PMATH 340 Number Theory, Solutions to Assignment 3

1: Make a table showing some of the values of $k^{2}, 3^{k},(-4)^{k}$ and $-4 k$ modulo 31 for $1 \leq k \leq 15$, and then determine whether $-4 \in Q_{31}$ using each of the following 5 methods:
Solution: Here is the table

k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
k^{2}	1	4	9	16	25	5	18	2	21	7	28	20	14	10	8
3^{k}	3	9	27	19	26	16	17	20	29	25	13	8	24	10	30
$(-4)^{k}$	-4	16	-2	8	-1										
$-4 k$	-4	-8	-12	15	11	7	3	-1	-5	-9	-13	14	10	6	2

(a) From the list of values $k^{2} \bmod 31$, determine whether $-4 \in Q_{31}$ using Definition 4.2.

Solution: Since $-4=27$ does not appear on the list of values k^{2}, we have $-4 \notin Q_{31}$. Note that although we only listed k^{2} for $1 \leq k \leq 15$, this gives the complete list of squares in U_{31} because for $16 \leq \ell \leq 30$ we can write $\ell=-k \bmod 31$ with $1 \leq k \leq 30$, and then we have $\ell^{2}=(-k)^{2}=k^{2} \bmod 31$.
(b) From the list of values $3^{k} \bmod 31$, determine whether $-4 \in Q_{31}$ using Note 4.8.

Solution: Since $3^{k}=30=-1 \bmod 31$, if we continued the list of powers of 3 , the next 15 values would be $3^{15+k}=3^{15} 3^{k}=-3^{k}$ for $1 \leq k \leq 15$, ending wth $3^{30}=1$. Thus ord $(3)=30=\left|\mathrm{U}_{31}\right|$ so that $U_{31}=\langle 3\rangle$. Since $-4=27=3^{3}$, by Note 4.8 we have $\binom{-4}{31}=(-1)^{3}=-1$ so that $-4 \notin Q_{31}$.
(c) From the list of values $(-4)^{k}$ mod 31 , determine whether $-4 \in Q_{31}$ using Theorem 4.11 (Euler's Criterion).

Solution: Since $(-4)^{5}=-1$, Euler's Criterion gives $\left(\frac{-4}{31}\right)=(-4)^{(31-1) / 2}=(-4)^{15}=\left((-4)^{5}\right)^{3}=(-1)^{3}=-1$ so that $-4 \notin Q_{31}$.
(d) From the list of values $-4 k \bmod 31$, determine whether $-4 \in Q_{31}$ using Theorem 4.12 (Gauss' Lemma).

Solution: The list of values $-4 k$ is a list of the elements in $-4 P$. We listed the elements as positive integers when they lie in P and as negative integers when they lie in N, so we see that $|-4 P \cap N|=7$ (indeed we have $-4 P \cap N=\{-4,-8,-12,-1,-5,-9,-13\}$,$) . By Gauss' Lemma, \left(\frac{-4}{31}\right)=(-1)^{|-4 P \cap N|}=(-1)^{7}=-1$ so that $-4 \notin Q_{31}$.
(e) Determine whether $-4 \in Q_{31}$ using Theorem 4.9 (The Multiplicative Property) and Theorem 4.14.

Solution: Since $31=3 \bmod 4$, it follows from Theorem 4.14 that $-1 \notin Q_{31}$, and so by the Multiplicative Property we have $\left(\frac{-4}{31}\right)=\left(\frac{-1}{31}\right)\left(\frac{2}{31}\right)^{2}=(-1)(1)=-1$ so that $-4 \notin Q_{31}$.

2: (a) Determine whether $23 \in Q_{61}$.
Solution: Using various properties of the Legendre symbol, including quadratic reciprocity, we have

$$
\left(\frac{23}{61}\right)=\left(\frac{61}{23}\right)=\left(\frac{15}{23}\right)=\left(\frac{3}{23}\right)\left(\frac{5}{23}\right)=-\left(\frac{23}{3}\right)\left(\frac{23}{5}\right)=-\left(\frac{2}{3}\right)\left(\frac{3}{5}\right)=-\left(\frac{2}{3}\right)\left(\frac{5}{3}\right)=-\left(\frac{2}{3}\right)^{2}=-1,
$$

and hence $23 \notin Q_{61}$.
(b) Determine whether $47 \in Q_{1111}$.

Solution: Note that $1111=11 \cdot 101$. We have

$$
\begin{aligned}
\left(\frac{47}{11}\right) & =\left(\frac{3}{11}\right)=-\left(\frac{11}{3}\right)=-\left(\frac{2}{3}\right)=1 \\
\left(\frac{47}{101}\right) & =\left(\frac{101}{47}\right)=\left(\frac{7}{47}\right)=-\left(\frac{47}{7}\right)=-\left(\frac{5}{7}\right)=-\left(\frac{7}{5}\right)=-\left(\frac{2}{5}\right)=1
\end{aligned}
$$

Since $47 \in Q_{11}$ and $47 \in Q_{101}$, it follows that $47 \in Q_{n}$.
(c) Determine whether $413 \in Q_{739}$.

Solution: We need to determine whether 739 is prime. Note that $28^{2}=784>739$, so it suffices to determine whether 739 has a prime factor p with $p<28$. The primes $p<28$ are $2,3,5,7,11,13,17,19$ and 23 . The tests for divisibility by $2,3,5$ and 11 (described in Example 2.31) show that these primes do not divide 739, so it remains to test the primes $7,13,17$ and 19 , which we do using long division: we find that

$$
739=105 \cdot 7+4,739=13 \cdot 56+11,739=17 \cdot 43+8, \text { and } 739=19 \cdot 38+17
$$

so none of these primes is a factor of 739 , and so 739 is prime.
We have $413=7 \cdot 59$ and so, using various properties of the Legendre symbol, we have

$$
\begin{aligned}
& \left(\frac{7}{739}\right)=-\left(\frac{739}{7}\right)=-\left(\frac{4}{7}\right)=-1 \\
& \left(\frac{59}{739}\right)=-\left(\frac{759}{59}\right)=-\left(\frac{31}{59}\right)=\left(\frac{59}{31}\right)=\left(\frac{28}{31}\right)=\left(\frac{2}{31}\right)^{2}\left(\frac{7}{31}\right)=\left(\frac{7}{31}\right)=-\left(\frac{31}{7}\right)=-\left(\frac{3}{7}\right)=\left(\frac{7}{3}\right)=\left(\frac{1}{3}\right)=1 \\
& \left(\frac{413}{739}\right)=\left(\frac{7}{739}\right)\left(\frac{59}{739}\right)=(-1)(1)=-1
\end{aligned}
$$

and hence $413 \notin Q_{739}$.

3: (a) Determine the number of quadratic residues in U_{400} (that is find $\left|Q_{400}\right|$).
Solution: Since $400=16 \cdot 25$ and $\operatorname{gcd}(16,25)=1$, we have $Q_{400} \cong Q_{16} \times Q_{25}$ by Theorem 4.3. We have $\left|U_{16}\right|=8,\left|Q_{16}\right|=2,\left|U_{25}\right|=20$ and $\left|Q_{25}\right|=10$ and so $\left|Q_{400}\right|=\left|Q_{16}\right|\left|Q_{25}\right|=2 \cdot 10=20$.
(b) Determine the number of quadratic residues in \mathbb{Z}_{400} (that is find $\left|S_{400}\right|$).

Solution: In $\mathbb{Z}_{16} \backslash U_{16}=\{0,2,4,6,8,10,12,14\}$. we have

$$
\begin{array}{ccccccccc}
x & 0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 \\
x^{2} & 0 & 4 & 0 & 4 & 0 & 4 & 0 & 4
\end{array}
$$

and hence $S_{16}=U_{16} \cup\{0,4\}$ so that $\left|S_{16}\right|=\left|Q_{16}+2\right|=4$. In $\mathbb{Z}_{25} \backslash U_{25}=\{0,5,10,15,20\}$, we have

$$
\begin{array}{cccccc}
x & 0 & 5 & 10 & 15 & 20 \\
x^{2} & 0 & 0 & 0 & 0 & 0
\end{array}
$$

and hence $S_{25}=U_{25} \cup\{0\}$ so that $\left|S_{25}\right|=\left|U_{25}+1\right|=11$. Thus $\left|S_{400}\right|=\left|S_{16}\right|\left|S_{25}\right|=4 \cdot 11=44$.
(c) Let $n=10^{6}$. Find the number of solutions to $(x-1)(x-5)=0$ in \mathbb{Z}_{n}.

Solution: Note that $10^{6}=2^{6} \cdot 5^{6}$. Notice that $4|(x-1) \Longleftrightarrow 4|(x-5)$ and that 8 cannot divide both $(x-1)$ and $(x-5)$, and so we have

$$
\begin{aligned}
(x-1)(x-5)=0 \bmod 2^{6} & \Longleftrightarrow 2^{6} \mid(x-1)(x-5) \\
& \Longleftrightarrow\left(2^{4} \mid(x-1) \text { or } 2^{4} \mid(x-5)\right. \\
& \Longleftrightarrow x=1 \bmod 2^{4} \text { or } x=5 \bmod 2^{4} \\
& \Longleftrightarrow x=1,17,33,49,5,21,37 \text { or } 53 \bmod 2^{6}
\end{aligned}
$$

so there are 8 solutions to $(x-1)(x-5)=0$ modulo 2^{6}. Also notice that 5 can only divide one of $(x-1)$ and $(x-5)$ and so we have

$$
\begin{aligned}
(x-1)(x-5)=0 \bmod 5^{6} & \Longleftrightarrow 5^{6} \mid(x-1)(x-5) \\
& \Longleftrightarrow 5^{6} \mid(x-1) \text { or } 5^{6} \mid(x-5) \\
& \Longleftrightarrow x=1 \text { or } 5 \bmod 5^{6}
\end{aligned}
$$

so there are 2 solutions modulo 5^{6}. Thus there are $8 \cdot 2=16$ solutions in \mathbb{Z}_{n}.

4: (a) Prove that for primes $p>3$ we have $-3 \in Q_{p} \Longleftrightarrow p=1 \bmod 6$.
Solution: We have $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)$. Recall, from Theorem 4.14, that

$$
\left(\frac{-1}{p}\right)=\left\{\begin{array}{r}
1, \text { if } p=1 \bmod 4 \\
-1, \text { if } p=3 \bmod 4
\end{array}\right\} \quad \text { and } \quad\left(\frac{3}{p}\right)=\left\{\begin{array}{r}
1, \text { if } p=1 \text { or } 11 \bmod 12 \\
-1, \text { if } p=5 \text { or } 7 \bmod 12
\end{array}\right\}
$$

and so

$$
\begin{aligned}
\left(\frac{-3}{p}\right) & =\left\{\begin{array}{r}
1, \text { if }(p=1 \bmod 4 \text { and } p=1 \text { or } 11 \bmod 12) \text { or }(p=3 \bmod 4 \text { and } p=5 \text { or } 7 \bmod 12) \\
-1, \text { if }(p=1 \bmod 4 \text { and } p=5 \text { or } 7 \bmod 12) \text { or }(p=3 \bmod 4 \text { and } p=1 \text { or } 11 \bmod 12)
\end{array}\right\} \\
& =\left\{\begin{array}{r}
1, \text { if } p=1 \text { or } 7 \bmod 12 \\
-1, \text { if } p=5 \text { or } 11 \bmod 12
\end{array}\right\}=\left\{\begin{array}{r}
1, \text { if } p=1 \bmod 6 \\
-1, \text { if } p=5 \bmod 6
\end{array}\right\}
\end{aligned}
$$

(b) Find a set $S \subseteq U_{24}$ such that for all primes $p>3$ we have $6 \in Q_{p} \Longleftrightarrow p \in S \bmod 24$.

Solution: Let p be prime with $p>3$. Note that $\left(\frac{6}{p}\right)=\left(\frac{-2}{p}\right)\left(\frac{-3}{p}\right)$. By Theorem 4.14 and Part (a), we have

$$
\left(\frac{-2}{p}\right)=\left\{\begin{array}{r}
1 \text { if } p=1,3 \bmod 8 \\
-1 \text { if } p=5,7 \bmod 8
\end{array}\right\} \quad \text { and }\left(\frac{-3}{p}\right)=\left\{\begin{array}{r}
1 \text { if } p=1 \bmod 6 \\
-1 \text { if } p=5 \bmod 6
\end{array}\right\}
$$

It follows that

$$
\begin{aligned}
\left(\frac{6}{p}\right) & =\left\{\begin{array}{r}
1 \text { if }(p=1,3 \bmod 8 \text { and } p=1 \bmod 6) \text { or }(p=5,7 \bmod 8 \text { and } p=5 \bmod 6) \\
-1 \text { if }(p=1,3 \bmod 8 \text { and } p=5 \bmod 6) \text { or }(p=5,7 \bmod 8 \text { and } p=1 \bmod 6)
\end{array}\right\} \\
& =\left\{\begin{array}{c}
1 \text { if }(p=1,19 \bmod 24) \text { or }(p=5,23 \bmod 24) \\
-1 \text { if }(p=17,11 \bmod 24) \text { or }(p=13,7 \bmod 24)
\end{array}\right\}
\end{aligned}
$$

Thus we can take $S=\{1,5,19,23\}=\{ \pm 1, \pm 5\} \in U_{24}$.
(c) Find a set $S \subseteq U_{28}$ such that for all primes $p>7$ we have $7 \in Q_{p} \Longleftrightarrow p \in S \bmod 28$.

Solution: In U_{7} we have $1^{1}=1,2^{2}=4$ and $3^{3}=2$ so that $Q_{7}=\{1,2,4\}$. Let p be a prime number with $p>7$. When $p=1 \bmod 4$ we have $\left(\frac{7}{p}\right)=\left(\frac{p}{7}\right)$, which is equal to 1 when $p \in\{1,2,4\} \bmod 7$. and when $p=3 \bmod 4$ we have $\left(\frac{7}{p}\right)=-\left(\frac{p}{7}\right)$, which is equal to 1 when $p \in\{3,5,6\} \bmod 7$. Thus

$$
\begin{aligned}
p \in Q_{7} & \Longleftrightarrow(p=1 \bmod 4 \text { and } p \in\{1,2,4\} \bmod 7) \text { or }(p=3 \bmod 4 \text { and } p \in\{2,5,6\} \bmod 7) \\
& \Longleftrightarrow(p \in\{1,9,25\} \bmod 28) \text { or }(p \in\{3,19,27\} \bmod 28) \\
& \Longleftrightarrow p \in\{1,3,9,19,25,27\} \bmod 28 .
\end{aligned}
$$

Thus we can take $S=\{1,3,9,19,25,27\}=\{ \pm 1, \pm 3 \pm 9\} \subseteq U_{28}$.

