PMATH 340 Number Theory, Assignment 4

1: (a) Let $n=493, e=85$ and $c=261$. Decipher the ciphertext c to recover the original message m that was encrypted using the RSA scheme with the public key (n, e).
(b) Show that if many users choose a small value for their encryption key then the RSA scheme can be weak. To be specific, show that if A sends the same short message m to three individuals B_{1}, B_{2} and B_{3} who have public keys $\left(n_{i}, e_{i}\right)$ with n_{1}, n_{2} and n_{3} distinct, and with $e_{1}=e_{2}=e_{3}=3$, then an eavesdropper E who intercepts the three encrypted messages $c_{i}=m^{e_{i}}=m^{3} \bmod n_{i}$ can recover the original message m.

2: (a) Use Fermat's Little Theorem and the Square and Multiply Algorithm to show that 2479 is not prime (without testing each prime $p \leq \sqrt{2479}$ to see if is a factor). You can use a calculator for this problem.
(b) Determine whether 561 is a pseudo-prime, and whether 561 is a strong pseudoprime, for the base 5 .
(c) Find (with proof, of course) every prime number p such that $7 \cdot 19 \cdot p$ is a Carmichael number.

3: (a) Let $a \geq 2$ and $m \geq 1$ be integers. Show that if $a^{m}+1$ is prime, then a must be even and m must be a power of 2 .
(b) Show that the Mersenne number M_{13} is prime and that the Mersenne number M_{23} is composite. You can use a calculator for this problem.
(c) Show that if n is a pseudoprime for the base 2 then so is the Mersenne number $M_{n}=2^{n}-1$.

4: (a) Show that there are infinitely many primes of the form $12 k+7$ with $k \in \mathbb{Z}$.
(b) Find (with proof, of course) the smallest positive integer k with the property that there exists a prime number p such that the six numbers $p, p+k, p+2 k, p+3 k, p+4 k$ and $p+5 k$ are all prime.

