[10] **1:** (a) Let R be a ring. Using only the rules R0-R7, with one rule used at each step, prove that for all $a, b \in R$, if (a + b) x = x + b for every $x \in R$, then we have b = 0 and a = 1.

Solution: Let $a, b \in R$. Suppose that $(a + b) \cdot x = x + b$ for all $x \in R$. Then, in particular (taking x = 0) we have $(a + b) \cdot 0 = 0 + b$ and so

$$0 = (a + b) \cdot 0, \text{ by R0}, = 0 + b, \text{ since } (a + b) \cdot 0 = 0 + b, = b + 0, \text{ by R2}, = b, \text{ by R3}.$$

This proves that b = 0. Since $(a + b) \cdot x = x + b$ for all $x \in R$ it follows in particular, by taking x = 1, that $(a + b) \cdot 1 = 1 + b$ and, since b = 0, we have $(a + 0) \cdot 1 = 1 + 0$. Thus

$$a = a + 0, \text{ by R3},$$

= $(a + 0) \cdot 1$, by R6,
= $1 + 0$, since $(a + 0) \cdot 1 = 1 + 0$,
= 1 , by R3.

(b) Prove the floor property of \mathbb{Z} in \mathbb{R} : for every $x \in \mathbb{R}$ there exists a unique $n \in \mathbb{Z}$ with $x - 1 < n \leq x$.

Solution: First we prove uniqueness. Let $x \in \mathbb{R}$ and suppose that $n, m \in \mathbb{Z}$ with $x - 1 < n \leq x$ and $x - 1 < m \leq x$. Since x - 1 < n we have x < n + 1. Since $m \leq x$ and x < n + 1 we have m < n + 1 hence $m \leq n$. Similarly, we have $n \leq m$. Since $n \leq m$ and $m \leq n$, we have n = m. This proves uniqueness.

Next we prove existence. Let $x \in \mathbb{R}$. First let us consider the case that $x \ge 0$. Let $A = \{k \in \mathbb{Z} \mid k \le x\}$. Note that $A \ne \emptyset$ because $0 \in A$ and A is bounded above in \mathbb{R} by x. By The Well-Ordering Property of \mathbb{Z} in \mathbb{R} , A has a maximum element. Let $n = \max A$. Since $n \in A$ we have $n \in \mathbb{Z}$ and $n \le x$. Also note that x - 1 < n since $x - 1 \ge n \Longrightarrow x \ge n + 1 \Longrightarrow n + 1 \in A \Longrightarrow n \ne \max A$. Thus for $n = \max A$ we have $n \in \mathbb{Z}$ with $x - 1 < n \le x$, as required.

Next consider the case that x < 0. If $x \in \mathbb{Z}$ we can take n = x. Suppose that $x \notin \mathbb{Z}$. We have -x > 0 so, by the previous paragraph, we can choose $m \in \mathbb{Z}$ with $-x - 1 < m \leq -x$. Since $m \in \mathbb{Z}$ but $x \notin \mathbb{Z}$ we have $m \neq -x$ so that -x - 1 < m < -x and hence x < -m < x + 1. Thus we can take n = -m - 1 to get x - 1 < n < x. This completes the proof of Part (1).

[10] **2:** (a) Let $x_n = \frac{n^2+1}{(2n+1)^2}$ for $n \ge 0$. Use the definition of the limit to prove that $\lim_{n \to \infty} x_n = \frac{1}{4}$. Solution: Note that for $n \ge 1$ we have

 $\left|x_n - \frac{1}{4}\right| = \left|\frac{n^2 + 1}{(2n+1)^2} - \frac{1}{4}\right| = \left|\frac{4n^2 + 4 - (4n^2 + 4n + 1)}{4(2n+1)^2}\right| = \left|\frac{3 - 4n}{4(2n+1)^2}\right| = \frac{4n - 3}{4(2n+1)^2} \le \frac{4n}{4(2n)^2} = \frac{1}{4n}.$

Let $\epsilon > 0$. Choose $m \in \mathbb{Z}^+$ so that $\frac{1}{4m} < \epsilon$. Then for $n \ge m$, as shown above we have

$$\left|x_n - \frac{1}{4}\right| \le \frac{1}{4n} \le \frac{1}{4m} < \epsilon$$

Thus $\lim_{n \to \infty} x_n = \frac{1}{4}$, as required.

(b) Prove the following part of the Extreme Value Theorem: if $f:[a,b] \to \mathbb{R}$ is continuous then f attains its maximum value on [a,b].

Solution: First we claim that f is bounded above. Suppose, for a contradiction, that it is not. For each $k \in \mathbb{Z}^+$, choose $x_k \in [a, b]$ such that $f(x_k) \geq k$. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence (x_{k_j}) . Let $p = \lim_{j \to \infty} x_{k_j}$. Note that $p \in [a, b]$ by Comparison (since $x_{k_j} \geq a$ for all j we have $p \geq a$, and since $x_{k_j} \leq b$ for all j we have $p \leq b$). Since $f(x_{k_j}) \geq k_j$ and $k_j \to \infty$ we must have $f(x_{k_j}) \to \infty$ as $j \to \infty$. But by the Sequential Characterization of Continuity, we should have $f(x_{k_j}) \to f(p) \in \mathbb{R}$, so we have obtained the desired contradiction. Thus f is bounded above, as claimed.

Since the range f([a, b]) is nonempty and bounded above, it has a supremum. Let $m = \sup f([a, b])$. By the Approximation Property of the supremum, for each $k \in \mathbb{Z}^+$ we can choose $y_k \in [a, b]$ such that $m - \frac{1}{k} \leq f(y_k) \leq m$. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence (y_{k_j}) . Let $c = \lim_{j \to \infty} y_{k_j}$. Since we have $m - \frac{1}{k_j} \leq f(y_{k_j}) \leq m$ and $\frac{1}{k_j} \to 0$, we have $f(y_{k_j}) \to m$ as $j \to \infty$ by the Squeeze Theorem. Since f is continuous at c, by the Sequential Characterization of Continuity we have $f(y_{k_j}) \to f(c)$, and so by the Uniqueness of Limits, we have f(c) = m. Thus f attains its maximum value at c. [10] **3:** (a) Let $f: [a, b] \to \mathbb{R}$ be continuous. Prove that there exist $r, s \in \mathbb{R}$ with $r \leq s$ such that Range(f) = [r, s]. Solution: By the Extreme Value Theorem, since f is continuous, we can choose $c \in [a, b]$ such that $f(c) \leq f(x)$ for all $x \in [a, b]$ and we can choose $d \in [a, b]$ such that $f(d) \geq f(x)$ for all $x \in [a, b]$. Let r = f(c) and let s = f(d). Then we have $r = f(c) \leq f(x) \leq f(d) = s$ for all $x \in [a, b]$ and so $\{f(x) \mid x \in [a, b]\} \subseteq [r, s]$.

Let $y \in [r, s]$. Since $f(c) = r \le y \le s = f(d)$, and since f is continuous, it follows from the Intermediate Value Theorem that we can choose x between c and d (if $c \le d$ we can choose $x \in [c, d]$ and if $d \le c$ we can choose $x \in [d, c]$) such that f(x) = y. Thus we also have $[r, s] \subseteq \{f(x) \mid x \in [a, b]\}$.

(b) Let $f: [a, b) \to \mathbb{R}$. Prove that if f is uniformly continuous on [a, b) then f is bounded.

Solution: Since f is uniformly continuous, we can choose $\delta > 0$ such that for all $x, y \in [a, b)$ with $|x - y| < \delta$ we have |f(x) - f(y)| < 1. Choose $n \in \mathbb{Z}^+$ such that $\frac{b-a}{n} \leq \delta$. Let $X = \{x_0, x_1, \dots, x_n\}$ be the partition of [a, b] into n-equal-sized subintervals, so we have $x_k = a + \frac{b-a}{n}k$. Let $c \in [a, b)$. Let ℓ be the integer with $1 \leq \ell \leq n$ such that $c \in [x_{\ell-1}, x_{\ell})$. Since $|x_k - x_{k-1}| < \delta$ and $|c - x_{\ell-1}| < \delta$, we have $|f(x_k) - f(x_{k-1})| \leq 1$ and $|f(c) - f(x_{\ell-1})| \leq 1$, and hence

$$|f(c)| = |f(a) + f(c) - f(a)| = |f(a) + (f(c) - f(x_{\ell-1})) + \sum_{k=1}^{\ell-1} (f(x_k) - f(x_{k-1}))|$$

$$\leq |f(a)| + |f(c) - f(x_{\ell-1})| + \sum_{k=1}^{\ell-1} |f(x_k) - f(x_{k-1})|$$

$$\leq |f(a)| + 1 + (\ell - 1) = |f(a)| + \ell \leq |f(a)| + n.$$

Thus f is bounded with $|f(c)| \leq |f(a)| + n$ for all $c \in [a, b)$.

[10] **4:** (a) Let $f: [a, b] \subseteq \mathbb{R} \to \mathbb{R}$ be increasing. Prove that f is integrable.

Solution: Suppose that f is increasing (and hence bounded, below by f(a) and above by f(b)) on [a, b]. Let $\epsilon > 0$. Choose a partition $X = \{x_0, x_1, \dots, x_n\}$ of [a, b] with $|X| < \frac{\epsilon}{f(b) - f(a)}$. Since f is increasing we have $f(x_k) = M_k = \max\{f(t) \mid t \in [x_{k-1}, x_k]\}$ and $f(x_{k-1}) = m_k = \min\{f(t) \mid t \in [x_{k-1}, x_k]\}$, and so

$$U(f,X) - L(f,X) = \sum_{k=1}^{n} (M_k - m_k) \Delta_k x = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})) \Delta_k x$$

$$\leq \sum_{k=1}^{n} (f(x_k) - f(x_{k-1})|X| = (f(b) - f(a))|X| < \epsilon.$$

Thus f is integrable on [a, b] (by the second Equivalent Definition of Integrability).

(b) Prove the following part of the Equivalent Definitions of Integrability Theorem: if $f:[a,b] \subseteq \mathbb{R} \to \mathbb{R}$ is integrable then U(f) = L(f).

Solution: Suppose that f is integrable on [a, b] with $I = \int_a^b f$. Let $\epsilon > 0$. Choose $\delta > 0$ so that for every partition X with $|X| < \delta$ we have $|S - I| < \frac{\epsilon}{4}$ for every Riemann sum S on X. Let X be a partition with $|X| < \delta$. Let S_1 be a Riemann sum for f on X with $|U(f, X) - S_1| < \frac{\epsilon}{4}$, and let S_2 be a Riemann sum for f on X with $|S_2 - L(f, X)| < \frac{\epsilon}{4}$. Then

$$U(f,X) - L(f,X) \le |U(f,X) - S_1| + |S_1 - I| + |I - S_2| + |S_2 - L(f,X)| < \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} + \frac{\epsilon}{4} = \epsilon.$$

Since $U(f) \leq U(f, X)$ and $L(f) \geq L(f, X)$, it follows that

$$U(f) - L(f) \le U(f, X) - L(f, X) < \epsilon.$$

Since $U(f) - L(f) < \epsilon$ for every $\epsilon > 0$, we have U(f) = L(f).