PMATH 340 Number Theory, Solutions to Assignment 4.5

1: (a) Express the (periodic) continued fraction $x=[1,3, \overline{1,1,2}]$ in the form $x=\frac{r-\sqrt{d}}{s}$ with $r, s, d \in \mathbb{Z}^{+}$.
Solution: Let $x=[1,3, \overline{1,1,2}]$ and let $u=[\overline{1,1,2}]$. Then

$$
u=[1,1,2, u]=1+\frac{1}{1+\frac{1}{2+\frac{1}{u}}}=1+\frac{1}{1+\frac{u}{2 u+1}}=1+\frac{2 u+1}{3 u+1}=\frac{5 u+2}{3 u+1}
$$

so that $3 u^{2}+u=5 u+2$ hence $3 u^{2}-4 u-2=0$. Thus $u=\frac{4 \pm \sqrt{16+24}}{6}=\frac{2 \pm \sqrt{10}}{3}$. Since $u>1$ we must have $u=\frac{2+\sqrt{10}}{3}$. Thus

$$
\begin{aligned}
x & =[1,3, \overline{1,1,2}]=[1,3, u]=1+\frac{1}{3+\frac{1}{u}}=1+\frac{u}{3 u+1}=\frac{4 u+1}{3 u+1}=\frac{4 \cdot \frac{2+\sqrt{10}}{3}+1}{3 \cdot \frac{2+\sqrt{10}}{3}+1} \\
& =\frac{1}{3} \cdot \frac{4(2+\sqrt{10})+3}{(2+\sqrt{10}+1}=\frac{1}{3} \cdot \frac{4 \sqrt{10}+11}{\sqrt{10}+3} \cdot \frac{\sqrt{10}-3}{\sqrt{10}-3}=\frac{1}{3} \cdot \frac{7-\sqrt{10}}{1}=\frac{7-\sqrt{10}}{3} .
\end{aligned}
$$

(b) Find the $4^{\text {th }}$ convergent $c_{4}=\frac{p_{4}}{q_{4}}$ for the continued fraction representation of e^{2}. You can use a calculator.

Solution: We list the terms x_{k}, a_{k}, p_{k} and q_{k} where $x_{0}=e^{2}, a_{k}=\left\lfloor x_{k}\right\rfloor, x_{k+1}=\frac{1}{x_{k}-a_{k}}, p_{0}=a_{0}, p_{1}=a_{1} a_{0}+1$, $p_{k}=a_{k} p_{k-1}+p_{k-2}, q_{0}=1, q_{1}=a_{1}$ and $q_{k}=a_{k-1} q_{k}+q_{k-2}$.

k	x_{k}	a_{k}	p_{k}	q_{k}
0	$e^{2} \cong 7.389$	7	7	1
1	$\frac{1}{e^{2}-7} \cong 2.570$	2	15	2
2	$\frac{1}{\frac{1}{e^{2}-7}-2}=\frac{e^{2}-7}{15-2 e^{2}} \cong 1.753$	1	22	3
3	$\frac{1}{\frac{e^{2}-7}{15-2 e^{2}}-1}=\frac{15-2 e^{2}}{3 e^{2}-22} \cong 1.327$	1	37	5
4	$\frac{1}{\frac{15-2 e^{2}}{3 e^{2}-22}-1}=\frac{3 e^{2}-22}{37-5 e^{2}} \cong 3.055$	3	133	18

The $4^{\text {th }}$ convergent is $c_{4}=\frac{p_{4}}{q_{4}}=\frac{133}{18}$ (which, as you can check, is quite close to e^{2}).
(c) Express $\sqrt{43}$ as a continued fraction and find the smallest unit $u>1$ in $\mathbb{Z}[\sqrt{43}]$.

Solution: We list the terms x_{k}, a_{k}, p_{k} and q_{k} where $x_{0}=\sqrt{43}, a_{k}=\left\lfloor x_{k}\right\rfloor, x_{k+1}=\frac{1}{x_{k}-a_{k}}, p_{0}=a_{0}$, $p_{1}=a_{1} a_{0}+1, p_{k}=a_{k} p_{k-1}+p_{k-2}, q_{0}=1, q_{1}=a_{1}$ and $q_{k}=a_{k} q_{k-1}+q_{k-2}$. We also include $N_{k}=p_{k}^{2}-43 q_{k}^{2}$.

k	x_{k}	a_{k}	p_{k}	q_{k}	N_{k}
0	$\sqrt{43}$	6	7	1	-7
1	$\frac{1}{\sqrt{43}-6}=\frac{\sqrt{43}+6}{7}$	1	7	1	6
2	$\frac{7}{\sqrt{43}-1}=\frac{\sqrt{43}+1}{6}$	1	13	2	-3
3	$\frac{6}{\sqrt{43}-5}=\frac{\sqrt{43}+5}{3}$	3	46	7	9
4	$\frac{3}{\sqrt{43}-4}=\frac{\sqrt{43}+4}{9}$	1	59	9	-2
5	$\frac{9}{\sqrt{43}-5}=\frac{\sqrt{43}+5}{2}$	5	341	52	9
6	$\frac{2}{\sqrt{43}-5}=\frac{\sqrt{43}+5}{9}$	1	400	61	-3
7	$\frac{9}{\sqrt{43}-4}=\frac{\sqrt{43}+4}{3}$	3	1541	235	6
8	$\frac{3}{\sqrt{43}-5}=\frac{\sqrt{43}+5}{6}$	1	1941	296	-7
9	$\frac{6}{\sqrt{43}-1}=\frac{\sqrt{43}+1}{7}$	1	3482	531	1
10	$\frac{7}{\sqrt{43}-6}=\frac{\sqrt{43}+6}{1}$	12			

From the table, the continued fraction for $\sqrt{43}$ is $\sqrt{43}=[6, \overline{1,1,3,1,5,1,3,1,1,12}]$ and the smallest unit $u>1$ in $\mathbb{Z}[\sqrt{43}]$ is $u=p_{9}+q_{9} \sqrt{43}=3482+531 \sqrt{43}$.

2: (a) Find all solutions $(x, y) \in \mathbb{Z}^{2}$ to Pell's Equation $x^{2}-29 y^{2}=1$.
Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{29}$ and the first few convergents $c_{k}=\frac{p_{k}}{q_{k}}$ along with the norms $N_{k}=N\left(p_{k}+q_{k} \sqrt{29}\right)=p_{k}^{2}-29 q_{k}^{2}$.

k	x_{k}	a_{k}	p_{k}	q_{k}	N_{k}
0	$\sqrt{29}$	5	5	1	-4
1	$\frac{1}{\sqrt{29}-5}=\frac{\sqrt{29}+5}{4}$	2	11	2	5
2	$\frac{4}{\sqrt{29}-3}=\frac{\sqrt{29}+3}{5}$	1	16	3	-5
3	$\frac{5}{\sqrt{29}-2}=\frac{\sqrt{29}+2}{5}$	1	27	5	4
4	$\frac{5}{\sqrt{29}-3}=\frac{\sqrt{29}+3}{4}$	2	70	13	-1
5	$\frac{4}{\sqrt{29}-5}=\frac{\sqrt{29}+5}{1}$	10			

We have $\sqrt{29}=[5, \overline{2,1,1,2,10}]$ with period $\ell=5$. Writing $u_{k}=p_{k}+q_{k} \sqrt{29} \in \mathbb{Z}[\sqrt{29}]$, the smallest unit in $\mathbb{Z}[\sqrt{29}]$ with $u>1$ is $u=u_{\ell-1}=u_{4}=70+13 \sqrt{29}$, and we have $N(u)=-1$. The smallest unit v in $\mathbb{Z}[\sqrt{29}]$ with $v>1$ and $N(v)=1$ is

$$
v=u^{2}=(70+13 \sqrt{29})^{2}=9801+1820 \sqrt{29}
$$

If we write $v^{k}=(9801+1820 \sqrt{29})^{k}=r_{k}+s_{k} \sqrt{29}$ for $0 \leq k \in \mathbb{Z}$, then the solutions to Pell's equation $x^{2}-29 y^{2}=1$ are given by $(x, y)=\left(\pm r_{k}, \pm s_{k}\right)$ where $0 \leq k \in \mathbb{Z}$. We also remark that it is not hard to give a recursion formula for p_{k} and q_{k}, and it is also possible to give an ugly closed-form formula for p_{k} and q_{k}.
(b) Find all solutions $(x, y) \in \mathbb{Z}^{2}$ to the Pell-like equation $x^{2}-21 y^{2}=4$.

Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{21}$ and the first few convergents $c_{k}=\frac{p_{k}}{q_{k}}$ along with the norms $N_{k}=N\left(p_{k}+q_{k} \sqrt{2} 1\right)=p_{k}^{2}-21 q_{k}^{2}$.

k	x_{k}	a_{k}	p_{k}	q_{k}	N_{k}
0	$\sqrt{21}$	4	4	1	-5
1	$\frac{1}{\sqrt{21}-4}=\frac{\sqrt{21}+4}{5}$	1	5	1	4
2	$\frac{5}{\sqrt{21}-1}=\frac{\sqrt{21}+1}{4}$	1	9	2	-3
3	$\frac{4}{\sqrt{21}-3}=\frac{\sqrt{21}+3}{3}$	2	23	5	4
4	$\frac{3}{\sqrt{21}-3}=\frac{\sqrt{21}+3}{4}$	1	32	7	-5
5	$\frac{4}{\sqrt{21}-1}=\frac{\sqrt{21}+1}{5}$	1	55	12	1
6	$\frac{5}{\sqrt{21}-4}=\frac{\sqrt{21}+4}{1}$	8			

We have $\sqrt{21}=[4, \overline{1,1,2,1,1,8}]$ with period $\ell=6$. Writing $u_{k}=p_{k}+q_{k} \sqrt{21} \in \mathbb{Z}[\sqrt{21}]$, the smallest unit in $\mathbb{Z}[\sqrt{21}]$ with $u>1$ is $u=u_{\ell-1}=u_{5}=55+12 \sqrt{21}$, and we have $N(u)=1$.

If (x, y) is a solution with $x, y \in \mathbb{Z}^{+}$(so we have $x^{2}-21 y^{2}=4$) then since $4 \leq \sqrt{21}$ it follows, from Corollary 7.12, that $\frac{x}{y}$ is equal to one of the convergents $\frac{p_{k}}{q_{k}}$ of $\sqrt{21}$. In order to have $\frac{x}{y}=\frac{p_{k}}{q_{k}}$ we need $x=t p_{k}$ and $y=t q_{k}$ for some $t \in \mathbb{Z}^{+}$and then we have $N_{k}=p_{k}{ }^{2}-21 q_{k}{ }^{2}=\frac{x^{2}-21 y^{2}}{t^{2}}=\frac{4}{t^{2}}$, and it follows that $t \in\{1,2\}$. When $t=1$ so that $x=p_{k}$ and $y=q_{k}$ we have $N_{k}=4$ and when $t=2$ so that $x=2 p_{k}$ and $y=2 p_{k}$ we have $N_{k}=1$. Since the sequence of norms N_{k} is periodic, with $N_{k}=4$ for $k=1,3 \bmod 6$ and $N_{k}=1$ for $k=5 \bmod 6$, all of the positive solutions (x, y) are given by $(x, y)=\left(p_{k}, q_{k}\right)$ for $k=1,3 \bmod 6$ and $(x, y)=\left(2 p_{k}, 2 q_{k}\right)$ for $k=5 \bmod 6$. If we write $v=u_{1}=5+\sqrt{21}$ and $w=u_{3}=23+5 \sqrt{21}$ then since $N(u)=1$ so that $N\left(u^{k}\right)=1, N\left(v u^{k}\right)=N(v)=4$ and $N\left(w u^{k}\right)=N(w)=4$ for all $k \geq 0$, the solutions (x, y) with $x, y \in \mathbb{Z}^{+}$correspond to the elements $x+y \sqrt{21} \in \mathbb{Z}[\sqrt{21}]$ in the following increasing sequence

$$
v, w, 2 u, v u, w u, 2 u^{2}, v u^{2}, w u^{2}, 2 u^{3}, \cdots
$$

We can simplify our description of the solutions if we notice that $\left(\frac{v}{2}\right)^{2}=\left(\frac{5+\sqrt{21}}{2}\right)^{2}=\frac{23+5 \sqrt{21}}{2}=\frac{w}{2}$ and $\left(\frac{v}{2}\right)^{3}=\frac{5+\sqrt{21}}{2} \cdot \frac{23+5 \sqrt{21}}{2}=55+12 \sqrt{21}=u$ so the above sequence $v, w, 2 u, v u, \cdots$ can be written as $2\left(\frac{v}{2}\right)^{k}$, $k \in \mathbb{Z}^{+}$. Thus the solutions are given by $(x, y)=\left(\pm r_{k}, \pm s_{k}\right)$ where $r_{k}+s_{k} \sqrt{21}=2\left(\frac{5+\sqrt{21}}{2}\right)^{k}$ for $0 \leq k \in \mathbb{Z}$.

