
PMATH 340 Number Theory, Solutions to Assignment 4

1: (a) Let n = 493, e = 85 and c = 261. Decipher the ciphertext c to recover the original message m that was
encrypted using the RSA scheme with the public key (n, e).

Solution: First we factor n. Since
√
n < 25 we only need to look for prime factors p with p ≤ 23. By trial and

error, we find that n = pq where p = 17 and q = 29. We let ψ = lcm(p−1, q−1) = lcm(16, 28) = 16 ·7 = 112.
Next we need to find d = e−1mod ψ. To do this we solve 85x+ 112y = 1. The Euclidean Algorithm gives

112 = 85 · 1 + 27 , 85 = 27 · 3 + 4 , 27 = 4 · 6 + 3 , 4 = 3 · 1 + 1

then Back-Substitution gives the sequence 1,−1, 7,−22, 29 so we have 85 · 29 + 122 · 22 = 1. This shows
that d = e−1 = 29 mod 112. To decode the ciphertext c we need to calculate m = cd mod n. Using a hand
calculator, this can be done using the Square and Multiply Algorithm. Without a calculator, it is easier to
use the fact that 493 = 17 · 29 and calculate cd mod 17 and cd mod 29. Since c = 261 = 6 mod 17 we have
cd = 629 mod 17. We list some powers of 6 modulo 17.

k 1 2 4 8 16
6k 6 2 4 −1 1

Since 29 = 16 + 8 + 4 + 1 we have cd = 629 = 616 ·68 ·64 ·61 = (1)(−1)(4)(6) = −24 = 10 mod 17. Also, since
c = 261 = 0 mod 29 we have cd = 029 = 0 mod 29. We can find cd mod n by solving the pair of congruences
x = 10 mod 17 and x = 0 mod 29. We need x = 10 + 17k and x = 0 + 29` so we solve 17k − 29` = −10.
The Euclidean Algorithm gives 29 = 17 · 1 + 12 , 17 = 12 · 1 + 5 , 12 = 5 · 2 + 2 , 5 = 2 · 2 + 1 and then
Back-Substitution gives the sequence 1,−2, 5,−7, 12 so we have 17 · 12 − 29 · 7 = 1. Multiply by −10 to
get (17)(−120) − (29)(−70) = −10. By the Linear Diophantine Equations Theorm, the general solution to
the equation 17k − 29` = −10 is given by (k, `) = (−120,−70) + t(29, 17), t ∈ Z. Taking t = 5 gives the
solution (k, `) = (25, 15). Thus x = 10 + 17k = 10 + 17 · 25 = 435 is one solution to the pair of congruences
x = 10 mod 17 , x = 0 mod 19. Thus cd = x = 435 mod 493, so the original message was m = 435.

(b) Show that if many users choose a small value for their encryption key then the RSA scheme can be weak.
To be specific, show that if A sends the same short message m to three individuals B1, B2 and B3 who have
public keys (ni, ei) with n1, n2 and n3 distinct, and with e1 = e2 = e3 = 3, then an eavesdropper E who
intercepts the three encrypted messages ci = mei = m3 mod ni can recover the original message m.

Solution: Suppose that 0 ≤ m < ni for all i and that E knows the values of ci = m3 mod ni for all i. First,
E can use the Euclidean Algorithm to determine whether the numbers n1, n2 and n3 are coprime.

Case 1: Suppose that two of the numbers ni are not coprime, say gcd(n1, n2) 6= 1. Since n1 6= n2
and each of n1 and n2 is a product of two primes, it follows that p = gcd(n1, n2) is a prime and that
n1 = pq1 and n2 = pq2 where p, q1, q2 are distinct primes. After finding p = gcd(n1, n2) (using the Euclidean
Algorithm), E obtains q1 = n1/p and then E can calculate ψ1 = lcm(p− 1, q1 − 1), then d1 = e1

−1mod ψ1,
then m = c1

d1mod n1.
Case 2: Suppose that all three of the numbers n1, n2 and n3 are coprime. Then E can solve the system

of congruences x = ci mod ni, i = 1, 2, 3 (by solving linear diophantine equations using the Euclidean
algorithm). If x = u is a solution then the general solution is x = u mod n1n2n3, so E can find the unique
solution x = v with 0 ≤ v < n1n2n3. Since m3 = ci mod ni for all i, we see that m3 is a solution to the
system. Assuming that 0 ≤ m < ni for all i, we have 0 ≤ m3 < n1n2n3. Since 0 ≤ v < n1n2n3 and
0 ≤ m3 < n1n2n3 with m3 = v mod n1n2n3, we have m3 = v in Z. Thus E can recover the message m by
calculating the cubed root of v in Z.



2: (a) Use Fermat’s Little Theorem and the Square and Multiply Algorithm to show that 2479 is not prime
(without testing each prime p ≤

√
2479 to see if is a factor). You can use a calculator for this problem.

Solution: We calculate 22478 mod 2479 using the Square and Multiply Algorithm. We have

k 2k

1 2
2 4
4 16
8 256
16 1082
32 636

k 2k

64 419
128 2031
256 2384
512 1588
1024 601
2048 1746

Note that 2478 = 2048 + 256 + 128 + 32 + 8 + 4 + 2 so we have

22478 ≡ 22048 · 2256 · 2128 · 232 · 28 · 24 · 22

= (1746 · 2384)(2031 · 636)(256 · 16 · 4)

= 223 · 157 · 1510 = 1935 mod 2479 .

Since 22478 6≡ 1 mod 2479 we know that 2479 cannot be prime, by Fermat’s Little Theorem.

(b) Determine whether 561 is a pseudo-prime, and whether 561 is a strong pseudoprime, for the base 5.

Solution: Note that 561 is composite with 561 = 3 · 11 · 13 and that to carry out the Fermat Test and the
Miller-Rabin Test, we need to consider each of 5560, 5280 5140 570, 535 mod 561. Modulo 3, we have 52 = 1 so
that ord3(5) = 2. Modulo 11, we have 52 = 3, 53 = 4, 54 = 9 and 55 = 1, so that ord11(5) = 5. Modulo
13, we have 52 = −1, 53 = −5 and 54 = 1 so that ord13(5) = 4. Since 535 = 53 = 4 6= ±1 mod 13, we have
535 6= ±1 mod 561. Since 570 = 1 6= −1 mod 3, we have 570 6= −1 mod 561. Since 5140 = 1 mod 3, mod 11
and mod 13, we have 5140 = 1 mod 561. Since 5140 = 1 mod 561, we also have 5280 = 5560 = 1 mod 561.
Thus 561 is a pseudoprime for the base 5 (because 5560 = 1 mod 561), but 561 is not a strong pseudoprime
for the base 5 (because modulo 561 we have 5280 6= −1, 5140 6= −1, 570 6= −1 and 535 6= ±1).

(c) Find every prime number p such that 7 · 19 · p is a Carmichael number.

Solution: Let n = 7 · 19 · p where p is prime number. By Theorem 5.16, n is a Carmichael number when
p 6= 2, 7 or 19, and 6

∣∣(n − 1), 18
∣∣(n − 1) and (p − 1)

∣∣(n − 1). We have 6
∣∣(n − 1) ⇐⇒ n = 1 mod 6 ⇐⇒

7 ·19 ·p = 1 mod 6 ⇐⇒ p = 1 mod 6, and we have 18
∣∣(n−1) ⇐⇒ n = 1 mod 18 ⇐⇒ 7 ·19 ·p = 1 mod 18

⇐⇒ 7p = 1 mod 18 ⇐⇒ p = 13 mod 18. Thus we have 6
∣∣(n − 1) and 18

∣∣(n − 1) when p = 13 mod 18.

Also, we have (p − 1)
∣∣(n − 1) ⇐⇒ (p − 1)

∣∣(133p − 1) ⇐⇒ (p − 1)
∣∣(133(p − 1) + 132

)
⇐⇒ (p − 1)

∣∣132.

By making a short list, we find that the only positive integers p with p = 13 mod 18 and (p − 1)
∣∣132 are

p = 13 and p = 67, and these are both prime. Thus p = 13 and p = 67 are the only two prime numbers for
which 7 · 19 · p is a Carmichael number.



3: (a) Let a ≥ 2 and m ≥ 1 be integers. Show that if am + 1 is prime, then a must be even and m must be a
power of 2.

Solution: Note that since a ≥ 2 and m ≥ 1 we have am + 1 ≥ 21 + 1 = 3. If a is odd, then am is also odd,
so am + 1 is even and not equal to 2, so am + 1 is not prime.

Suppose that m is not a power of 2. Then we can write m = 2kq for some k ≥ 0 and some odd
number q ≥ 3. Recall that when q ≥ 3 is odd and x ≥ 2, the number xq + 1 is not prime since (xq + 1) =

(x+ 1)(xq−1 − xq−2 + · · · − x+ 1). In particular, taking x = a2
k

so that xq + 1 = a2
kq + 1 = am + 1, we see

that am + 1 is not prime.

(b) Show that the Mersenne number M13 is prime and that the Mersenne number M23 is composite. You
can use a calculator for this problem.

Solution: We have M13 = 8191. We know (from Theorem 1.17) that if M13 is composite then it must have a
prime divisor q with q ≤ b

√
8191c = 90, and we know (by the Primality Test for Mersenne Numbers, given

in Example 5.37), that if q is a prime divisor of M13 then we must have q = 1 mod 26. The only primes
q ≤ 90 with q = 1 mod 26 are q = 53, 79, and since neither 53 nor 79 divides M13 = 8191, it follows that
M13 is prime.

It was pointed out to me by some students that M23 is shown to be composite in Example 5.38 in the
lecture notes, but let us repeat the solution here: We have M23 = 223 − 1 = 8388607. Using the result of
Example 5.37, if q is a prime factor of M23, then we must have q = 1 mod 46, so q = 1, 47, 93, 139, · · ·. We
try q = 47 and find that M23 = 43 · 178481.

(c) Show that if n is a pseudoprime for the base 2 then so is the Mersenne number Mn = 2n − 1.

Solution: Let n be a pseudoprime for the base 2. This means n is composite, gcd(2, n) = 1, and 2n−1 =
1mod n. Let Mn = 2n − 1. Note that Mn is odd, and so we have gcd(2,Mn) = 1. Since n is composite, we
can write n = kl with 1 < k, l < n, and then we have Mn = 2n − 1 = 2kl − 1 = (2k − 1)

(
2k(l−1) + 2k(l−2) +

· · ·+ 22 + 1 + 1
)

and so Mn is composite. It remains to show that 2Mn−1 = 1mod Mn. Since 2n−1 = 1mod n
we can choose t ∈ Z+ such that 2n−1 = 1 + nt. We then have

2Mn−1 − 1 = 22
n−2 − 1 = 22(2

n−1−1) − 1 = 22nt − 1 = (2nt − 1)(2nt + 1)

= (2n − 1)
(
2n(t−1) + 2n(t−2) + · · ·+ 2 + 1

)
(2nt + 1)

= Mn

(
2n(t−1) + 2n(t−2) + · · ·+ 2 + 1

)
(2nt + 1).

Thus we have Mn

∣∣2Mn−1 − 1, and so 2Mn−1 = 1mod Mn, as required.



4: (a) Show that there are infinitely many primes of the form 12k + 7 with k ∈ Z.

Solution: Suppose there are only finitely many primes p with p = 7mod 12, say p1, p2, · · · , p` are all such
primes. Let n = (2p1p2 · · · p`)2 + 3. Note that for all k we have pk = 7mod 12 =⇒ pk

2 = 49 = 1mod 12 and
so n = 22p1

2p2
2 · · · p`2 + 3 = 22 + 3 = 7mod 12. Also note that n = 3mod pk so pk is not a factor of n. Let

p be any prime factor of n. Note that p is odd (since n is odd) and p 6= pk for any k (since pk is not a factor
of n). We have p

∣∣n =⇒ n = 0mod p =⇒ (2p1p2 · · · p`)2 = −3mod p =⇒ −3 ∈ Qp =⇒ p = 1 or 7mod 12 by
Assignment 2, Problem 3(d). Since n = 7mod 12, not every prime factor of n can be equal to 1mod 12, so
n must have at least one prime factor p = 7mod 12. Thus we have found another prime p = 7mod 12 which
is not in the list p1, p2, · · · , p`.

(b) Find (with proof, of course) the smallest positive integer k with the property that there exists a prime
p such that the six numbers p, p+ k, p+ 2k, p+ 3k, p+ 4k and p+ 5k are all prime.

Solution: We claim that when p and q are prime numbers and k ∈ Z+, if k is not a multiple of q then one of
the q numbers p, p+ k, p+ 2k, · · · , p+ (q − 1)k must be a multiple of q. Suppose k is not a multiple of q.
Then we have gcd(k, q) = 1, and so we can find integers u and v such that ku+qv = p. Then use the division
Algorithm to write −u = qr+s with 0 ≤ s < q, and we have p+sk = p+(−u−qr)k = p−uk−qrk = qv−qrk,
which is a multiple of q. This proves the claim.

Now, let p be prime, and suppose that the 6 numbers p, p+ k, · · ·, p+ 5k are all prime. We claim that
k must be a multiple of 30.

Suppose, for a contradiction, that k is not a multiple of 2. Then one of the 2 numbers p and p+ k is a
multiple of 2, and since 2 is the only prime which is a multiple of 2, we must have p = 2. But then the third
number is p+ 2k = 2 + 2k, which is not prime. Thus k is a multiple of 2.

Suppose, for a contradiction, that k is not a multiple of 3. Then, by the above claim, one of the 3
numbers p, p + k and p + 2k is a multiple of 3, and since 3 is the only prime which is a multiple of 3, we
must have p = 3. But then the fourth number on the list is p + 3k = 3 + 3k, which is not prime. Thus k
must be a multiple of 3. Since k is a multiple of 2 and of 3, k must be a multiple of 6.

Suppose, for a contradiction, that k is not a multiple of 5. Then, by the above claim, one of the 5
numbers p, p + k, p + 2k, p + 3k and p + 4k must be a multiple of 5. Since 5 is the only prime which is a
multiple of 5, and since k ≥ 6, we must have p = 5. But then the sixth number on the list is p+ 5k = 5 + 5k,
which is not prime. Thus k is a multiple of 5.

Since k is a multiple of 2, 3 and 5, it must be a multiple of 30, as claimed. Finally, note that taking
p = 7 and k = 30, gives the 6 primes 7, 37, 67, 97, 127 and 157 (each of these numbers is easily verified to
be prime: for example, if 157 was composite it would have a prime factor p ≤ b

√
157c = 12, but the only

such primes are p = 2, 3, 5, 7 and 11, and these do not divide 157).


