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1:

PMATH 333 Introduction to Real Analysis, Solutions to the Term Test, Winter 2024

(a) Let R be a ring. Using only the rules RO-R7, with one rule used at each step, prove that for all a,b € R,
if (a+b)x=x+bfor every x € R, then we have b =0 and a = 1.

Solution: Let a,b € R. Suppose that (a 4+ b) -z = 2 + b for all € R. Then, in particular (taking x = 0) we
have (a4+b)-0=0+b and so
0=(a+b)-0, by R0,
=0+40b,since (a+b)-0=0+1,
=b+0, by R2,
=0, by R3.

This proves that b = 0. Since (a +b) -« = x + b for all z € R it follows in particular, by taking x = 1, that
(a+b)-1=1+0band, since b =0, we have (a+0) -1 =1+0. Thus

a=a+0, by R3,
=(a+0)-1, by RS,
=140, since (a+0)-1=1+0,
=1, by R3.

(b) Prove the floor property of Z in R: for every x € R there exists a unique n € Z with z — 1 < n < z.

Solution: First we prove uniqueness. Let x € R and suppose that n,m € Z with x — 1 < n < z and
r—1<m<z Sincexz—1<nwehave x <n-+1. Since m <z and x <n+ 1 we have m < n + 1 hence
m < n. Similarly, we have n < m. Since n < m and m < n, we have n = m. This proves uniqueness.

Next we prove existence. Let x € R. First let us consider the case that z > 0. Let A={k € Z |k < z}.
Note that A # 0 because 0 € A and A is bounded above in R by z. By The Well-Ordering Property of Z
in R, A has a maximum element. Let n = max A. Since n € A we have n € Z and n < z. Also note that
r—l<nsincer—1>n=ax>n+1=n+1€ A= n # maxA. Thus for n = max A we have n € Z
with £ — 1 < n < x, as required.

Next consider the case that < 0. If € Z we can take n = x. Suppose that x ¢ Z. We have —z > 0
so, by the previous paragraph, we can choose m € Z with —z — 1 < m < —z. Since m € Z but x ¢ Z we
have m # —z so that —x — 1 < m < —z and hence x < —m < x + 1. Thus we can take n = —m — 1 to get
x —1 < n < z. This completes the proof of Part (1).
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2: (a) Let o, =

n2+1
(2n+1)2

for n > 0. Use the definition of the limit to prove that lim z, = 1.
n—oo

Solution: Note that for n > 1 we have

1

‘xn_1|: 4n—3 4n 1

T A@n¥1)2 = 4(2n)2 T An-

2n+1)2 1

n’+1 1‘ _

An’ 44— (4n’+4n+1)| 3—4n
4(2n+1)2 — |4(2n+1)2

Let € > 0. Choose m € Z1 so that ﬁ < €. Then for n > m, as shown above we have
70 — 3l < @ < 7 <<
Thus lim z, = %, as required.
n— oo
(b) Prove the following part of the Extreme Value Theorem: if f: [a,b] — R is continuous then f attains its
maximum value on [a, b].

Solution: First we claim that f is bounded above. Suppose, for a contradiction, that it is not. For each

k € Z*, choose xy € [a,b] such that f(zx) > k. By the Bolzano Weierstrass Theorem, we can choose a

convergent subsequence (zy,). Let p = lim z,. Note that p € [a,b] by Comparison (since z, > a for
j—o0

all j we have p > a, and since x3, < b for all j we have p < b). Since f(xy,) > k; and k; — oo we
must have f(xy,) — 0o as j — oo. But by the Sequential Characterization of Continuity, we should have
f(zx;) = f(p) € R, so we have obtained the desired contradiction. Thus f is bounded above, as claimed.
Since the range f([a,b]) is nonempty and bounded above, it has a supremum. Let m = sup f([a, ]).
By the Approximation Property of the supremum, for each k € Z* we can choose y, € [a,b] such that
m — % < f(yr) < m. By the Bolzano Weierstrass Theorem, we can choose a convergent subsequence (y; ).
Let ¢ = hjgoykj' Since we have m — % < flyr;) < m and % — 0, we have f(yx;) — m as j — oo by

the Squeeze Theorem. Since f is continuous at ¢, by the Sequential Characterization of Continuity we have
f(yr;) = f(c), and so by the Uniqueness of Limits, we have f(c) = m. Thus f attains its maximum value
at c.
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3: (a) Let f: [a,b] — R be continuous. Prove that there exist r, s € R with » < s such that Range(f) = [r, s].

Solution: By the Extreme Value Theorem, since f is continuous, we can choose ¢ € [a, b] such that f(c) < f(x)
for all « € [a,b] and we can choose d € [a,b] such that f(d) > f(x) for all x € [a,b]. Let r = f(c) and let
s = f(d). Then we have r = f(c) < f(x) < f(d) = s for all # € [a,b] and so {f(z) |z € [a,b]} C [r, s].

Let y € [r,s]. Since f(c) =r <y < s= f(d), and since f is continuous, it follows from the Intermediate
Value Theorem that we can choose x between ¢ and d (if ¢ < d we can choose x € [¢,d] and if d < ¢ we can
choose x € [d, c]) such that f(z) = y. Thus we also have [r,s] C {f(z)|x € [a,b]}.

(b) Let f: [a,b) — R. Prove that if f is uniformly continuous on [a, b) then f is bounded.

Solution: Since f is uniformly continuous, we can choose § > 0 such that for all z,y € [a,b) with |z —y| < ¢
we have |f(z)—f(y)| < 1. Choose n € Z* such that =% <§. Let X = {xo, 21, -, z,} be the partition of
[a,b] into n-equal-sized subintervals, so we have z, = a + =% k. Let ¢ € [a,b). Let ¢ be the integer with
1 < ¢ < n such that c € [wg,l,xg). Since |z — k1] < § and |¢ — xp—1| < §, we have ‘f(:ck) — f(mk,1)| <1
and |f(¢) — f(xp—1)| < 1, and hence

@] = (@) + £(0) = £(@)] = [ £(a) + (£(0) = flze-1)) + X (F(we) = Flar-1)

suwn+uww—ﬂuln+§juuw—fuku|

<[f@)l+1+(=1) =|f(a)| + €< [f(a)] +n.
Thus f is bounded with |f(c)| < |f(a)|+ n for all ¢ € [a,)).
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4: (a) Let f: [a,b] € R — R be increasing. Prove that f is integrable.

Solution: Suppose that f is increasing (and hence bounded, below by f(a) and above by f(b)) on [a,b]. Let
€ > 0. Choose a partition X = {xg,z1," -, z,} of [a,b] with |X| < m. Since f is increasing we have

f(xr) = My, = max {f(t) |t €[vp—1,2x]} and f(zr—1) = mip = min {f(t) |t € [zx—1,2x]}, and so

NE

U, X) — L(f X) = 3 (My —mi)Age = 3 (F(n) — f(an) Ape

1 k=1

(f(@r) = flzr-1)|X] = (f(b) = f(a))|X] < e

>
Il

INA
Tt

Thus f is integrable on [a, b] (by the second Equivalent Definition of Integrability).

(b) Prove the following part of the Equivalent Definitions of Integrability Theorem: if f: [a,b] C R — R is
integrable then U(f) = L(f).

Solution: Suppose that f is integrable on [a,b] with T = f: f. Let € > 0. Choose § > 0 so that for every
partition X with |X| < 0 we have |S — I| < { for every Riemann sum S on X. Let X be a partition with
|X| <. Let S be a Riemann sum for f on X with [U(f, X) — 51| < §, and let Sy be a Riemann sum for
fon X with [Sy — L(f, X)| < §. Then

<gtgtiti=c.
Since U(f) < U(f, X) and L(f) > L(f, X), it follows that

U(f) = L(f) <U(f, X) - L(f, X) <e

Since U(f) — L(f) < € for every € > 0, we have U(f) = L(f).



