## PMATH 340 Number Theory, Solutions to Assignment 2

1: (a) Find all possible pairs of decimal digits $(a, b)$ such that $99 \mid 38 a 91 b$.
Solution: Note that $99 \mid 38 a 91 b$ implies that $9 \mid 38 a 91 b$ and $11 \mid 38191 b$. We have

$$
9|38 a 91 b \Longrightarrow 9|(3+8+a+9+1+b) \Longrightarrow a+b=6 \bmod 9 \Longrightarrow a+b=6 \text { or } 15,
$$

and

$$
11|38 a 91 b \Longrightarrow 11|(3-8+a-9+1-b) \Longrightarrow a-b=2 \bmod 11 \Longrightarrow a-b=2 \text { or }-9 .
$$

The only pair $(a, b)$ with $a-b=-9$ is the pair $(a, b)=(0,9)$, but for this pair we have $a+b=9$, so it does not satisfy the condition that $a+b=6$ or 15 . The only pairs $(a, b)$ with $a-b=2$ are the pairs $(a, b)=(2,0),(3,1),(4,2), \cdots,(9,7)$. Of these 8 pairs, only the pair $(a, b)=(4,2)$ satisfies the condition $a+b=6$ or 15 . Thus $(a, b)=(4,2)$ is the only such pair.
(b) Let $n=a_{0}+a_{1} \cdot 1000+a_{2} \cdot 1000^{2}+\cdots+a_{\ell} \cdot 1000^{\ell}$ where $a_{\ell} \neq 0$ and for each $i$ we have $a_{i} \in\{0,1, \cdots, 999\}$. Show that for $d=7,11$ and 13 we have

$$
d|n \Longleftrightarrow d|\left(a_{0}-a_{1}+a_{2}-a_{3}+\cdots+(-1)^{\ell} a_{\ell}\right)
$$

Solution: Let $n=a_{0}+a_{1} \cdot 1000+a_{2} \cdot 1000^{2}+\cdots+a_{l} \cdot 1000^{l}$ where $a_{l} \neq 0$ and for each $i$ we have $0 \leq a_{i}<1000$. Notice that $1001=7 \cdot 11 \cdot 13$, so for $d=7,11$ or 13 , we have $1000=-1 \bmod d$, and so

$$
\begin{aligned}
n & =a_{0}+a_{1} \cdot 1000+a_{2} \cdot 1000^{2}+\cdots+a_{l} \cdot 1000^{l} \\
& =a_{0}+a_{1}(-1)+a_{2}(-1)^{2}+\cdots+a_{l}(-1)^{l} \bmod d \\
& =a_{0}-a_{1}+a_{2}-a_{3}+\cdots+(-1)^{l} a_{l} \bmod d
\end{aligned}
$$

and

$$
\begin{aligned}
d \mid n & \Longleftrightarrow n=0 \bmod d \\
& \Longleftrightarrow a_{0}-a_{1}+a_{2}-a_{3}+\cdots+(-1)^{l} a_{l}=0 \bmod d \\
& \Longleftrightarrow d \mid\left(a_{0}-a_{1}+a_{2}-a_{3}+\cdots+(-1)^{l} a_{l}\right) .
\end{aligned}
$$

(c) Show that it is not possible to rearrange the digits of the number 51328167 to form a perfect square or a perfect cube or any higher perfect power.
Solution: If we rearrange the digits of 51328167 in any way, to form a number $a$, then we have $3 \mid a$ since $5+1+3+2+8+1+6+7=33=0 \bmod 3$, but $9 \nmid a$ since $33 \neq 0 \bmod 9$. Thus the exponent of 3 in the prime factorization of $a$ is equal to 1 , so $a$ cannot be a square or a cube or any higher perfect power.

2: (a) Find $12^{-1}$ in $\mathbb{Z}_{29}$.
Solution: We must find $x$ such that $12 x=1 \bmod 29$, that is $12 x+29 y=1$ for some integer $y$. The Euclidean Algorithm gives

$$
29=2 \cdot 12+5, \quad 12=2 \cdot 5+2, \quad 5=2 \cdot 2+1, \quad 2=2 \cdot 1+0
$$

so $\operatorname{gcd}(12,29)=1$, and then Back-Substitution gives the sequence

$$
1,-2, \quad 5,-12
$$

so we have $12(-12)+29(5)=1$. One solution to the congruence is $x=-12$, so $12^{-1}=-12=17$ in $\mathbb{Z}_{29}$.
(b) Solve $34 x=18$ in $\mathbb{Z}_{46}$.

Solution: For $x \in \mathbb{Z}$, to get $34 x=18 \bmod 46$, we need $34 x+46 y=18$ for some integer $y$. The Euclidean Algorithm gives

$$
46=1 \cdot 34+12, \quad 34=2 \cdot 12+10, \quad 12=1 \cdot 10+2, \quad 10=5 \cdot 2+0
$$

so $\operatorname{gcd}(10,46)=2$, and then Back-Substitution then gives

$$
1, \quad-1,3, \quad-4
$$

so we have $34(-4)+46(3)=2$. Multiply both sides by $\frac{18}{2}=9$ to get $34(-36)+46(27)=18$. Thus one solution to the congruence is $x=-36$. Note that $\frac{46}{2}=23$, so by the Linear Congruence Theorem, the general solution to the congruence is $x=-36=10 \bmod 23$. Equivalently, $x=10$ or $33 \bmod 46$. Thus for $x \in \mathbb{Z}_{46}$, there are two solutions to the given equation, namely $x=10$ and $x=33$.
(c) In $\mathbb{Z}_{20}$, solve the pair of simultaneous equations

$$
\begin{aligned}
& 7 x+12 y=6 \\
& 6 x+11 y=13
\end{aligned}
$$

Solution: Note that 7 is invertible in $\mathbb{Z}_{20}$, indeed by inspection, we have $7^{-1}=3$. Multiply the first equation by 3 to get $x+16 y=18$, that is

$$
x=18-16 y=4 y-2
$$

Put this into the second equation to get $6(4 y-2)+11 y=13$, that is $4 y-12+11 y=13$, or equivalently $15 y=5$. We have

$$
\begin{aligned}
15 y=5 \text { in } \mathbb{Z}_{20} & \Longleftrightarrow 15 y=5 \bmod 20 \Longleftrightarrow 3 y=1 \bmod 4 \Longleftrightarrow y=3 \bmod 4 \\
& \Longleftrightarrow y=3,7,11,15 \text { or } 19 \text { in } \mathbb{Z}_{20}
\end{aligned}
$$

Put each of these values for $y$ back in the equation $x=4 y-2$ to get the solutions

$$
(x, y)=(10,3),(6,7),(2,11),(18,15),(14,19)
$$

3: (a) Solve the pair of congruences $5 x=9 \bmod 14$ and $17 x=3 \bmod 30$.
Solution: We have $5 x=9 \bmod 14 \Longleftrightarrow 5 x \in\{\cdots,-5,9,23, \cdots\}$. By inspection, one solution to the first congruence is given by $x=-1$ and, since $\operatorname{gcd}(5,14)=1$, the general solution is given by $x=-1 \bmod 14$. To get $17 x=3 \bmod 30$ we need $17 x+30 y=3$ for some $y \in \mathbb{Z}$. The Euclidean Algorithm gives

$$
30=1 \cdot 17+13,17=1 \cdot 13+4,13=3 \cdot 4+1
$$

so that $d=\operatorname{gcd}(17,30)=1$, and then Back-Substitution gives the sequence

$$
1,-3,4,-7
$$

so that $17(-7)+30(4)=1$. Multiply by 3 to get $17(-21)+30(12)=3$, and so one solution to the second congruence is $x=-21$ and the general solution is $x=-21=9 \bmod 30$. Thus the two given congruences are equivalent to the two congruences $x=-1 \bmod 14(1)$ and $x=9 \bmod 30(2)$. To solve these two congruences we try to find $k, \ell \in \mathbb{Z}$ so that $x=-1+14 k=9+30 \ell$. We need $14 k-30 \ell=10$. Divide by 2 to get $7 k-15 \ell=5$. By inspection, one solution is given by $(k, \ell)=(-10,-5)$. Put $k=-10$ into the equation $x=-1+14 k$ toget $x=-141$, and so $x=-141$ is one solution to the pair of congruences (1) and (2). Since $\operatorname{gcd}(14,30)=2$ so that $\operatorname{lcm}(14,30)=\frac{14 \cdot 30}{2}=210$, by the CRT (the Chinese Remainder Theorem) the general solution is $x=-141 \bmod 210$, or equivalently $x=69 \bmod 210$.
(b) Solve the congruence $x^{2}+x=38 \bmod 72$.

Solution: Note that $72=8 \cdot 9$. Working modulo 8 , we have $38=6$, and we have the following table of values

$$
\begin{array}{ccccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
x^{2} & 0 & 1 & 4 & 1 & 0 & 1 & 4 & 1 \\
x^{2}+x & 0 & 1 & 6 & 4 & 4 & 6 & 2 & 0
\end{array}
$$

Thus we must have $x=2$ or $5 \bmod 8$. Also, working modulo 9 we have $38=2$ and we have the following table of values

$$
\begin{array}{cccccccccc}
x & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
x^{2} & 0 & 1 & 4 & 0 & 7 & 7 & 0 & 4 & 1 \\
x+x^{2} & 0 & 2 & 6 & 3 & 2 & 3 & 6 & 2 & 0
\end{array}
$$

and so we must have $x=1 \bmod 3$. By one solution by inspection then applying the CRT, we have

$$
\begin{aligned}
& (x=2 \bmod 8 \text { and } x=1 \bmod 3) \Longleftrightarrow x=10 \bmod 24, \text { and } \\
& (x=5 \bmod 8 \text { and } x=1 \bmod 3) \Longleftrightarrow x=13 \bmod 24
\end{aligned}
$$

Thus the solution is $x=10$ or $13 \bmod 24$.

4: Chinese generals used to count their troops by telling them to form groups of some size $n$, and then counting the number of troops left over. Suppose there were 5000 troops before a battle, and after the battle it was found that when the troops formed groups of 5 there was 1 left over, when they formed groups of 7 there were none left over, when they formed groups of 11 there were 6 left over, and when they formed groups of 12 there were 5 left over. How many troops survived the battle?
Solution: We must solve the system of congruences

$$
\begin{aligned}
& x=1 \bmod 5 \\
& x=0 \bmod 7 \\
& x=6 \bmod 11 \\
& x=5 \bmod 12 .
\end{aligned}
$$

Note that $x=21$ is a solution to the first pair of congruences so by the CRT (the Chinese Remainder Theorem), the general solution to the first pair is $x=21 \bmod 35$. Also note that $x=17$ is a solution to the second pair of congruences, so by the CRT, the general solution is $x=17 \bmod 132$. Thus we must solve the pair of congruences

$$
\begin{aligned}
& x=21 \bmod 35 \\
& x=17 \bmod 132 .
\end{aligned}
$$

For $x$ to be a solution we need $x=21+35 r$ and $x=17+132 s$ for some integers $r$ and $s$, so we must have $21+35 r=17+132 s$, that is $35 r-132 s=-4$. The Euclidean Algorithm gives

$$
132=3 \cdot 35+27, \quad 35=1 \cdot 27+8, \quad 27=3 \cdot 8+3, \quad 8=2 \cdot 3+2, \quad 3=1 \cdot 2+1
$$

so we have $\operatorname{gcd}(35,132)=1$, and then Back-Substitution gives

$$
1, \quad-1,3,-10,13, \quad-49
$$

and so we have $(35)(-49)-(132)(-13)=1$. Multiply both sides by -4 to get $(35)(196)-(132)(52)=-4$. Thus one solution to the linear diophantine equation $35 r-132 s=-4$ is given by $(r, s)=(196,52)$, and by the Linear Diophantine Equation Theorem, the general solution is $(r, s)=(196,52)+k(132,35), k \in \mathbb{Z}$, so we have $r=196=64 \bmod 132$. Thus one solution to the above pair of congruences (which is equivalent to the original system of 4 congruences) is $x=21+35 r=21+(35)(64)=2261$. Note that $35 \cdot 132=4620$, so by the CRT, the general solution to the pair of congruneces is

$$
x=2261 \bmod 4620 .
$$

Since $2261-4620<0$ and $2261+4620>5000$, there must be 2261 troops remaining after the battle.

