
PMATH 340 Number Theory, Solutions to Assignment 1

1: (a) Solve the Linear Diophantine Equation 385x− 1183y = 294.

Solution: The Euclidean Algorithm gives

1183 = 3 · 385 + 28 , 385 = 13 · 28 + 21 , 28 = 1 · 21 + 7 , 21 = 3 · 7 + 0

and so gcd(385, 1183) = 7. Back Substitution gives the sequence

1 , −1 , 14 , −43

and so we have 385(−43) + 1183(14) = 7. Note that 294
7 = 42, and multiplying both sides by 42 gives

385(−1806) − 1183(−588) = 294. Thus one solution is (x, y) = (−1806,−588). Note that 385
7 = 55 and

1183
7 = 169, and so by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (−1806,−588) + k(169, 55) , k ∈ Z .

(b) A shopper spends $19.81 to buy some bananas which cost 35 cents each and some plums which cost 56
cents each. What is the minimum number of pieces of fruit that the shopper could have bought.

Solution: Let x be the number of bananas purchased and let y be the number of plums purchased. The fruit
is worth $19.81, so we have

35x + 56y = 1981 .

The Euclidean Algorithm gives

56 = 1 · 35 + 21 , 35 = 1 · 21 + 14 , 21 = 1 · 14 + 7 , 14 = 2 · 7 + 0

so we have gcd(35, 56) = 7. Back-Substitution gives

1 , −1 , 2 , −3

so we have 35(−3) + 56(2) = 7. Note that 1981
7 = 283 and multiplying both sides of the equation by 93 gives

35(−849) + 56(566) = 1981, and so one solution is (x, y) = (−849, 566). Note that 35
7 = 5 and 56

7 = 8, and
so by the Linear Diophantine Equation Theorem, the general solution is

(x, y) = (−849, 566) + k(−8, 5) , k ∈ Z .

Note that
x ≥ 0 =⇒ −849− 8k ≥ 0 =⇒ 8k ≤ −849 =⇒ k ≤

⌊
− 849

8

⌋
= −107

y ≥ 0 =⇒ 566 + 5k ≥ 0 =⇒ 5k ≥ −566 =⇒ k ≥
⌈
−566

5

⌉
= −113 ,

so we obtain non-negative solutions when −107 ≤ k ≤ 113. We wish to choose the value of k which minimizes
x + y (the total number of pieces of fruit purchased). Note that

x + y = −849− 8k + 566 + 5k = −283− 3k ,

so to minimize x + y we must choose the maximum possible value of k, that is k = −107. When k = −107
we have x + y = −283− 3k = 38. Thus the minimum number of pieces of fruit is 38.



2: We can solve a pair of linear diophantine equations in three variables by first eliminating one of the variables
and solving the resulting equation in the remaining two variables.

(a) Show that there is no solution to the pair of diophantine equations

2x + 7y + z = 45 (1)

3x + 8y + 4z = 21 (2)

Solution: To eliminate z, multiply the first equation by 4 and subtract the second to get 5x + 20y = 159.
Notice that gcd(5, 20) = 5 and 5 does not divide 159, so there is no solution.

(b) Find all solutions to the pair of diophantine equations

20x + 12y + 15z = 85 (1)

18x + 20y + 8z = 110 (2)

Solution: To eliminate z, multiply (2) by 15 and subtract 8 times (1). This gives

110x + 204y = 970 (3)

The Euclidean Algorithm gives

205 = 1 · 110 + 94 , 110 = 1 · 94 + 16 , 94 = 5 · 16 + 14 , 16 = 1 · 14 + 2 , 14 = 7 · 2 + 0

so we have gcd(110, 204) = 2. Back-Substitution gives

1 , −1 , 6 , −7 , 13

so we have 110(13)+204(−7) = 2. Note that 970
2 = 485, and multiplying both sides of the previous equation

by 485 gives 110(6305) + 204(−3395) = 970, and so one solution to (3) is given by (x, y) = (6305,−3395).
Note that 110

2 = 55 and 204
2 = 102, and so by the Linear Diophantine Equation Theorem, the general solution

to equation (3) is
(x, y) = (6305,−3395) + k(−102, 55) , k ∈ Z .

Notice that taking k = 62 gives the solution (x, y) = (−19, 15), so the general solution to (3) is also given by

(x, y) = (−19, 15) + k(−102, 55) , k ∈ Z .

Put x = −19− 102k and y = 15 + 55k into (1) to get

20(−19− 102k) + 12(15 + 55k) + 15z = 85

that is
−1380k + 15z = 285 (4)

Note that 1380 = 92 · 15 so that gcd(1380, 15) = 15, and we have 285 = 19 · 15. By inspection, one solution
to (4) is given by (k, z) = (0, 19), and the general solution is

(k, z) = (0, 19) + ` (1, 92) , ` ∈ Z .

The complete solution to the pair of equations (1) and (2) is given by

x = −19− 102 k = −19− 102 `

y = 15 + 55 k = 15 + 55 `

z = 19 + 92 `

or equivalently
(x, y, z) = (−19, 15, 19) + ` (−102, 55, 92) , l ∈ Z .



3: (a) Find the prime factorization of n = 236 − 1.

Solution: Recall that a2−b2 = (a−b)(a+b), a3−b3 = (a−b)(a2 +ab+b2) and a3 +b3 = (a+b)(a2−ab+b2).
Use these rules repeatedly to get

236 − 1 = (218 − 1)(218 + 1)

= (29 − 1)(29 + 1)(26 + 1)(212 − 26 + 1)

= (23 − 1)(26 + 23 + 1)(23 + 1)(26 − 23 + 1)(22 + 1)(24 − 22 + 1)(212 − 26 + 1)

= 7 · 73 · 9 · 57 · 5 · 13 · 4033

= 7 · 73 · 32 · 3 · 19 · 5 · 13 · 4033 .

Note that 73 is prime, since b
√

73c = 8, and none of the primes 2, 3, 5, 7 is a factor of 73. To determine
whether 4033 is prime, we test every prime p with p ≤ b

√
4033c = 63 to see if it is a factor. Using the Sieve

of Eratosthenes, we find that the primes we need to check are

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61 ,

and when we test these we find that 37 is a factor, indeed 4033 = 37 · 109. Note that 109 is prime, since
b
√

109c = 10 and none of the primes 2, 3, 5, 7 is a factor of 109. Thus we obtain the prime factorization

236 − 1 = 33 · 5 · 7 · 13 · 19 · 37 · 73 · 109 .

(b) Find the exponent of 3 in the prime factorization of
(
100
40

)
= (100)!

(40)!(60)! .

Solution: Recall that e(p,m) denotes the exponent of p in the prime factorization of m. We have

e(3, 100!) =
⌊
100
3

⌋
+
⌊
100
9

⌋
+
⌊
100
27

⌋
+
⌊
100
81

⌋
= 33 + 11 + 3 + 1 = 48

e(3, 60!) =
⌊
60
3

⌋
+
⌊
60
9

⌋
+
⌊
60
27

⌋
= 20 + 6 + 2 = 28

e(3, 40!) =
⌊
40
3

⌋
+
⌊
40
9

⌋
+
⌊
40
27

⌋
= 13 + 4 + 1 = 18

and so e
(
3,
(
60
40

))
= e(3, 100!)− e(3, 60!)− e(3, 40!) = 48− 28− 18 = 2.

(c) Let a =
6∏

k=1

kk. Find the number of factors (positive or negative) of a which are either perfect squares

or perfect cubes (or both).

Solution: Let us find the prime factorization of a. We have

a =
6∏

k=1

kk = 11 · 22 · 33 · 44 · 55 · 66

= 22 · 33 · 28 · 55 · 26 · 36

= 216 · 39 · 55 .

The positive factors of a are of the form 2i · 3j · 5k with 0 ≤ i ≤ 16, 0 ≤ j ≤ 9, and 0 ≤ k ≤ 5. The factors of
a which are perfect squares are of the form 2i · 3j · 5k with i = 0, 2, 4, · · · , 16, j = 0, 2, 4, 6, 8, and k = 0, 2, 4.
There are 9 choices for i, 5 for j, and 3 for k, so the number of square factors is equal to 9 · 5 · 3 = 135. The
factors of a which are perfect cubes are of the form ±2i · 3j · 5k with i = 0, 3, 6, 9, 12, 15, j = 0, 3, 6, 9 and
k = 0, 3. There are 6 choices for i, 4 for j, and 2 for k, so there are 6 · 4 · 2 = 48 positive cube factors and
another 48 negative cube factors. Finally, note that some of the 48 positive cube factors are also squares,
indeed the sixth powers are both cubes and squares. The sixth powers are of the form 2i · 3j · 5k with
i = 0, 6, 12, j = 0, 6 and k = 0, so there are 3 · 2 · 1 = 6 sixth powers. Thus the total number of factors
(positive or negative) which are squares or cubes is 135 + 48 + 48− 6 = 225.



4: (a) Prove that for all positive integers a and b, we have a
∣∣b if and only if a2

∣∣b2.

Solution: Write a = p1
j1p2

j2 · · · pnjn and b = p1
k1p2

k2 · · · pnkn where the pi are distinct primes. Then we
have a2 = p1

2j1p2
2j2 · · · pn2jn and b2 = p1

2k1p2
2k2 · · · pn2kn , and so

a
∣∣b ⇐⇒ ji ≤ ki for all i⇐⇒ 2ji ≤ 2ki for all i⇐⇒ a2

∣∣b2 .
(b) Prove that for all positive integers a, b and c, if c

∣∣ab then c
∣∣ gcd(a, c) gcd(b, c).

Solution: Write a = p1
j1p2

j2 · · · pnjn , b = p1
k1p2

k2 · · · pnkn and c = p1
m1p2

m2 · · · pnmn . Note that

ab = p1
j1+k1p2

j2+k2 · · · pnjn+kn

gcd(a, c) = p1
min{j1,m1}p2

min{j2,m2} · · · pnmin{jn,mn}

gcd(b, c) = p1
min{k1,m1}p2

min{k2,m2} · · · pnmin{kn,mn}

gcd(a, c) gcd(b, c) = p1
min{j1,m1}+min{k1,m1}p2

min{j2,m2}+min{k2,m2} · · · pnmin{jn,mn}+min{kn,mn} .

Suppose that c
∣∣ab so we have mi ≤ ji + ki for all i. Fix an index i. We consider three cases.

Case 1. If mi ≤ ji then we have mi = min{ji,mi} ≤ min{ji,mi}+ min{ki,mi}.
Case 2. If mi ≤ ki then we have mi = min{ki,mi} ≤ min{ji,mi}+ min{ki,mi}.
Case 3. If mi ≥ ji and mi ≥ ki then we have mi ≤ ji + ki = min{ji,mi}+ min{ki,mi}.

In all three cases we have mi ≤ min{ji,mi}+ min{ki,mi}. Thus c
∣∣ gcd(a, c) gcd(b, c) as required.

(c) Prove that for all integers a, b and c, we have gcd(ac, bc) = c gcd(a, b).

Solution: Let d = gcd(a, b) and let e = gcd(ac, bc). We must show that e = dc. Since c
∣∣ac and c

∣∣bc we have

c
∣∣e (by Theorem 1.10), say e = kc. Since e

∣∣ac, so kc
∣∣ac, we have k

∣∣a, and since e
∣∣bc, so kc

∣∣bc, we have k
∣∣b,

and so k is a common divisor of a and b. Since d is the greatest common divisor of a and b, we must have
k ≤ d, and hence kc ≤ dc, that is e ≤ dc. On the other hand, we have d

∣∣a so dc
∣∣ac, and we have d

∣∣b so dc
∣∣bc,

and so dc is a common divisor of ac and bc. Since e is the greatest common divisor of ac and bc, we must
have dc ≤ e. We have shown that e ≤ dc and that dc ≤ e, so we have e = dc, as required.

(d) Prove that for all positive integers a and b, we have gcd(a, b) = gcd
(
a + b, lcm(a, b)

)
.

Solution: Let d = gcd(a, b), m = lcm(a, b), and e = gcd(a + b,m). We must show that d = e. Write a = dk
and b = d` so we have gcd(k, `) = 1 (by Theorem 1.10) and m = dk` (by Theorem 1.28). By Part (c), we
have

e = gcd(a + b,m) = gcd(d(k + `), dk`) = d gcd(k + `, k`) ,

so it suffices to show that gcd(k + `, k`) = 1. Suppose, for a contradiction, that gcd(k + `, k`) 6= 1. Let p be
a common prime factor of k+ ` and k`. Since p is prime and p

∣∣k`, we know that p
∣∣k or p

∣∣`. If p
∣∣k then since

p
∣∣(k + `) we also have p

∣∣`. Similarly, if p
∣∣` then since p

∣∣(k + `) we also have p
∣∣k. In either case we see that

p is a common prime factor of k and `, which contradicts the fact that gcd(k, `) = 1.


