PMATH 333 Introduction to Real Analysis, Solutions to the Term Test, Winter 2024

[10] 1: (a) Let R be a ring. Using only the rules R0-R7, with one rule used at each step, prove that for all $a, b \in R$, if $(a+b) x=x+b$ for every $x \in R$, then we have $b=0$ and $a=1$.
Solution: Let $a, b \in R$. Suppose that $(a+b) \cdot x=x+b$ for all $x \in R$. Then, in particular (taking $x=0$) we have $(a+b) \cdot 0=0+b$ and so

$$
\begin{aligned}
0 & =(a+b) \cdot 0, \text { by R } 0 \\
& =0+b, \text { since }(a+b) \cdot 0=0+b, \\
& =b+0, \text { by R } 2, \\
& =b, \text { by R } 3
\end{aligned}
$$

This proves that $b=0$. Since $(a+b) \cdot x=x+b$ for all $x \in R$ it follows in particular, by taking $x=1$, that $(a+b) \cdot 1=1+b$ and, since $b=0$, we have $(a+0) \cdot 1=1+0$. Thus

$$
\begin{aligned}
a & =a+0, \text { by R } 3, \\
& =(a+0) \cdot 1, \text { by R } 6 \\
& =1+0, \text { since }(a+0) \cdot 1=1+0 \\
& =1, \text { by R } 3
\end{aligned}
$$

(b) Prove the floor property of \mathbb{Z} in \mathbb{R} : for every $x \in \mathbb{R}$ there exists a unique $n \in \mathbb{Z}$ with $x-1<n \leq x$.

Solution: First we prove uniqueness. Let $x \in \mathbb{R}$ and suppose that $n, m \in \mathbb{Z}$ with $x-1<n \leq x$ and $x-1<m \leq x$. Since $x-1<n$ we have $x<n+1$. Since $m \leq x$ and $x<n+1$ we have $m<n+1$ hence $m \leq n$. Similarly, we have $n \leq m$. Since $n \leq m$ and $m \leq n$, we have $n=m$. This proves uniqueness.

Next we prove existence. Let $x \in \mathbb{R}$. First let us consider the case that $x \geq 0$. Let $A=\{k \in \mathbb{Z} \mid k \leq x\}$. Note that $A \neq \emptyset$ because $0 \in A$ and A is bounded above in \mathbb{R} by x. By The Well-Ordering Property of \mathbb{Z} in \mathbb{R}, A has a maximum element. Let $n=\max A$. Since $n \in A$ we have $n \in \mathbb{Z}$ and $n \leq x$. Also note that $x-1<n$ since $x-1 \geq n \Longrightarrow x \geq n+1 \Longrightarrow n+1 \in A \Longrightarrow n \neq \max A$. Thus for $n=\max A$ we have $n \in \mathbb{Z}$ with $x-1<n \leq x$, as required.

Next consider the case that $x<0$. If $x \in \mathbb{Z}$ we can take $n=x$. Suppose that $x \notin \mathbb{Z}$. We have $-x>0$ so, by the previous paragraph, we can choose $m \in \mathbb{Z}$ with $-x-1<m \leq-x$. Since $m \in \mathbb{Z}$ but $x \notin \mathbb{Z}$ we have $m \neq-x$ so that $-x-1<m<-x$ and hence $x<-m<x+1$. Thus we can take $n=-m-1$ to get $x-1<n<x$. This completes the proof of Part (1).
[10] 2: (a) Let $x_{n}=\frac{n^{2}+1}{(2 n+1)^{2}}$ for $n \geq 0$. Use the definition of the limit to prove that $\lim _{n \rightarrow \infty} x_{n}=\frac{1}{4}$.
Solution: Note that for $n \geq 1$ we have

$$
\left|x_{n}-\frac{1}{4}\right|=\left|\frac{n^{2}+1}{(2 n+1)^{2}}-\frac{1}{4}\right|=\left|\frac{4 n^{2}+4-\left(4 n^{2}+4 n+1\right)}{4(2 n+1)^{2}}\right|=\left|\frac{3-4 n}{4(2 n+1)^{2}}\right|=\frac{4 n-3}{4(2 n+1)^{2}} \leq \frac{4 n}{4(2 n)^{2}}=\frac{1}{4 n} .
$$

Let $\epsilon>0$. Choose $m \in \mathbb{Z}^{+}$so that $\frac{1}{4 m}<\epsilon$. Then for $n \geq m$, as shown above we have

$$
\left|x_{n}-\frac{1}{4}\right| \leq \frac{1}{4 n} \leq \frac{1}{4 m}<\epsilon
$$

Thus $\lim _{n \rightarrow \infty} x_{n}=\frac{1}{4}$, as required.
(b) Prove the following part of the Extreme Value Theorem: if $f:[a, b] \rightarrow \mathbb{R}$ is continuous then f attains its maximum value on $[a, b]$.

Solution: First we claim that f is bounded above. Suppose, for a contradiction, that it is not. For each $k \in \mathbb{Z}^{+}$, choose $x_{k} \in[a, b]$ such that $f\left(x_{k}\right) \geq k$. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence $\left(x_{k_{j}}\right)$. Let $p=\lim _{j \rightarrow \infty} x_{k_{j}}$. Note that $p \in[a, b]$ by Comparison (since $x_{k_{j}} \geq a$ for all j we have $p \geq a$, and since $x_{k_{j}} \leq b$ for all j we have $\left.p \leq b\right)$. Since $f\left(x_{k_{j}}\right) \geq k_{j}$ and $k_{j} \rightarrow \infty$ we must have $f\left(x_{k_{j}}\right) \rightarrow \infty$ as $j \rightarrow \infty$. But by the Sequential Characterization of Continuity, we should have $f\left(x_{k_{j}}\right) \rightarrow f(p) \in \mathbb{R}$, so we have obtained the desired contradiction. Thus f is bounded above, as claimed.

Since the range $f([a, b])$ is nonempty and bounded above, it has a supremum. Let $m=\sup f([a, b])$. By the Approximation Property of the supremum, for each $k \in \mathbb{Z}^{+}$we can choose $y_{k} \in[a, b]$ such that $m-\frac{1}{k} \leq f\left(y_{k}\right) \leq m$. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence $\left(y_{k_{j}}\right)$. Let $c=\lim _{j \rightarrow \infty} y_{k_{j}}$. Since we have $m-\frac{1}{k_{j}} \leq f\left(y_{k_{j}}\right) \leq m$ and $\frac{1}{k_{j}} \rightarrow 0$, we have $f\left(y_{k_{j}}\right) \rightarrow m$ as $j \rightarrow \infty$ by the Squeeze Theorem. Since f is continuous at c, by the Sequential Characterization of Continuity we have $f\left(y_{k_{j}}\right) \rightarrow f(c)$, and so by the Uniqueness of Limits, we have $f(c)=m$. Thus f attains its maximum value at c.
[10] 3: (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous. Prove that there exist $r, s \in \mathbb{R}$ with $r \leq s$ such that Range $(f)=[r, s]$.
Solution: By the Extreme Value Theorem, since f is continuous, we can choose $c \in[a, b]$ such that $f(c) \leq f(x)$ for all $x \in[a, b]$ and we can choose $d \in[a, b]$ such that $f(d) \geq f(x)$ for all $x \in[a, b]$. Let $r=f(c)$ and let $s=f(d)$. Then we have $r=f(c) \leq f(x) \leq f(d)=s$ for all $x \in[a, b]$ and so $\{f(x) \mid x \in[a, b]\} \subseteq[r, s]$.

Let $y \in[r, s]$. Since $f(c)=r \leq y \leq s=f(d)$, and since f is continuous, it follows from the Intermediate Value Theorem that we can choose x between c and d (if $c \leq d$ we can choose $x \in[c, d]$ and if $d \leq c$ we can choose $x \in[d, c]$) such that $f(x)=y$. Thus we also have $[r, s] \subseteq\{f(x) \mid x \in[a, b]\}$.
(b) Let $f:[a, b) \rightarrow \mathbb{R}$. Prove that if f is uniformly continuous on $[a, b)$ then f is bounded.

Solution: Since f is uniformly continuous, we can choose $\delta>0$ such that for all $x, y \in[a, b)$ with $|x-y|<\delta$ we have $|f(x)-f(y)|<1$. Choose $n \in \mathbb{Z}^{+}$such that $\frac{b-a}{n} \leq \delta$. Let $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be the partition of $[a, b]$ into n-equal-sized subintervals, so we have $x_{k}=a+\frac{b-a}{n} k$. Let $c \in[a, b)$. Let ℓ be the integer with $1 \leq \ell \leq n$ such that $c \in\left[x_{\ell-1}, x_{\ell}\right)$. Since $\left|x_{k}-x_{k-1}\right|<\delta$ and $\left|c-x_{\ell-1}\right|<\delta$, we have $\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \leq 1$ and $\left|f(c)-f\left(x_{\ell-1}\right)\right| \leq 1$, and hence

$$
\begin{aligned}
|f(c)| & =|f(a)+f(c)-f(a)|=\left|f(a)+\left(f(c)-f\left(x_{\ell-1}\right)\right)+\sum_{k=1}^{\ell-1}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)\right| \\
& \leq|f(a)|+\left|f(c)-f\left(x_{\ell-1}\right)\right|+\sum_{k=1}^{\ell-1}\left|f\left(x_{k}\right)-f\left(x_{k-1}\right)\right| \\
& \leq|f(a)|+1+(\ell-1)=|f(a)|+\ell \leq|f(a)|+n
\end{aligned}
$$

Thus f is bounded with $|f(c)| \leq|f(a)|+n$ for all $c \in[a, b)$.
[10] 4: (a) Let $f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be increasing. Prove that f is integrable.
Solution: Suppose that f is increasing (and hence bounded, below by $f(a)$ and above by $f(b))$ on $[a, b]$. Let $\epsilon>0$. Choose a partition $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[a, b]$ with $|X|<\frac{\epsilon}{f(b)-f(a)}$. Since f is increasing we have $f\left(x_{k}\right)=M_{k}=\max \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$ and $f\left(x_{k-1}\right)=m_{k}=\min \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$, and so

$$
\begin{aligned}
U(f, X)-L(f, X) & =\sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \Delta_{k} x=\sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right) \Delta_{k} x\right. \\
& \leq \sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)|X|=(f(b)-f(a))|X|<\epsilon\right.
\end{aligned}
$$

Thus f is integrable on $[a, b]$ (by the second Equivalent Definition of Integrability).
(b) Prove the following part of the Equivalent Definitions of Integrability Theorem: if $f:[a, b] \subseteq \mathbb{R} \rightarrow \mathbb{R}$ is integrable then $U(f)=L(f)$.
Solution: Suppose that f is integrable on $[a, b]$ with $I=\int_{a}^{b} f$. Let $\epsilon>0$. Choose $\delta>0$ so that for every partition X with $|X|<\delta$ we have $|S-I|<\frac{\epsilon}{4}$ for every Riemann sum S on X. Let X be a partition with $|X|<\delta$. Let S_{1} be a Riemann sum for f on X with $\left|U(f, X)-S_{1}\right|<\frac{\epsilon}{4}$, and let S_{2} be a Riemann sum for f on X with $\left|S_{2}-L(f, X)\right|<\frac{\epsilon}{4}$. Then

$$
\begin{aligned}
U(f, X)-L(f, X) & \leq\left|U(f, X)-S_{1}\right|+\left|S_{1}-I\right|+\left|I-S_{2}\right|+\left|S_{2}-L(f, X)\right| \\
& <\frac{\epsilon}{4}+\frac{\epsilon}{4}+\frac{\epsilon}{4}+\frac{\epsilon}{4}=\epsilon
\end{aligned}
$$

Since $U(f) \leq U(f, X)$ and $L(f) \geq L(f, X)$, it follows that

$$
U(f)-L(f) \leq U(f, X)-L(f, X)<\epsilon
$$

Since $U(f)-L(f)<\epsilon$ for every $\epsilon>0$, we have $U(f)=L(f)$.

