PMATH 340 Number Theory, Solutions to Assignment 4

1: (a) Let $n=493, e=85$ and $c=261$. Decipher the ciphertext c to recover the original message m that was encrypted using the RSA scheme with the public key (n, e).
Solution: First we factor n. Since $\sqrt{n}<25$ we only need to look for prime factors p with $p \leq 23$. By trial and error, we find that $n=p q$ where $p=17$ and $q=29$. We let $\psi=\operatorname{lcm}(p-1, q-1)=\operatorname{lcm}(16,28)=16 \cdot 7=112$. Next we need to find $d=e^{-1} \bmod \psi$. To do this we solve $85 x+112 y=1$. The Euclidean Algorithm gives

$$
112=85 \cdot 1+27,85=27 \cdot 3+4,27=4 \cdot 6+3,4=3 \cdot 1+1
$$

then Back-Substitution gives the sequence $1,-1,7,-22,29$ so we have $85 \cdot 29+122 \cdot 22=1$. This shows that $d=e^{-1}=29 \bmod 112$. To decode the ciphertext c we need to calculate $m=c^{d} \bmod n$. Using a hand calculator, this can be done using the Square and Multiply Algorithm. Without a calculator, it is easier to use the fact that $493=17 \cdot 29$ and calculate $c^{d} \bmod 17$ and $c^{d} \bmod 29$. Since $c=261=6 \bmod 17$ we have $c^{d}=6^{29} \bmod 17$. We list some powers of 6 modulo 17 .

$$
\begin{array}{cccccc}
k & 1 & 2 & 4 & 8 & 16 \\
6^{k} & 6 & 2 & 4 & -1 & 1
\end{array}
$$

Since $29=16+8+4+1$ we have $c^{d}=6^{29}=6^{16} \cdot 6^{8} \cdot 6^{4} \cdot 6^{1}=(1)(-1)(4)(6)=-24=10 \bmod 17$. Also, since $c=261=0 \bmod 29$ we have $c^{d}=0^{29}=0 \bmod 29$. We can find $c^{d} \bmod n$ by solving the pair of congruences $x=10 \bmod 17$ and $x=0 \bmod 29$. We need $x=10+17 k$ and $x=0+29 \ell$ so we solve $17 k-29 \ell=-10$. The Euclidean Algorithm gives $29=17 \cdot 1+12,17=12 \cdot 1+5,12=5 \cdot 2+2,5=2 \cdot 2+1$ and then Back-Substitution gives the sequence $1,-2,5,-7,12$ so we have $17 \cdot 12-29 \cdot 7=1$. Multiply by -10 to get $(17)(-120)-(29)(-70)=-10$. By the Linear Diophantine Equations Theorm, the general solution to the equation $17 k-29 \ell=-10$ is given by $(k, \ell)=(-120,-70)+t(29,17), t \in \mathbb{Z}$. Taking $t=5$ gives the solution $(k, \ell)=(25,15)$. Thus $x=10+17 k=10+17 \cdot 25=435$ is one solution to the pair of congruences $x=10 \bmod 17, x=0 \bmod 19$. Thus $c^{d}=x=435 \bmod 493$, so the original message was $m=435$.
(b) Show that if many users choose a small value for their encryption key then the RSA scheme can be weak. To be specific, show that if A sends the same short message m to three individuals B_{1}, B_{2} and B_{3} who have public keys $\left(n_{i}, e_{i}\right)$ with n_{1}, n_{2} and n_{3} distinct, and with $e_{1}=e_{2}=e_{3}=3$, then an eavesdropper E who intercepts the three encrypted messages $c_{i}=m^{e_{i}}=m^{3} \bmod n_{i}$ can recover the original message m.
Solution: Suppose that $0 \leq m<n_{i}$ for all i and that E knows the values of $c_{i}=m^{3} \bmod n_{i}$ for all i. First, E can use the Euclidean Algorithm to determine whether the numbers n_{1}, n_{2} and n_{3} are coprime.

Case 1: Suppose that two of the numbers n_{i} are not coprime, say $\operatorname{gcd}\left(n_{1}, n_{2}\right) \neq 1$. Since $n_{1} \neq n_{2}$ and each of n_{1} and n_{2} is a product of two primes, it follows that $p=\operatorname{gcd}\left(n_{1}, n_{2}\right)$ is a prime and that $n_{1}=p q_{1}$ and $n_{2}=p q_{2}$ where p, q_{1}, q_{2} are distinct primes. After finding $p=\operatorname{gcd}\left(n_{1}, n_{2}\right)$ (using the Euclidean Algorithm), E obtains $q_{1}=n_{1} / p$ and then E can calculate $\psi_{1}=\operatorname{lcm}\left(p-1, q_{1}-1\right)$, then $d_{1}=e_{1}^{-1} \bmod \psi_{1}$, then $m=c_{1}{ }^{d_{1}} \bmod n_{1}$.

Case 2: Suppose that all three of the numbers n_{1}, n_{2} and n_{3} are coprime. Then E can solve the system of congruences $x=c_{i} \bmod n_{i}, i=1,2,3$ (by solving linear diophantine equations using the Euclidean algorithm). If $x=u$ is a solution then the general solution is $x=u \bmod n_{1} n_{2} n_{3}$, so E can find the unique solution $x=v$ with $0 \leq v<n_{1} n_{2} n_{3}$. Since $m^{3}=c_{i} \bmod n_{i}$ for all i, we see that m^{3} is a solution to the system. Assuming that $0 \leq m<n_{i}$ for all i, we have $0 \leq m^{3}<n_{1} n_{2} n_{3}$. Since $0 \leq v<n_{1} n_{2} n_{3}$ and $0 \leq m^{3}<n_{1} n_{2} n_{3}$ with $m^{3}=v \bmod n_{1} n_{2} n_{3}$, we have $m^{3}=v$ in \mathbb{Z}. Thus E can recover the message m by calculating the cubed root of v in \mathbb{Z}.

2: (a) Use Fermat's Little Theorem and the Square and Multiply Algorithm to show that 2479 is not prime (without testing each prime $p \leq \sqrt{2479}$ to see if is a factor). You can use a calculator for this problem.
Solution: We calculate $2^{2478} \bmod 2479$ using the Square and Multiply Algorithm. We have

k	2^{k}	k	2^{k}
1	2	64	419
2	4	128	2031
4	16	256	2384
8	256	512	1588
16	1082	1024	601
32	636	2048	1746

Note that $2478=2048+256+128+32+8+4+2$ so we have

$$
\begin{aligned}
2^{2478} & \equiv 2^{2048} \cdot 2^{256} \cdot 2^{128} \cdot 2^{32} \cdot 2^{8} \cdot 2^{4} \cdot 2^{2} \\
& =(1746 \cdot 2384)(2031 \cdot 636)(256 \cdot 16 \cdot 4) \\
& =223 \cdot 157 \cdot 1510=1935 \bmod 2479 .
\end{aligned}
$$

Since $2^{2478} \not \equiv 1 \bmod 2479$ we know that 2479 cannot be prime, by Fermat's Little Theorem.
(b) Determine whether 561 is a pseudo-prime, and whether 561 is a strong pseudoprime, for the base 5 .

Solution: Note that 561 is composite with $561=3 \cdot 11 \cdot 13$ and that to carry out the Fermat Test and the Miller-Rabin Test, we need to consider each of $5^{560}, 5^{280} 5^{140} 5^{70}, 5^{35} \bmod 561$. Modulo 3, we have $5^{2}=1$ so that $\operatorname{ord}_{3}(5)=2$. Modulo 11, we have $5^{2}=3,5^{3}=4,5^{4}=9$ and $5^{5}=1$, so that $\operatorname{ord}_{11}(5)=5$. Modulo 13 , we have $5^{2}=-1,5^{3}=-5$ and $5^{4}=1$ so that $\operatorname{ord}_{13}(5)=4$. Since $5^{35}=5^{3}=4 \neq \pm 1 \bmod 13$, we have $5^{35} \neq \pm 1 \bmod 561$. Since $5^{70}=1 \neq-1 \bmod 3$, we have $5^{70} \neq-1 \bmod 561$. Since $5^{140}=1 \bmod 3$, mod 11 and $\bmod 13$, we have $5^{140}=1 \bmod 561$. Since $5^{140}=1 \bmod 561$, we also have $5^{280}=5^{560}=1 \bmod 561$. Thus 561 is a pseudoprime for the base 5 (because $5^{560}=1 \bmod 561$), but 561 is not a strong pseudoprime for the base 5 (because modulo 561 we have $5^{280} \neq-1,5^{140} \neq-1,5^{70} \neq-1$ and $5^{35} \neq \pm 1$).
(c) Find every prime number p such that $7 \cdot 19 \cdot p$ is a Carmichael number.

Solution: Let $n=7 \cdot 19 \cdot p$ where p is prime number. By Theorem $5.16, n$ is a Carmichael number when $p \neq 2,7$ or 19 , and $6|(n-1), 18|(n-1)$ and $(p-1) \mid(n-1)$. We have $6 \mid(n-1) \Longleftrightarrow n=1 \bmod 6 \Longleftrightarrow$ $7 \cdot 19 \cdot p=1 \bmod 6 \Longleftrightarrow p=1 \bmod 6$, and we have $18 \mid(n-1) \Longleftrightarrow n=1 \bmod 18 \Longleftrightarrow 7 \cdot 19 \cdot p=1 \bmod 18$ $\Longleftrightarrow 7 p=1 \bmod 18 \Longleftrightarrow p=13 \bmod 18$. Thus we have $6 \mid(n-1)$ and $18 \mid(n-1)$ when $p=13 \bmod 18$. Also, we have $(p-1)|(n-1) \Longleftrightarrow(p-1)|(133 p-1) \Longleftrightarrow(p-1)|(133(p-1)+132) \Longleftrightarrow(p-1)| 132$. By making a short list, we find that the only positive integers p with $p=13 \bmod 18$ and $(p-1) \mid 132$ are $p=13$ and $p=67$, and these are both prime. Thus $p=13$ and $p=67$ are the only two prime numbers for which $7 \cdot 19 \cdot p$ is a Carmichael number.

3: (a) Let $a \geq 2$ and $m \geq 1$ be integers. Show that if $a^{m}+1$ is prime, then a must be even and m must be a power of 2 .
Solution: Note that since $a \geq 2$ and $m \geq 1$ we have $a^{m}+1 \geq 2^{1}+1=3$. If a is odd, then a^{m} is also odd, so $a^{m}+1$ is even and not equal to 2 , so $a^{m}+1$ is not prime.

Suppose that m is not a power of 2 . Then we can write $m=2^{k} q$ for some $k \geq 0$ and some odd number $q \geq 3$. Recall that when $q \geq 3$ is odd and $x \geq 2$, the number $x^{q}+1$ is not prime since $\left(x^{q}+1\right)=$ $(x+1)\left(x^{q-1}-x^{q-2}+\cdots-x+1\right)$. In particular, taking $x=a^{2^{k}}$ so that $x^{q}+1=a^{2^{k} q}+1=a^{m}+1$, we see that $a^{m}+1$ is not prime.
(b) Show that the Mersenne number M_{13} is prime and that the Mersenne number M_{23} is composite. You can use a calculator for this problem.

Solution: We have $M_{13}=8191$. We know (from Theorem 1.17) that if M_{13} is composite then it must have a prime divisor q with $q \leq\lfloor\sqrt{8191}\rfloor=90$, and we know (by the Primality Test for Mersenne Numbers, given in Example 5.37), that if q is a prime divisor of M_{13} then we must have $q=1 \bmod 26$. The only primes $q \leq 90$ with $q=1 \bmod 26$ are $q=53,79$, and since neither 53 nor 79 divides $M_{13}=8191$, it follows that M_{13} is prime.

It was pointed out to me by some students that M_{23} is shown to be composite in Example 5.38 in the lecture notes, but let us repeat the solution here: We have $M_{23}=2^{23}-1=8388607$. Using the result of Example 5.37, if q is a prime factor of M_{23}, then we must have $q=1 \bmod 46$, so $q=1,47,93,139, \cdots$. We try $q=47$ and find that $M_{23}=43 \cdot 178481$.
(c) Show that if n is a pseudoprime for the base 2 then so is the Mersenne number $M_{n}=2^{n}-1$.

Solution: Let n be a pseudoprime for the base 2. This means n is composite, $\operatorname{gcd}(2, n)=1$, and $2^{n-1}=$ $1 \bmod n$. Let $M_{n}=2^{n}-1$. Note that M_{n} is odd, and so we have $\operatorname{gcd}\left(2, M_{n}\right)=1$. Since n is composite, we can write $n=k l$ with $1<k, l<n$, and then we have $M_{n}=2^{n}-1=2^{k l}-1=\left(2^{k}-1\right)\left(2^{k(l-1)}+2^{k(l-2)}+\right.$ $\cdots+2^{2}+1+1$) and so M_{n} is composite. It remains to show that $2^{M_{n}-1}=1 \bmod M_{n}$. Since $2^{n-1}=1 \bmod n$ we can choose $t \in \mathbb{Z}^{+}$such that $2^{n-1}=1+n t$. We then have

$$
\begin{aligned}
2^{M_{n}-1}-1 & =2^{2^{n}-2}-1=2^{2\left(2^{n-1}-1\right)}-1=2^{2 n t}-1=\left(2^{n t}-1\right)\left(2^{n t}+1\right) \\
& =\left(2^{n}-1\right)\left(2^{n(t-1)}+2^{n(t-2)}+\cdots+2+1\right)\left(2^{n t}+1\right) \\
& =M_{n}\left(2^{n(t-1)}+2^{n(t-2)}+\cdots+2+1\right)\left(2^{n t}+1\right) .
\end{aligned}
$$

Thus we have $M_{n} \mid 2^{M_{n}-1}-1$, and so $2^{M_{n}-1}=1 \bmod M_{n}$, as required.

4: (a) Show that there are infinitely many primes of the form $12 k+7$ with $k \in \mathbb{Z}$.
Solution: Suppose there are only finitely many primes p with $p=7 \bmod 12$, say $p_{1}, p_{2}, \cdots, p_{\ell}$ are all such primes. Let $n=\left(2 p_{1} p_{2} \cdots p_{\ell}\right)^{2}+3$. Note that for all k we have $p_{k}=7 \bmod 12 \Longrightarrow p_{k}{ }^{2}=49=1 \bmod 12$ and so $n=2^{2} p_{1}^{2} p_{2}^{2} \cdots p_{\ell}{ }^{2}+3=2^{2}+3=7 \bmod 12$. Also note that $n=3 \bmod p_{k}$ so p_{k} is not a factor of n. Let p be any prime factor of n. Note that p is odd (since n is odd) and $p \neq p_{k}$ for any k (since p_{k} is not a factor of n). We have $p \mid n \Longrightarrow n=0 \bmod p \Longrightarrow\left(2 p_{1} p_{2} \cdots p_{\ell}\right)^{2}=-3 \bmod p \Longrightarrow-3 \in Q_{p} \Longrightarrow p=1$ or $7 \bmod 12$ by Assignment 2, Problem 3(d). Since $n=7 \bmod 12$, not every prime factor of n can be equal to $1 \bmod 12$, so n must have at least one prime factor $p=7 \bmod 12$. Thus we have found another prime $p=7 \bmod 12$ which is not in the list $p_{1}, p_{2}, \cdots, p_{\ell}$.
(b) Find (with proof, of course) the smallest positive integer k with the property that there exists a prime p such that the six numbers $p, p+k, p+2 k, p+3 k, p+4 k$ and $p+5 k$ are all prime.

Solution: We claim that when p and q are prime numbers and $k \in \mathbb{Z}^{+}$, if k is not a multiple of q then one of the q numbers $p, p+k, p+2 k, \cdots, p+(q-1) k$ must be a multiple of q. Suppose k is not a multiple of q. Then we have $\operatorname{gcd}(k, q)=1$, and so we can find integers u and v such that $k u+q v=p$. Then use the division Algorithm to write $-u=q r+s$ with $0 \leq s<q$, and we have $p+s k=p+(-u-q r) k=p-u k-q r k=q v-q r k$, which is a multiple of q. This proves the claim.

Now, let p be prime, and suppose that the 6 numbers $p, p+k, \cdots, p+5 k$ are all prime. We claim that k must be a multiple of 30 .

Suppose, for a contradiction, that k is not a multiple of 2 . Then one of the 2 numbers p and $p+k$ is a multiple of 2 , and since 2 is the only prime which is a multiple of 2 , we must have $p=2$. But then the third number is $p+2 k=2+2 k$, which is not prime. Thus k is a multiple of 2 .

Suppose, for a contradiction, that k is not a multiple of 3 . Then, by the above claim, one of the 3 numbers $p, p+k$ and $p+2 k$ is a multiple of 3 , and since 3 is the only prime which is a multiple of 3 , we must have $p=3$. But then the fourth number on the list is $p+3 k=3+3 k$, which is not prime. Thus k must be a multiple of 3 . Since k is a multiple of 2 and of $3, k$ must be a multiple of 6 .

Suppose, for a contradiction, that k is not a multiple of 5 . Then, by the above claim, one of the 5 numbers $p, p+k, p+2 k, p+3 k$ and $p+4 k$ must be a multiple of 5 . Since 5 is the only prime which is a multiple of 5 , and since $k \geq 6$, we must have $p=5$. But then the sixth number on the list is $p+5 k=5+5 k$, which is not prime. Thus k is a multiple of 5 .

Since k is a multiple of 2,3 and 5 , it must be a multiple of 30 , as claimed. Finally, note that taking $p=7$ and $k=30$, gives the 6 primes $7,37,67,97,127$ and 157 (each of these numbers is easily verified to be prime: for example, if 157 was composite it would have a prime factor $p \leq\lfloor\sqrt{157}\rfloor=12$, but the only such primes are $p=2,3,5,7$ and 11, and these do not divide 157).

