
PMATH 333 Introduction to Real Analysis, Solutions to the Term Test, Winter 2024

[10] 1: (a) Let R be a ring. Using only the rules R0-R7, with one rule used at each step, prove that for all a, b ∈ R,
if (a+ b)x = x+ b for every x ∈ R, then we have b = 0 and a = 1.

Solution: Let a, b ∈ R. Suppose that (a+ b) · x = x+ b for all x ∈ R. Then, in particular (taking x = 0) we
have (a+ b) · 0 = 0 + b and so

0 = (a+ b) · 0 , by R0,

= 0 + b , since (a+ b) · 0 = 0 + b,

= b+ 0 , by R2,

= b , by R3.

This proves that b = 0. Since (a+ b) · x = x+ b for all x ∈ R it follows in particular, by taking x = 1, that
(a+ b) · 1 = 1 + b and, since b = 0, we have (a+ 0) · 1 = 1 + 0. Thus

a = a+ 0 , by R3,

= (a+ 0) · 1 , by R6,

= 1 + 0 , since (a+ 0) · 1 = 1 + 0,

= 1 , by R3.

(b) Prove the floor property of Z in R: for every x ∈ R there exists a unique n ∈ Z with x− 1 < n ≤ x.

Solution: First we prove uniqueness. Let x ∈ R and suppose that n,m ∈ Z with x − 1 < n ≤ x and
x− 1 < m ≤ x. Since x− 1 < n we have x < n+ 1. Since m ≤ x and x < n+ 1 we have m < n+ 1 hence
m ≤ n. Similarly, we have n ≤ m. Since n ≤ m and m ≤ n, we have n = m. This proves uniqueness.

Next we prove existence. Let x ∈ R. First let us consider the case that x ≥ 0. Let A = {k ∈ Z | k ≤ x}.
Note that A 6= ∅ because 0 ∈ A and A is bounded above in R by x. By The Well-Ordering Property of Z
in R, A has a maximum element. Let n = maxA. Since n ∈ A we have n ∈ Z and n ≤ x. Also note that
x− 1 < n since x− 1 ≥ n =⇒ x ≥ n+ 1 =⇒ n+ 1 ∈ A =⇒ n 6= maxA. Thus for n = maxA we have n ∈ Z
with x− 1 < n ≤ x, as required.

Next consider the case that x < 0. If x ∈ Z we can take n = x. Suppose that x /∈ Z. We have −x > 0
so, by the previous paragraph, we can choose m ∈ Z with −x − 1 < m ≤ −x. Since m ∈ Z but x /∈ Z we
have m 6= −x so that −x− 1 < m < −x and hence x < −m < x+ 1. Thus we can take n = −m− 1 to get
x− 1 < n < x. This completes the proof of Part (1).

1



[10] 2: (a) Let xn =
n2+1

(2n+1)2
for n ≥ 0. Use the definition of the limit to prove that lim

n→∞
xn = 1

4 .

Solution: Note that for n ≥ 1 we have∣∣xn − 1
4

∣∣ =
∣∣∣ n2+1
(2n+1)2 −

1
4

∣∣∣ =
∣∣∣ 4n2+4−(4n2+4n+1)

4(2n+1)2

∣∣∣ =
∣∣∣ 3−4n
4(2n+1)2

∣∣∣ = 4n−3
4(2n+1)2 ≤

4n
4(2n)2 = 1

4n .

Let ε > 0. Choose m ∈ Z+ so that 1
4m < ε. Then for n ≥ m, as shown above we have∣∣xn − 1

4

∣∣ ≤ 1
4n ≤

1
4m < ε.

Thus lim
n→∞

xn = 1
4 , as required.

(b) Prove the following part of the Extreme Value Theorem: if f : [a, b]→ R is continuous then f attains its
maximum value on [a, b].

Solution: First we claim that f is bounded above. Suppose, for a contradiction, that it is not. For each
k ∈ Z+, choose xk ∈ [a, b] such that f(xk) ≥ k. By the Bolzano Weierstrass Theorem, we can choose a
convergent subsequence (xkj ). Let p = lim

j→∞
xkj . Note that p ∈ [a, b] by Comparison (since xkj ≥ a for

all j we have p ≥ a, and since xkj ≤ b for all j we have p ≤ b). Since f(xkj ) ≥ kj and kj → ∞ we
must have f(xkj ) → ∞ as j → ∞. But by the Sequential Characterization of Continuity, we should have
f(xkj )→ f(p) ∈ R, so we have obtained the desired contradiction. Thus f is bounded above, as claimed.

Since the range f([a, b]) is nonempty and bounded above, it has a supremum. Let m = sup f([a, b]).
By the Approximation Property of the supremum, for each k ∈ Z+ we can choose yk ∈ [a, b] such that
m− 1

k ≤ f(yk) ≤ m. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence (ykj ).
Let c = lim

j→∞
ykj . Since we have m − 1

kj
≤ f(ykj ) ≤ m and 1

kj
→ 0, we have f(ykj ) → m as j → ∞ by

the Squeeze Theorem. Since f is continuous at c, by the Sequential Characterization of Continuity we have
f(ykj ) → f(c), and so by the Uniqueness of Limits, we have f(c) = m. Thus f attains its maximum value
at c.
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[10] 3: (a) Let f : [a, b]→ R be continuous. Prove that there exist r, s ∈ R with r ≤ s such that Range(f) = [r, s].

Solution: By the Extreme Value Theorem, since f is continuous, we can choose c ∈ [a, b] such that f(c) ≤ f(x)
for all x ∈ [a, b] and we can choose d ∈ [a, b] such that f(d) ≥ f(x) for all x ∈ [a, b]. Let r = f(c) and let
s = f(d). Then we have r = f(c) ≤ f(x) ≤ f(d) = s for all x ∈ [a, b] and so

{
f(x)

∣∣x ∈ [a, b]
}
⊆ [r, s].

Let y ∈ [r, s]. Since f(c) = r ≤ y ≤ s = f(d), and since f is continuous, it follows from the Intermediate
Value Theorem that we can choose x between c and d (if c ≤ d we can choose x ∈ [c, d] and if d ≤ c we can
choose x ∈ [d, c]) such that f(x) = y. Thus we also have [r, s] ⊆

{
f(x)

∣∣x ∈ [a, b]
}

.

(b) Let f : [a, b)→ R. Prove that if f is uniformly continuous on [a, b) then f is bounded.

Solution: Since f is uniformly continuous, we can choose δ > 0 such that for all x, y ∈ [a, b) with |x− y| < δ
we have |f(x)−f(y)| < 1. Choose n ∈ Z+ such that b−a

n ≤ δ. Let X = {x0, x1, · · · , xn} be the partition of

[a, b] into n-equal-sized subintervals, so we have xk = a + b−a
n k. Let c ∈ [a, b). Let ` be the integer with

1 ≤ ` ≤ n such that c ∈
[
x`−1, x`

)
. Since |xk − xk−1| < δ and |c− x`−1| < δ, we have

∣∣f(xk)− f(xk−1)
∣∣ ≤ 1

and |f(c)− f(x`−1)| ≤ 1, and hence

|f(c)| =
∣∣f(a) + f(c)− f(a)

∣∣ =
∣∣∣f(a) + (f(c)− f(x`−1)) +

`−1∑
k=1

(f(xk)− f(xk−1))
∣∣∣

≤ |f(a)|+ |f(c)− f(x`−1)|+
`−1∑
k=1

|f(xk)− f(xk−1)|

≤ |f(a)|+ 1 + (`− 1) = |f(a)|+ ` ≤ |f(a)|+ n.

Thus f is bounded with |f(c)| ≤ |f(a)|+ n for all c ∈ [a, b).
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[10] 4: (a) Let f : [a, b] ⊆ R→ R be increasing. Prove that f is integrable.

Solution: Suppose that f is increasing
(
and hence bounded, below by f(a) and above by f(b)

)
on [a, b]. Let

ε > 0. Choose a partition X = {x0, x1, · · · , xn} of [a, b] with |X| < ε
f(b)−f(a) . Since f is increasing we have

f(xk) = Mk = max
{
f(t)

∣∣ t∈ [xk−1, xk]
}

and f(xk−1) = mk = min
{
f(t)

∣∣ t∈ [xk−1, xk]
}

, and so

U(f,X)− L(f,X) =
n∑
k=1

(Mk −mk)∆kx =
n∑
k=1

(
f(xk)− f(xk−1

)
∆kx

≤
n∑
k=1

(
f(xk)− f(xk−1

)
|X| =

(
f(b)− f(a)

)
|X| < ε.

Thus f is integrable on [a, b] (by the second Equivalent Definition of Integrability).

(b) Prove the following part of the Equivalent Definitions of Integrability Theorem: if f : [a, b] ⊆ R → R is
integrable then U(f) = L(f).

Solution: Suppose that f is integrable on [a, b] with I =
∫ b
a
f . Let ε > 0. Choose δ > 0 so that for every

partition X with |X| < δ we have |S − I| < ε
4 for every Riemann sum S on X. Let X be a partition with

|X| < δ. Let S1 be a Riemann sum for f on X with |U(f,X)− S1| < ε
4 , and let S2 be a Riemann sum for

f on X with |S2 − L(f,X)| < ε
4 . Then

U(f,X)− L(f,X) ≤ |U(f,X)− S1|+ |S1 − I|+ |I − S2|+ |S2 − L(f,X)|
< ε

4 + ε
4 + ε

4 + ε
4 = ε .

Since U(f) ≤ U(f,X) and L(f) ≥ L(f,X), it follows that

U(f)− L(f) ≤ U(f,X)− L(f,X) < ε.

Since U(f)− L(f) < ε for every ε > 0, we have U(f) = L(f).
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