PMATH 340 Number Theory, Solutions to Assignment 2.5

1: (a) Find $10^{50} \bmod 91$.
Solution: Note that $91=7 \cdot 13$. The list of powers of 10 modulo 91 repeats every $\lambda(91)$ (or every $\psi(91)$ or every $\varphi(91)$) terms beginning with 10^{1}. We have $\lambda(91)=\psi(91)=\operatorname{lcm}(6,12)=12$, so the list repeats every 12 terms. Since $50=2 \bmod 12$, we have $10^{50}=10^{2}=100=9 \bmod 91$.
(b) Find $28^{27^{26}} \bmod 25$.

Solution: Since $28=3 \bmod 25$ we have $28^{27^{26}}=3^{27^{26}} \bmod 25$. Since $\lambda(25)=\lambda\left(5^{2}\right)=20$, the list of powers of 3 modulo 25 repeats every 20 terms (beginning with 3^{0}), so we wish to find $27^{26} \bmod 20$. Since $27=7 \bmod 20$ we have $27^{26}=7^{26} \bmod 20$. Since $\left.\lambda(20)=\lambda\left(2^{2} \cdot 5\right)\right)=\operatorname{lcm}(2,4)=4$, the list of powers of 7 modulo 20 repeats every 4 terms (beginning with 7^{0}). Since $26=2 \bmod 4$ we have $7^{26}=7^{2}=49=9 \bmod 20$. Thus, using the fact that $3^{3}=27=2 \bmod 25$, we have

$$
28^{27^{26}}=3^{27^{26}}=3^{7^{26}}=3^{7^{2}}=3^{9}=\left(3^{3}\right)^{3}=2^{3}=8 \bmod 25 .
$$

(c) Find a positive integer k such that the number 3^{k} ends with the digits 0001.

Solution: By the Euler-Fermat Theorem, we have $3^{\varphi(10000)} \equiv 1(\bmod 10000)$, that is $3^{\varphi(10000)}=1+10000 \ell$ for some integer ℓ. Thus $3^{\varphi(10000)}$ ends with the digits 0001 , so we can take

$$
k=\varphi(10000)=\varphi\left(2^{4}\right) \varphi\left(5^{4}\right)=2^{3}(2-1) \cdot 5^{3}(5-1)=8 \cdot 500=4000
$$

Alternatively, by the generalized Euler-Fermat Theorem we can take $k=\psi(10000)=\operatorname{lcm}(8,500)=1000$. Better still, by the Structure Theorem for U_{n}, we can take $k=\lambda(10000)=\operatorname{lcm}(4,500)=500$.
(d) With the help of the following table of powers of $5 \bmod 64$, solve $11 x^{5}=17 \bmod 64$.

k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
5^{k}	1	5	25	61	49	53	9	45	33	37	57	29	17	21	41	13	1
-5^{k}	63	59	39	3	15	11	55	19	31	27	7	35	47	43	23	51	63

Solution: If x is even then $11 x^{5}$ is even so $11 x^{5} \neq 17 \bmod 64$. Suppose that x is odd so $x \in U_{64}$. Then we have $x= \pm 5^{k}$ for some $k \in \mathbb{Z}_{16}$. If $x=5^{k}$ then $11 x^{5}=17 \bmod 64 \Longleftrightarrow\left(-5^{5}\right)\left(5^{5} k\right)=5^{12} \bmod 64 \Longleftrightarrow$ $-5^{5 k+5}=5^{12} \bmod 64$, and this has no solution (since $-5^{s} \neq 5^{t}$ for any s, t). If $x=-5^{k}$ then we have $11 x^{5}=17 \bmod 64 \Longleftrightarrow\left(-5^{5}\right)\left(-5^{5} k\right)=5^{12} \bmod 64 \Longleftrightarrow 5^{5+5 k}=5^{12} \bmod 64 \Longleftrightarrow 5+5 k=12 \bmod 16$ $\Longleftrightarrow 5 k=7 \bmod 16 \Longleftrightarrow k=11 \bmod 16 \Longleftrightarrow x=-5^{11}=35 \bmod 64$.

2: (a) Find a positive integer ℓ and find primes $p_{1}, p_{2}, \cdots, p_{\ell}$ and positive integers $k_{1}, k_{2}, \cdots, k_{\ell}$ such that $U_{675} \cong \mathbb{Z}_{p_{1} k_{1}} \times \mathbb{Z}_{p_{2} 2^{k_{2}}} \times \cdots \times \mathbb{Z}_{p_{e^{k_{\varepsilon}}}}$.
Solution: Since $675=3^{3} \cdot 5^{2}$ and $\varphi\left(3^{3}\right)=3^{3}-3^{2}=18$ and $\varphi\left(5^{2}\right)=5^{2}-5^{2}=20$, we have

$$
U_{675} \cong U_{3^{3}} \times U_{5^{3}} \cong \mathbb{Z}_{18} \times \mathbb{Z}_{20} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{9} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5}
$$

so we can take $\ell=4$ and $p_{1}^{k_{1}}=2^{1}, p_{2}^{k_{2}}=2^{2}, p_{3}^{k_{3}}=3^{2}$ and $p_{4}^{k_{4}}=5^{1}$.
(b) Find the number squares, the number of cubes, and the number of fourth powers in U_{125}.

Solution: Recall that for an element a with $\operatorname{ord}(a)=n$ in a finite group G, we have $\left\langle a^{k}\right\rangle=\left\langle a^{d}\right\rangle$ where $d=\operatorname{gcd}(k, n)$ and $\operatorname{ord}\left(a^{k}\right)=n / d$. We know that U_{125} is cyclic. Let $a \in U_{125}$ be a generator, so we have ord $(a)=\left|U_{125}\right|=\varphi(125)=100$. The set of squares in U_{125} is the set $\left\langle a^{2}\right\rangle=\left\{1, a^{2}, a^{4}, \cdots\right\}$ so the number of squares in U_{125} is equal to $\operatorname{ord}\left(a^{2}\right)=\frac{100}{\operatorname{gcd}(2,100)}=\frac{100}{2}=50$. The set of cubes in U_{125} is the set $\left\langle a^{3}\right\rangle=\left\{1, a^{3}, a^{6}, a^{9}, \cdots\right\}$ so the number of cubes is equal to $\operatorname{ord}\left(a^{3}\right)=\frac{100}{\operatorname{gcd}(3,100)}=\frac{100}{1}=100$. The set of fourth powers is $\left\langle a^{4}\right\rangle$ and the number of fourth powers is $\frac{100}{\operatorname{gcd}(4,100)}=\frac{100}{4}=25$. More generally, if $n=p^{k}$ where p is an odd prime, then the number of $m^{t h}$ powers in U_{n} is equal to $\frac{\varphi(n)}{\operatorname{gcd}(m, \varphi(n))}$.
(c) For $n=18900$, find the universal exponent $\lambda(n)$ and find the number of elements in U_{n} of order $\lambda(n)$.

Solution: Note that $18900=4 \cdot 27 \cdot 25 \cdot 7$ so we have

$$
\begin{aligned}
U_{n} & \cong U_{4} \times U_{27} \times U_{25} \times U_{7} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{18} \times \mathbb{Z}_{20} \times \mathbb{Z}_{6} \\
\lambda(n) & =\operatorname{lcm}(\lambda(4), \lambda(27), \lambda(20), \lambda(7))=\operatorname{lcm}(2,18,20,6)=180 .
\end{aligned}
$$

The number of elements in U_{n} of order 180 is equal to the number of elements in $\mathbb{Z}_{2} \times \mathbb{Z}_{18} \times \mathbb{Z}_{20} \times \mathbb{Z}_{6}$ of order 180. For $a=\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbb{Z}_{2} \times \mathbb{Z}_{18} \times \mathbb{Z}_{20} \times \mathbb{Z}_{6}$ we have ord $\left(a_{1}\right) \mid 2$, ord $\left(a_{2}\right) \mid 18$, ord $\left(a_{3}\right) \mid 20$, ord $\left(a_{4}\right) \mid 6$ and $\operatorname{ord}(a)=\operatorname{lcm}\left(\operatorname{ord}\left(a_{1}\right), \cdots, \operatorname{ord}\left(a_{n}\right)\right)$. To have ord $(a)=180=4 \cdot 9 \cdot 5$, note that ord $\left(a_{2}\right)$ must be a multiple of 9 (since none of the orders of a_{1}, a_{3}, a_{4} is a multiple of 9) and ord (a_{3}) must be both a multiple of 4 and a multiple of 5 (since none of the orders of a_{1}, a_{2}, a_{4} are multiples of 4 or 5). Thus $\operatorname{ord}(a)=180$ when $\operatorname{ord}\left(a_{2}\right) \in\{9,18\}$ and $\operatorname{ord}\left(a_{3}\right)=20$ (the elements a_{1}, a_{4} are arbitrary). There are $\varphi(9)+\varphi(18)=12$ choices for $a_{2}, \varphi(20)=8$ choices for $a_{3}, 2$ choices for a_{1} and 6 choices for a_{4} giving a total of $12 \cdot 8 \cdot 2 \cdot 6=1152$ elements of order 180 .

