive

divisor of n. Let p be any prime factor of a. Since p|a and a|n we have p|n. Since p|n
and n = p1

m1p2
m2 · · · p`m` we have p|pi for some index i. Since p and pi are both prime

and p|pi, we have p = pi. This proves that every prime factor of a is among the primes
p1, p2, · · · , p`. It follows that a can be written in the form a = p1

j1p2
j2 · · · p`j` with each

ji ∈ N. It remains to show that ji ≤ mi.
Since a|n we can choose b ∈ Z so that n = ab. Since n and a are positive, so is b.

Since b is a positive factor of n, the above argument shows that every prime factor of b is
among the primes p1, p2, · · · , p` and so we can write b = p1

k1p2
k2 · · · p`k` for some ki ∈ N.

Since n = ab we have

p1
m1p2

m2 · · · p`m` = n = ab = (p1
j1 · · · p`j`)(p1k1 · · · p`k`) = p1

j1+k1 · · · p`j`+k` .
By the uniqueness of prime factorization, it follows that mi = ji+ki for all indices i. Since
ki ≥ 0 it follows that ji = mi − ki ≤ mi, as required.

1.27 Definition: For a, b ∈ Z, a common multiple of a and b is an integer m such that
a|m and b|m. When a and b are nonzero, we define lcm(a, b) to be the smallest positive
common multiple of a and b. For convenience, we also define lcm(a, 0) = lcm(0, a) = 0 for
a ∈ Z.

1.28 Theorem: Let a =
∏̀
i=1

pi
ji and b =

∏̀
i=1

pi
ki where ` ∈ Z+, the pi are distinct primes,

and ji, ki ∈ N. Then

(1) gcd(a, b) =
∏̀
i=1

pi
min{ji,ki},

(2) lcm(a, b) =
∏̀
i=1

pi
max{ji,ki}, and

(3) gcd(a, b) · lcm(a, b) = ab.

Proof: The proof is left as an exercise.

1.29 Exercise: Define and find similar formulas for gcd(a1, · · · , a`) and lcm(a1, · · · , a`).
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1.30 Definition: For a prime p and a positive integer n, the exponent of p in (the
prime factorization of ) n, denoted by e(p, n), is defined as follows. We write n in the form
n = p1

m1p2
m2 · · · p`m` where the pi are distinct primes and each mi ∈ N, then we define

e(p, n) = mi if p = pi and we define e(p, n) = 0 if p 6= pi for any index i.

1.31 Exercise: Show that e(p, n!) = bnp c+b
n
p2 c+b

n
p3 c+ · · · and that b n

pk+1 c =
⌊
b n
pk
c
/
p
⌋
.

1.32 Example: Since e(5, 100!) = b 1005 c + b 10025 c + b 100125c + · · · = 20 + 4 + 0 = 24 and
e(2, 100!) > 24, it follows that the number 100! ends with exactly 24 zeros in its decimal
representation.

1.33 Definition: For a positive integer n, we write τ(n) to denote the number of positive
divisors of n, we write σ(n) to denote the sum of the positive divisors of n, and we write
ρ(n) to denote the product of the positive divisors of n. It is common to write

τ(n) =
∑
d|n

1 , σ(n) =
∑
d|n

d , and ρ(n) =
∏
d|n

d .

1.34 Theorem: Let n =
∏̀
i=1

pi
ki where p1, p2, · · · , p` are distinct primes and each ki ∈ N.

Then we have τ(n) =
∏̀
i=1

(ki + 1) , σ(n) =
∏̀
i=1

pi
ki+1−1
pi−1 and ρ(n) = nτ(n)/2.

Proof: The positive divisors of n are of the form d = p1
j1p2

j2 · · · p`j` with 0 ≤ ji ≤ ki
for each index i. Since there are (ki + 1) choices for the index i, there are a total of

(k1 + 1)(k2 + 1) · · · (k`+ 1) choices for the positive divisor d, so we have τ(n) =
∏̀
i=1

(ki+ 1).

Also, again since the positive divisors of n are of the form d = p1
j1p2

j2 · · · p`j` with
0 ≤ ji ≤ ki for each index i, we have

σn =
∑

0≤j1≤k1

∑
0≤j2≤k2

· · ·
∑

0≤j`−1≤k`−1

∑
0≤j`≤k`

p1
j1p2

j2 · · · p`−1k`−1p`
j`

=
∑

0≤j1≤k1

∑
0≤j2≤k2

· · ·
∑

0≤j`−1≤k`−1

p1
j1p2

j2 · · · p`−1k`−1

( ∑
0≤j`≤k`

p`
j`
)

= · · · =
( ∑

0≤j1≤k1
p1
j1
)( ∑

0≤j2≤k2
p2
j2
)
· · ·
( ∑

0≤j`≤k`
p`
j`
)

=
(
1 + p1 + p1

2 + · · ·+ p1
k1
)(

1 + p2 + · · ·+ p2
k2
)
· · ·
(
1 + p` + · · ·+ p`

k`
)

=
(
p1

k1+1−1
p1−1

)(
p2

k2+1−1
p2−1

)
· · ·
(
p`

k`+1−1
p`−1

)
=
∏̀
i=1

pi
ki+1−1
pi−1 .

To obtain the formula for ρ(n), note that each positive factor d of n can be paired
with the corresponding positive factor n

d so we have ρ(n)2 =
∏
d|n

d · nd =
∏
d|n

n = nτ(n).

1.35 Definition: An arithmetic function is any real- or complex-valued function whose
domain is the set of positive integers Z+. For an arithmetic function f , we say that f is
multiplicative when f(ab) = f(a)f(b) for all a, b ∈ Z+ with gcd(a, b) = 1, and we say
that f is completely multiplicative when f(ab) = f(a)f(b) for all a, b ∈ Z+.

1.36 Example: The divisors function τ and the sum of divisors function σ are both
multiplicative arithmetic functions. The product of divisors function ρ is not multiplicative.
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