PMATH 340 Number Theory, Solutions to Assignment 4.5

1: (a) Express the (periodic) continued fraction $x = [1, 3, \overline{1, 1, 2}]$ in the form $x = \frac{r - \sqrt{d}}{s}$ with $r, s, d \in \mathbb{Z}^+$. Solution: Let $x = [1, 3, \overline{1, 1, 2}]$ and let $u = [\overline{1, 1, 2}]$. Then

$$u = [1, 1, 2, u] = 1 + \frac{1}{1 + \frac{1}{2 + \frac{1}{u}}} = 1 + \frac{1}{1 + \frac{u}{2u + 1}} = 1 + \frac{2u + 1}{3u + 1} = \frac{5u + 2}{3u + 1}$$

so that $3u^2 + u = 5u + 2$ hence $3u^2 - 4u - 2 = 0$. Thus $u = \frac{4 \pm \sqrt{16 + 24}}{6} = \frac{2 \pm \sqrt{10}}{3}$. Since u > 1 we must have $u = \frac{2 \pm \sqrt{10}}{3}$. Thus

$$\begin{aligned} x &= [1,3,\overline{1,1,2}] = [1,3,u] = 1 + \frac{1}{3+\frac{1}{u}} = 1 + \frac{u}{3u+1} = \frac{4u+1}{3u+1} = \frac{4\cdot\frac{2+\sqrt{10}+1}{3}}{3\cdot\frac{2+\sqrt{10}+1}{3}} \\ &= \frac{1}{3} \cdot \frac{4(2+\sqrt{10})+3}{(2+\sqrt{10}+1)} = \frac{1}{3} \cdot \frac{4\sqrt{10}+11}{\sqrt{10}+3} \cdot \frac{\sqrt{10}-3}{\sqrt{10}-3} = \frac{1}{3} \cdot \frac{7-\sqrt{10}}{1} = \frac{7-\sqrt{10}}{3}. \end{aligned}$$

(b) Find the 4th convergent $c_4 = \frac{p_4}{q_4}$ for the continued fraction representation of e^2 . You can use a calculator. Solution: We list the terms x_k , a_k , p_k and q_k where $x_0 = e^2$, $a_k = \lfloor x_k \rfloor$, $x_{k+1} = \frac{1}{x_k - a_k}$, $p_0 = a_0$, $p_1 = a_1a_0 + 1$, $p_k = a_kp_{k-1} + p_{k-2}$, $q_0 = 1$, $q_1 = a_1$ and $q_k = a_{k-1}q_k + q_{k-2}$.

$$k \qquad x_k \qquad a_k \qquad p_k \qquad q_k$$

$$0 \qquad e^2 \cong 7.389 \qquad 7 \qquad 7 \qquad 1$$

$$1 \qquad \frac{1}{e^2 - 7} \cong 2.570 \qquad 2 \qquad 15 \qquad 2$$

$$2 \qquad \frac{1}{\frac{1}{e^2 - 7} - 2} = \frac{e^2 - 7}{15 - 2e^2} \cong 1.753 \qquad 1 \qquad 22 \qquad 3$$

$$3 \qquad \frac{1}{\frac{e^2 - 7}{15 - 2e^2} - 1} = \frac{15 - 2e^2}{3e^2 - 22} \cong 1.327 \qquad 1 \qquad 37 \qquad 5$$

$$4 \qquad \frac{1}{\frac{15 - 2e^2}{3e^2 - 22} - 1} = \frac{3e^2 - 22}{37 - 5e^2} \cong 3.055 \qquad 3 \qquad 133 \qquad 18$$

The 4th convergent is $c_4 = \frac{p_4}{q_4} = \frac{133}{18}$ (which, as you can check, is quite close to e^2).

(c) Express $\sqrt{43}$ as a continued fraction and find the smallest unit u > 1 in $\mathbb{Z}[\sqrt{43}]$. Solution: We list the terms x_k , a_k , p_k and q_k where $x_0 = \sqrt{43}$, $a_k = \lfloor x_k \rfloor$, $x_{k+1} = \frac{1}{x_k - a_k}$, $p_0 = a_0$, $p_1 = a_1a_0 + 1$, $p_k = a_kp_{k-1} + p_{k-2}$, $q_0 = 1$, $q_1 = a_1$ and $q_k = a_kq_{k-1} + q_{k-2}$. We also include $N_k = p_k^2 - 43 q_k^2$.

From the table, the continued fraction for $\sqrt{43}$ is $\sqrt{43} = [6, \overline{1, 1, 3, 1, 5, 1, 3, 1, 1, 12}]$ and the smallest unit u > 1 in $\mathbb{Z}[\sqrt{43}]$ is $u = p_9 + q_9\sqrt{43} = 3482 + 531\sqrt{43}$.

2: (a) Find all solutions $(x, y) \in \mathbb{Z}^2$ to Pell's Equation $x^2 - 29y^2 = 1$.

Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{29}$ and the first few convergents $c_k = \frac{p_k}{q_k}$ along with the norms $N_k = N(p_k + q_k\sqrt{29}) = p_k^2 - 29 q_k^2$.

$$k \qquad x_k \qquad a_k \quad p_k \quad q_k \quad N_k$$

$$0 \qquad \sqrt{29} \qquad 5 \qquad 5 \qquad 1 \qquad -4$$

$$1 \qquad \frac{1}{\sqrt{29}-5} = \frac{\sqrt{29}+5}{4} \qquad 2 \qquad 11 \qquad 2 \qquad 5$$

$$2 \qquad \frac{4}{\sqrt{29}-3} = \frac{\sqrt{29}+3}{5} \qquad 1 \qquad 16 \qquad 3 \qquad -5$$

$$3 \qquad \frac{5}{\sqrt{29}-2} = \frac{\sqrt{29}+2}{5} \qquad 1 \qquad 27 \qquad 5 \qquad 4$$

$$4 \qquad \frac{5}{\sqrt{29}-3} = \frac{\sqrt{29}+3}{4} \qquad 2 \qquad 70 \quad 13 \quad -1$$

$$5 \qquad \frac{4}{\sqrt{29}-5} = \frac{\sqrt{29}+5}{1} \qquad 10$$

We have $\sqrt{29} = [5, \overline{2, 1, 1, 2, 10}]$ with period $\ell = 5$. Writing $u_k = p_k + q_k \sqrt{29} \in \mathbb{Z}[\sqrt{29}]$, the smallest unit in $\mathbb{Z}[\sqrt{29}]$ with u > 1 is $u = u_{\ell-1} = u_4 = 70 + 13\sqrt{29}$, and we have N(u) = -1. The smallest unit v in $\mathbb{Z}[\sqrt{29}]$ with v > 1 and N(v) = 1 is

$$v = u^2 = (70 + 13\sqrt{29})^2 = 9801 + 1820\sqrt{29}.$$

If we write $v^k = (9801 + 1820\sqrt{29})^k = r_k + s_k\sqrt{29}$ for $0 \le k \in \mathbb{Z}$, then the solutions to Pell's equation $x^2 - 29y^2 = 1$ are given by $(x, y) = (\pm r_k, \pm s_k)$ where $0 \le k \in \mathbb{Z}$. We also remark that it is not hard to give a recursion formula for p_k and q_k , and it is also possible to give an ugly closed-form formula for p_k and q_k .

(b) Find all solutions $(x, y) \in \mathbb{Z}^2$ to the Pell-like equation $x^2 - 21y^2 = 4$.

Solution: The following table lists the data used to calculate the continued fraction for $\sqrt{21}$ and the first few convergents $c_k = \frac{p_k}{q_k}$ along with the norms $N_k = N(p_k + q_k\sqrt{21}) = p_k^2 - 21 q_k^2$.

We have $\sqrt{21} = [4, \overline{1, 1, 2, 1, 1, 8}]$ with period $\ell = 6$. Writing $u_k = p_k + q_k \sqrt{21} \in \mathbb{Z}[\sqrt{21}]$, the smallest unit in $\mathbb{Z}[\sqrt{21}]$ with u > 1 is $u = u_{\ell-1} = u_5 = 55 + 12\sqrt{21}$, and we have N(u) = 1.

If (x, y) is a solution with $x, y \in \mathbb{Z}^+$ (so we have $x^2 - 21y^2 = 4$) then since $4 \leq \sqrt{21}$ it follows, from Corollary 7.12, that $\frac{x}{y}$ is equal to one of the convergents $\frac{p_k}{q_k}$ of $\sqrt{21}$. In order to have $\frac{x}{y} = \frac{p_k}{q_k}$ we need $x = tp_k$ and $y = tq_k$ for some $t \in \mathbb{Z}^+$ and then we have $N_k = p_k^2 - 21q_k^2 = \frac{x^2 - 21y^2}{t^2} = \frac{4}{t^2}$, and it follows that $t \in \{1, 2\}$. When t = 1 so that $x = p_k$ and $y = q_k$ we have $N_k = 4$ and when t = 2 so that $x = 2p_k$ and $y = 2p_k$ we have $N_k = 1$. Since the sequence of norms N_k is periodic, with $N_k = 4$ for $k = 1, 3 \mod 6$ and $N_k = 1$ for $k = 5 \mod 6$, all of the positive solutions (x, y) are given by $(x, y) = (p_k, q_k)$ for $k = 1, 3 \mod 6$ and $(x, y) = (2p_k, 2q_k)$ for $k = 5 \mod 6$. If we write $v = u_1 = 5 + \sqrt{21}$ and $w = u_3 = 23 + 5\sqrt{21}$ then since N(u) = 1 so that $N(u^k) = 1$, $N(vu^k) = N(v) = 4$ and $N(wu^k) = N(w) = 4$ for all $k \ge 0$, the solutions (x, y) with $x, y \in \mathbb{Z}^+$ correspond to the elements $x + y\sqrt{21} \in \mathbb{Z}[\sqrt{21}]$ in the following increasing sequence

$$v, w, 2u, vu, wu, 2u^2, vu^2, wu^2, 2u^3, \cdots$$

We can simplify our description of the solutions if we notice that $\left(\frac{v}{2}\right)^2 = \left(\frac{5+\sqrt{21}}{2}\right)^2 = \frac{23+5\sqrt{21}}{2} = \frac{w}{2}$ and $\left(\frac{v}{2}\right)^3 = \frac{5+\sqrt{21}}{2} \cdot \frac{23+5\sqrt{21}}{2} = 55 + 12\sqrt{21} = u$ so the above sequence $v, w, 2u, vu, \cdots$ can be written as $2\left(\frac{v}{2}\right)^k$, $k \in \mathbb{Z}^+$. Thus the solutions are given by $(x, y) = (\pm r_k, \pm s_k)$ where $r_k + s_k\sqrt{21} = 2\left(\frac{5+\sqrt{21}}{2}\right)^k$ for $0 \le k \in \mathbb{Z}$.