1: (a) Let A = Range(f) where $f : \mathbb{R} \to \mathbb{R}^2$ is given by $f(t) = (\cos t, \sin 2t)$ and let B = Null(g) where $g : \mathbb{R}^2 \to \mathbb{R}$ is given by $g(x, y) = y^2 + 4x^2(x^2 - 1)$. Prove (algebraically) that A = B.

Solution: Note that $A = \text{Range}(f) = \{(\cos t, \sin 2t) | t \in \mathbb{R}\}$ and $B = \text{Null}(g) = \{(x, y) | y^2 + 4x^2(x^2 - 1) = 0\}$. Let $(x, y) \in A$. Choose $t \in \mathbb{R}$ such that $x = \cos t$ and $y = \sin 2t$. Then $x^2 = \cos^2 t$ and

$$y^{2} = 4\sin^{2} t \cos^{2} t = 4\cos^{2} t(1 - \cos^{2} t) = 4x^{2}(1 - x^{2})$$

so we have $y^2 + 4x^2(x^2 - 1) = 0$ and so $(x, y) \in B$. Thus $A \subseteq B$.

Conversely, suppose that $(x, y) \in B$ so we have $y^2 = 4x^2(1-x^2)$. Then $y = \pm 2x\sqrt{1-x^2}$ with $-1 \le x \le 1$. If $y = 2x\sqrt{1-x^2}$ then we can let $t = \cos^{-1}x \in [0, \pi]$, and then $\cos t = x$ and, since $\sin t \ge 0$,

$$\sin 2t = 2\sin t \cos t = 2\cos t \sqrt{\sin^2 t} = 2\cos t \sqrt{1 - \cos^2 t} = 2x\sqrt{1 - x^2} = y$$

If $y = -2x\sqrt{1-x^2}$ then we can let $t = -\cos^{-1}x \in [-\pi, 0]$, and then $\cos t = x$ and, since $\sin t \leq 0$,

$$\sin 2t = 2\sin t \cos t = -2\cos t \sqrt{\sin^2 t} = -2\cos t \sqrt{1-\cos^2 t} = -2x\sqrt{1-x^2} = y.$$

In either case, we can choose $t \in \mathbb{R}$ such that $(x, y) = (\cos t, \sin 2t)$ and so $(x, y) \in A$. Thus $B \subseteq A$.

(b) Let $f(x, y) = x^2 + 2y^2$ and $g(x, y) = 4x - y^2$. Find a parametric equation for the curve of intersection of the two surfaces z = f(x, y) and z = g(x, y).

Solution: Set f(x, y) = g(x, y) to get $x^2 + 2y^2 = 4x - y^2$, which we can write as $(x-2)^2 + 3y^2 = 4$. This is an ellipse, which we can parametrize as $(x, y) = (2+2\cos t, \frac{2}{\sqrt{3}}\sin t)$. We also need to have $z = 4x - y^2 = 8 + 8\cos t - \frac{4}{3}\sin^2 t$, so a parametric equation for the curve of intersection is

$$(x, y, z) = \alpha(t) = \left(2 + 2\cos t, \frac{2}{\sqrt{3}}\sin t, 8 + 8\cos t - \frac{4}{3}\sin^2 t\right).$$

To be rigorous, let us verify that $\operatorname{Range}(\alpha) = \operatorname{Graph}(f) \cap \operatorname{Graph}(g)$. Let $(x, y, z) \in \operatorname{Range}(\alpha)$. Choose $t \in \mathbb{R}$ such that $(x, y, z) = \alpha(t)$, so we have $x = 2 + 2\cos t$, $y = \frac{2}{\sqrt{3}}\sin t$ and $z = 8 + 8\cos t - \frac{4}{3}\sin^2 t$. Then we have

$$f(x,y) = x^2 + 2y^2 = (2+2\cos t)^2 + 2\left(\frac{2}{\sqrt{3}}\sin t\right)^2 = 4 + 8\cos t + 4\cos^2 t + \frac{8}{3}\sin^2 t = 8 + 8\cos t - \frac{4}{3}\sin^2 t = z$$

so that $(x, y, z) \in \operatorname{Graph}(f)$, and we have

$$g(x,y) = 4x - y^2 = 4(2 + 2\cos t) - \left(\frac{2}{\sqrt{3}}\sin t\right)^2 = 8 + 8\cos t - \frac{4}{3}\sin^2 t = z$$

so that $(x, y, z) \in \operatorname{Graph}(g)$. Thus $\operatorname{Range}(\alpha) \subseteq \operatorname{Graph}(f) \cap \operatorname{Graph}(g)$.

Let $(x, y, z) \in \operatorname{Graph}(f) \cap \operatorname{Graph}(g)$. Since $(x, y, z) \in \operatorname{Graph}(f)$ we have $z = f(x, y) = x^2 + 2y^2$, and since $(x, y, z) \in \operatorname{Graph}(g)$ we have $z = g(x, y) = 4x - y^2$. It follows that $x^2 + 2y^2 = 4x - y^2$, that is $(x - 2)^2 + 3y^2 = 4$. Since $(x - 2)^2 = 4 - 3y^2 \leq 4$ we have $\left|\frac{x-2}{2}\right| \leq 1$. Since $3y^2 = 4 - (x - 2)^2 \leq 4$, we have $\left|\frac{\sqrt{3}}{2}y\right| \leq 1$. Let $t \in [0, 2\pi)$ be the (unique) angle with $\sin t = \frac{\sqrt{3}}{2}y$ and $\cos t = \frac{x-2}{2}$. Then we have $x = 2 + 2\cos t$, $y = \frac{2}{\sqrt{3}}\sin t$ and $z = g(x, y) = 4x - y^2 = 8 + 8\cos t - \frac{4}{3}\sin^t$ and so $(x, y, z) = \alpha(t) \in \operatorname{Range}(\alpha)$. Thus $\operatorname{Graph}(f) \cap \operatorname{Graph}(g) \subseteq \operatorname{Range}(\alpha)$.

2: (a) Let $A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x, 0 < y \text{ and } xy < 1\}$. Show, from the definition of an open set, that A is open in \mathbb{R}^2 .

Solution: Before beginning our proof, let us discuss our strategy. Suppose that $(a, b) \in A$, so we have a > 0, b > 0and ab < 1. We want to choose r > 0 so that the disc $B_r = B((a, b), r)$ is contained in A. Note that the open square Q_r given by |x - a| < r and |y - b| < r contains the disc B_r , so it suffices to ensure that Q_r is contained in A. Note that if r < a then $|x - a| < r \Longrightarrow |x - a| < a \Longrightarrow 0 < x < 2a \Longrightarrow x > 0$. Similarly, if r < b then $|y - b| < r \Longrightarrow y > 0$. Note that if r < a and r < b then r < a + b and so $(a + r)(b + r) = ab + r(a + b) + r^2 < ab + r(a + b) + r(a + b) = ab + 2r(a + b)$ and we can obtain (a + r)(b + r) < 1 by choosing $r < \frac{1-ab}{2(a+b)}$.

Now we begin the proof. Let $(a, b) \in A$, so we have a > 0, b > 0 and ab < 1. Choose $r = \min\left\{a, b, \frac{1-ab}{2(a+b)}\right\}$. Let $(x, y) \in B_r = B\left((a, b), r\right)$. Then $|x - a| = \sqrt{|x - a|^2} \le \sqrt{|x - a|^2 + |y - b|^2} = \left|(x, y) - (a, b)\right| < r$ and similarly |y - b| < r. Since $|x - a| < r \le a$ we have $0 \le a - r < x < a + r$ and since $|y - b| < r \le b$ we have $0 \le b - r < y < b + r$. Since 0 < x < a + r and 0 < y < a + r and r < a + b and $r < \frac{1-ab}{2(a+b)}$ we have $xy < (a + r)(b + r) = ab + r(a + b) + r^2 < ab + 2r(a + b) < ab + (1 - ab) = 1$. Since x > 0 and y > 0 and xy < 1 we have $(x, y) \in A$. Thus $B_r \subseteq A$, as required, and so A is open.

(b) Let
$$B = \left\{ \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1} \right) \in \mathbb{R}^2 \middle| t \in \mathbb{R} \right\}$$
. Show that B is not closed in \mathbb{R}^2 .

Solution: To solve this problem, you might find it helpful to draw a picture of the set B by choosing various values of t and plotting points. You should find that B looks like the unit circle centred at (0,0) with the point (0,1) removed. If you wish, you can show, algebraically, that this is indeed the case.

Let a = (0, 1). Let $x(t) = \frac{2t}{t^2+1}$ and $y(t) = \frac{t^2-1}{t^2+1}$ and f(t) = (x(t), y(t)) so that $B = \{f(t) | t \in \mathbb{R}\}$. We claim that $a \in B'$ (that is a is a limit point of B) but $a \notin B$. It is clear that $a \notin B$ because to get f(t) = a we need x(t) = 0 and y(t) = 1, but to get $x(t) = \frac{2t}{t^2+1} = 0$ we must choose t = 0, and then $y(t) = \frac{t^2-1}{t^2+1} = -1 \neq 1$. To show that $a \in B'$, we shall show that for all r > 0 we have $B(a, r) \cap B \neq \emptyset$. Let r > 0. Since $\lim_{t \to \infty} x(t) = 0$ and $\lim_{t \to \infty} y(t) = 1$ we can choose $t \in \mathbb{R}$ so that $|x(t) - 0| < \frac{r}{2}$ and $|y(t) - 1| < \frac{r}{2}$. Then we have

$$\left|f(t) - a\right| = \left|(x(t), y(t)) - (0, 1)\right| = \left|\left(x(t), y(t) - 1\right)\right| \le |x(t)| + |y(t) - 1| < \frac{r}{2} + \frac{r}{2} = r$$

and so $f(t) \in B(a, r) \cap B$. This shows that for all r > 0 we have $B(a, r) \cap B \neq \emptyset$, and so $a \in B'$. Since $a \in B'$ and $a \notin B$ we do not have $B' \subseteq B$ and so B is not closed (by Part (2) of Theorem 5.19).

3: Let $A \subseteq \mathbb{R}^n$.

(a) Show that A' is closed in \mathbb{R}^n .

Solution: By Part (2) of Theorem 5.19, we know that A' is closed if and only if $(A')' \subseteq A'$. Let $a \in (A')'$, that is let a be a limit point of A'. Let r > 0. Since a is a limit point of A', we know that $B^*(a, r) \cap A' \neq \emptyset$. Choose $b \in B^*(a, r) \cap A'$. Note that 0 < |a - b| < r. Let $s = \min(|a - b|, r - |a - b|) > 0$. Since $b \in A'$ we know that $B^*(b, s) \cap A \neq \emptyset$. Choose $c \in B^*(b, s) \cap A$. We claim that $c \in B^*(a, r) \cap A$. By the Triangle Inequality we have $|a - c| \leq |a - b| + |b - c| < |a - b| + s \leq |a - b| + r - |a - b| = r$, and by the Triangle Inequality again, we have $|a - b| \leq |a - c| + |c - b|$ and so $|a - c| \geq |a - b| - |b - c| > |a - b| - s \geq |a - b| - |a - b| = 0$. Thus 0 < |a - c| < r and so $c \in B^*(a, r) \cap A$, as claimed. Since $c \in B^*(a, r) \cap A$, we see that $B^*(a, r) \cap A \neq \emptyset$. We have shown that for every r > 0 we have $B^*(a, r) \cap A \neq \emptyset$, and so $a \in A'$. This proves that $(A')' \subseteq A'$, and so A' is closed.

(b) Show that $\partial A = \overline{A} \setminus A^o$.

Solution: Let $a \in \partial A$. We claim first that $a \in \overline{A}$. Since $\overline{A} = A \cup A'$ it suffices to show that either $a \in A$ or $a \in A'$. Suppose that $a \notin A$. Let r > 0 be arbitrary. Since $a \in \partial A$ we have $B(a, r) \cap A \neq \emptyset$. Since $a \notin A$ we have $B^*(a, r) \cap A = B(a, r) \cap A$ and so $B^*(a, r) \cap A \neq \emptyset$. Since r > 0 was arbitrary, we have $a \in A'$, as required.

Next we claim that $a \notin A^0$. Suppose, for a contradiction, that $a \in A^0$. By Part (b), a is an interior point of A so we can choose r > 0 so that $B(a, r) \subseteq A$. Since $B(a, r) \subseteq A$ we have $B(a, r) \cap A^c = \emptyset$. But since $a \in \partial A$ we have $B(a, r) \cap A^c \neq \emptyset$, so we have obtained the desired contradiction. Thus $a \notin A^0$, as claimed. This completes the proof that $\partial A \subseteq \overline{A} \setminus A^0$.

Now let $a \in \overline{A} \setminus A^0$, that is let $a \in \overline{A}$ with $a \notin A^0$. Let r > 0 be arbitrary. Case 1: suppose that $a \in A$. Let r > 0 be arbitrary. Since $a \in A$ and $a \in B(a, r)$ we have $B(a, r) \cap A \neq \emptyset$. Since $a \notin A^0$ we have $B(a, r) \not\subseteq A$ and so $B(a, r) \cap A^c \neq \emptyset$. Thus $a \in \partial A$. Case 2: suppose that $a \notin A$. Let r > 0 be arbitrary. Since $a \notin A$ and $a \in B(a, r)$ we have $B(a, r) \cap A^c \neq \emptyset$. Since $a \in \overline{A} = A \cup A'$ and $a \notin A$ we have $a \in A'$ and so $B^*(a, r) \cap A \neq \emptyset$ hence $B(a, r) \cap A \neq \emptyset$. Thus $a \in \partial A$. In either case we find that $a \in \partial A$. This completes the proof that $\overline{A} \setminus A^0 \subseteq \partial A$.

4: (a) Let $A, B \subseteq \mathbb{R}^n$ show that if A is connected and $A \subseteq B \subseteq \overline{A}$ then B is connected.

Solution: Suppose that A is connected and that $A \subseteq B \subseteq \overline{A}$. Suppose, for a contradiction, that B is disconnected. Choose open sets $U, V \subseteq \mathbb{R}^n$ which separate B, so we have $U \cap B \neq \emptyset$, $V \cap B \neq \emptyset$, $U \cap V = \emptyset$ and $B \subseteq U \cup V$. We claim that U and V also separate A (contradicting the fact that A is connected). Since $A \subseteq B \subseteq U \cup V$, it suffices to prove that $U \cap A \neq \emptyset$ and $V \cap A \neq \emptyset$. We claim that $U \cap A \neq \emptyset$. Since $U \cap B \neq \emptyset$ we can choose $b \in U \cap B$. Then we have $b \in B \subseteq \overline{A} = A \cup A'$, and so either $b \in A$ or $b \in A'$. If $b \in A$ then we have $b \in U \cap A$ so that $U \cap A \neq \emptyset$. Suppose that $b \in A'$. Since $b \in U$ and U is open, we can choose r > 0 such that $B(b, r) \subseteq U$. Since $b \in A'$ we have $B(b, r) \cap A \neq \emptyset$ so we can choose $c \in B(b, r) \cap A$. Then we have $c \in B(b, r) \subseteq U$ and $c \in A$, hence $c \in U \cap A$, and so $U \cap A \neq \emptyset$. This proves that $U \cap A \neq \emptyset$, as claimed. The proof that $V \cap A \neq \emptyset$ is similar, and so U and V separate A giving the desired contradiction.

(b) Let S be a nonempty set and let $A_j \subseteq \mathbb{R}^n$ for each $j \in S$. Suppose that A_j is connected for all $j \in S$ and that $A_k \cap A_\ell \neq \emptyset$ for all $k, \ell \in S$. Show that $\bigcup_{j \in S} A_j$ is connected.

Solution: Let $B = \bigcup_{j \in S} A_j$. Suppose, for a contradiction, that B is disconnected. Choose open sets $U, V \subseteq \mathbb{R}^n$ which separate B, that is $B \cap U \neq \emptyset$, $B \cap V \neq \emptyset$, $U \cap V = \emptyset$ and $B \subseteq U \cup V$. Choose $a \in B \cap U$ and $b \in B \cap V$. Since $a \in B = \bigcup_{j \in S} A_j$, we can choose $k \in S$ such that $a \in A_k$. Similarly we can choose $\ell \in S$ such that $b \in A_\ell$. Then we have $a \in A_k \cap U$ and $b \in A_\ell \cap V$. Since A_k is connected, and $a \in A_k \cap U$ so that $A_k \cap U \neq \emptyset$, and $A_k \subseteq \bigcup_{j \in S} A_j = B \subseteq U \cup V$, it follows that we must have $A_k \subseteq U$ because otherwise we would have $A_k \cap V \neq \emptyset$ and so U and V would separate A_k . Similarly, we must have $A_\ell \subseteq V$. Since $A_k \subseteq U$ and $A_\ell \subseteq V$ we have $A_k \cap A_\ell \subseteq U \cap V = \emptyset$. This contradicts our assumption that $A_k \cap A_\ell \neq \emptyset$, and so B is connected, as required.

5: Let $A \subseteq P \subseteq \mathbb{R}^n$. Define the **interior of** A in P to be the union of all sets $E \subseteq P$ such that E is open in P and $E \subseteq A$. Define the **closure of** A in P to be the intersection of all sets $F \subseteq P$ such that F is closed in P and $A \subseteq F$. Denote the interior of A in \mathbb{R}^n and the closure of A in \mathbb{R}^n by A^o and \overline{A} (as usual). Denote the interior of A in P by $\text{Int}_P(A)$ and $\text{Cl}_P(A)$.

(a) Show that $\operatorname{Cl}_P(A) = \overline{A} \cap P$.

Solution: Since \overline{A} is closed in \mathbb{R}^n it follows that $\overline{A} \cap P$ is closed in P. Since $A \subseteq \overline{A}$ and $A \subseteq P$ we have $A \subseteq \overline{A} \cap P$. Since $\overline{A} \cap P$ is closed in P and $A \subseteq \overline{A} \cap P$, it follows from the definition of $\operatorname{Cl}_P(A)$ that $\operatorname{Cl}_P(A) \subseteq \overline{A} \cap P$.

Let F be any closed set in P with $A \subseteq F$. Choose a closed set K in \mathbb{R}^n such that $F = K \cap P$. Since K is closed in \mathbb{R}^n and $A \subseteq K$ we have $\overline{A} \subseteq K$. Thus $\overline{A} \cap P \subseteq K \cap P = F$. Since $\overline{A} \cap P \subseteq F$ for every closed set F in P which contains A, it follows, from the definition of $\operatorname{Cl}_P(A)$, that $\overline{A} \cap P \subseteq \operatorname{Cl}_P(A)$.

(b) Show that $\operatorname{Int}_P(A) = (A \cup P^c)^o \cap P$, where $P^c = \mathbb{R}^n \setminus P$.

Solution: Let $F = (A \cup P^c)^o \cap P$. Since $(A \cup P^c)^o$ is open in \mathbb{R}^n it follows that $F = (A \cup P^c)^o \cap P$ is open in P. Also note that we have $F = (A \cup P^c)^o \cap P \subseteq (A \cup P^c) \cap P = (A \cap P) \cup (P^c \cap P) = (A \cap P) \cup \emptyset = A \cap P = A$, since $A \subseteq P$. Since F is open in P and $F \subseteq A$ it follows, from the definition of $\operatorname{Int}_P(A)$, that $F \subseteq \operatorname{Int}_P(A)$.

Let *E* be any open set in *P* with $E \subseteq A$. Choose an open set *U* in \mathbb{R}^n such that $U \cap P = E$. Then we have $U = U \cap \mathbb{R}^n = U \cap (P \cup P^c) = (U \cap P) \cup (U \cap P^c) = E \cup (U \cap P^c) \subseteq A \cup P^c$, since $E \subseteq A$ and $U \cap P^c \subseteq P^c$. Since *U* is open in \mathbb{R}^n and $U \subseteq A \cup P^c$ it follows that $U \subseteq (A \cup P^c)^o$. Since $E = U \cap P \subseteq U \subseteq (A \cup P^c)^o$ and $E \subseteq A \subseteq P$ we have $E \subseteq (A \cup P^c)^o \cap P = F$. Since $E \subseteq F$ for every open set *E* in *P* with $E \subseteq A$ it follows, from the definition of $\operatorname{Int}_P(A)$, that $\operatorname{Int}_P(A) \subseteq F$. **6:** (a) Show, from the definition of compactness, that the set $A = \mathbb{Q} \cap [0,1]$ is not compact.

Solution: Let $a \in [0,1]$ with $a \notin \mathbb{Q}$ and note that a is a limit point of A because \mathbb{Q} is dense in \mathbb{R} . For each $n \in \mathbb{Z}^+$ let $U_n = \overline{B}(a, \frac{1}{n})^c = (-\infty, a - \frac{1}{n}) \cup (a + \frac{1}{n}, \infty)$, and let $S = \{U_n | n \in \mathbb{Z}^+\}$. Note that each U_n is open and we have $\bigcup_{n=1}^{\infty} U_n = \mathbb{R} \setminus \{a\}$, so S is an open cover of A. Let T be any nonempty finite subset of A, say $T = \{U_{n_1}, U_{n_2}, \dots, U_{n_\ell}\}$ with $n_1 < n_2 < \dots < n_\ell$. Note that $U_1 \subseteq U_2 \subseteq U_3 \subseteq \dots$ and so we have $\bigcup_{k=1}^{\ell} U_{n_k} = U_{n_\ell} = \overline{B}(a, \frac{1}{n_\ell})^c$. Since a is a limit point of A we have $B(a, \frac{1}{n}) \cap A \neq \emptyset$, hence $\overline{B}(a, \frac{1}{n}) \cap A \neq \emptyset$, and so A is not a subset of $\bigcup T$. Since no finite subset of S covers A, it follows that A is not compact.

(b) Show, from the definition of compactness, that the set $B = \left\{ \frac{n|n|}{1+n^2} \mid n \in \mathbb{Z} \right\} \cup \{1, -1\}$ is compact.

Solution: Note that $\lim_{n \to \infty} \frac{n|n|}{1+n^2} = 1$ and $\lim_{n \to -\infty} \frac{n|n|}{1+n^2} = -1$. Let S be any open cover of B. Since S covers B and $\pm 1 \in B$ we can choose $V, W \in S$ such that $1 \in V$ and $-1 \in W$. Since V and W are open we can choose r > 0 such that $B(1,r) \subseteq V$ and $B(-1,r) \subseteq W$. Since $\lim_{n \to \infty} \frac{n|n|}{1+n^2} = 1$ and $\lim_{n \to \infty} \frac{n|n|}{1+n^2} = -1$ we can choose $N \in \mathbb{Z}^+$ such that for all $n \in \mathbb{Z}$, if $n \ge N$ then $\left|\frac{n|n|}{1+n^2} - 1\right| < r$ so that $\frac{n|n|}{1+n^2} \in V$ and if $n \le -N$ then $\left|\frac{n|n|}{1+n^2} + 1\right| < r$ so that $\frac{n|n|}{1+n^2} \in W$. For each $n \in \mathbb{Z}$ with -N < n < N, choose $U_n \in S$ so that $\frac{n|n|}{1+n^2} \in U_n$. Then the set $T = \{U_n \mid -N < n < n\} \cup \{V, W\}$ is a finite subcover of S. Thus B is compact.

(c) Show that the set $O_n(\mathbb{R}) = \{A \in M_n(\mathbb{R}) | A^T A = I\}$ is compact. Here, we are identifying $M_n(\mathbb{R})$ with \mathbb{R}^{n^2} , so that the dot product of two matrices is given by $A \cdot B = \sum_{k \notin I} A_{k,\ell} B_{k,\ell} = \text{trace}(B^T A)$.

Solution: Note that for $A \in M_n(\mathbb{R})$ we have

$$A \in O_n(\mathbb{R}) \iff A^T A = I \iff (A^T A)_{k,l} = I_{k,l} \text{ for all } k,l \iff \sum_{i=1}^n A_{i,k} A_{i,l} = \delta_{k,l} \text{ for all } k,l$$

where

$$\delta_{k,l} = \begin{cases} 1 \text{ if } k = l \\ 0 \text{ if } k \neq l. \end{cases}$$

For each pair k, l, define $f_{k,l} : M_n(\mathbb{R}) \to \mathbb{R}$ by $f_{k,l}(A) = \sum_{i=1}^n A_{i,k}A_{i,l} - \delta_{k,l}$. Note that each function $f_{k,l}$ is continuous since it is an elementary function on the n^2 variables $A_{i,j}$. We have

$$O_n(\mathbb{R}) = \left\{ A \in M_r(\mathbb{R}) \middle| f_{k,l}(A) = 0 \text{ for all } k, l \right\} = \bigcap_{k,l} \left\{ A \in M_n(\mathbb{R}) \middle| f_{k,l}(A) = 0 \right\} = \bigcap_{k,l} f_{k,l}^{-1}(0).$$

Note that $f_{k,l}^{-1}(0)$ is the complement in $M_n(\mathbb{R})$ of the set $f_{k,l}^{-1}(\mathbb{R} \setminus \{0\})$. Since $\mathbb{R} \setminus \{0\}$ is open in \mathbb{R} and each function $f_{k,l}$ is continuous, it follows that each set $f_{k,l}^{-1}(\mathbb{R} \setminus \{0\})$ is open, and hence each set $f_{k,l}^{-1}(0)$ is closed. Thus $O_n(\mathbb{R})$ is closed because it is the intersection of finitely many closed sets.

We claim that $O_n(\mathbb{R})$ is bounded. Let $A \in O_n(\mathbb{R})$. Let u_1, u_2, \dots, u_n be the columns of A. Note that

$$A^{T}A = \begin{pmatrix} u_{1}^{T} \\ \vdots \\ u_{n}^{T} \end{pmatrix} (u_{1}, \cdots, u_{n}) = \begin{pmatrix} u_{1} \cdot u_{1} & u_{1} \cdot u_{2} & \cdots & u_{1} \cdot u_{n} \\ \vdots & & \vdots \\ u_{n} \cdot u_{1} & u_{n} \cdot u_{2} & \cdots & u_{n} \cdot u_{n} \end{pmatrix}$$

and so

$$A^T A = I \Longrightarrow (A^T A)_{k,k} = 1$$
 for all $k \Longrightarrow u_k \cdot u_k = 1$ for all $k \Longrightarrow |u_k| = 1$ for all k, l

$$\implies |A|^2 = \sum_{k=1}^n \sum_{i=1}^n (A_{i,k})^2 = \sum_{k=1}^n |u_k|^2 = \sum_{k=1}^n 1 = n.$$

Thus for every $A \in O_n(\mathbb{R}^n)$ we have $|A| = \sqrt{n}$ and so $O_n(\mathbb{R})$ is bounded, as claimed. We have shown that $O_n(\mathbb{R})$ is closed and bounded, and so it is compact, by the Heine Borel Theorm (which we can apply because we are identifying $M_n(\mathbb{R})$ with \mathbb{R}^{n^2}).

7: For each of the following functions $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$, find $\lim_{(x,y)\to(0,0)} f(x,y)$ or show that the limit does not exist.

(a)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

Solution: Let $\theta \in \mathbb{R}$ and define $\alpha : \mathbb{R} \to \mathbb{R}^2$ by $\alpha(t) = (t \cos \theta, t \sin \theta)$. Then we have $\lim_{t \to 0} \alpha(t) = (0,0)$ and $f(\alpha(t)) = \frac{t^2 \cos^2 \theta - t^2 \sin^2 \theta}{t^2 \cos^2 \theta + t^2 \sin^2 \theta} = \cos 2\theta$ for all $t \neq 0$, and so (by Composites and Limits) if $\lim_{(x,y)\to(0,0)} f(x,y)$ existed then it would be equal to $\cos 2\theta$. Since different choices of θ yield different values for the limit, the limit cannot exist.

(b)
$$f(x,y) = \frac{x^2 y^3}{x^4 + y^6}$$

Solution: Consider the graph z = f(x, y). The level set y = c > 0 is given by $z = g(x) = f(x, c) = \frac{c^3 x^2}{x^4 + c^6}$. Then

$$z' = g'(x) = \frac{c^3(2x(x^4 + c^6) - (x^2)(4x^3))}{(x^4 + c^6)^2} = \frac{c^3(2x)(c^6 - x^4)}{(x^4 + c^6)^2} ,$$

so we have z' = 0 when x = 0 and when $x = \pm c^{3/2}$. When x = 0 we have z = 0 and when $x = \pm c^{3/2}$ we have $z = \frac{c^3 \cdot c^3}{c^6 + c^6} = \frac{1}{2}$. The graph z = f(x, y) with y > 0 has a maximum ridge of height $z = \frac{1}{2}$ along $x = \pm y^{3/2}$, that is $x^2 = y^3$.

Define $\alpha : \mathbb{R} \to \mathbb{R}^2$ by $\alpha(t) = (0, t)$. Then $\lim_{t \to 0} \alpha(t) = (0, 0)$ and $f(\alpha(t)) = 0$ for all $t \neq 0$, and so (by Composites and Limits) if $\lim_{(x,y)\to(0,0)} f(x,y)$ existed then it would be equal to 0. Define $\beta : \mathbb{R} \to \mathbb{R}^2$ by $\beta(t) = (t^3, t^2)$. Then $\lim_{t \to 0} \beta(t) = (0, 0)$ and $f(\beta(t)) = \frac{t^6 \cdot t^6}{t^{12} + t^{12}} = \frac{1}{2}$ for all $t \neq 0$, and so if $\lim_{(x,y)\to(0,0)} f(x,y)$ existed then it would be equal to $\frac{1}{2}$. Thus the limit cannot exist.

(c)
$$f(x,y) = \frac{x^4 y^5}{x^8 + y^6}$$

Solution: Recall that for all $u, v \in \mathbb{R}$ we have $0 \le (|u| - |v|)^2 = u^2 - 2|uv| + v^2$ and so $|uv| \le \frac{1}{2}(u^2 + v^2)$. It follows that for all $(x, y) \ne (0, 0)$ we have

$$\left|f(x,y) - 0\right| = \left|\frac{x^4y^5}{x^8 + y^6}\right| = \frac{|x^4y^3|y^2}{x^8 + y^6} \le \frac{\frac{1}{2}(x^8 + y^6)y^2}{x^8 + y^6} = \frac{1}{2}y^2.$$

Given $\epsilon > 0$ choose $\delta = \sqrt{2\epsilon}$. Then for all x, y with $0 < |(x, y)| < \delta$ we have $0 < x^2 + y^2 < \delta^2$ and so $|f(x, y) - 0| \le \frac{1}{2}y^2 \le \frac{1}{2}(x^2 + y^2) < \frac{1}{2}\delta^2 = \epsilon$.

8: Let $f : A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^m$.

(a) Show that f is continuous if and only if $f^{-1}(F)$ is closed in A for every closed set F in B.

Solution: We already know that f is continuous if and only if $f^{-1}(E)$ is open in A for every open set E in B. Suppose that f is continuous. Let F be a closed set in B. Then $B \setminus F$ is open in B and so $f^{-1}(B \setminus F)$ is open in A and hence $A \setminus f^{-1}(B \setminus F)$ is closed in A. But notice that $f^{-1}(F) = A \setminus f^{-1}(B \setminus F)$ because for $a \in A$ we have

$$a \in f^{-1}(F) \iff f(a) \in F \iff f(a) \notin B \setminus F \iff a \notin f^{-1}(B \setminus F) \iff a \in A \setminus f^{-1}(B \setminus F)$$

Thus $f^{-1}(F)$ is closed in A for every closed set F in B.

Conversely, suppose that $f^{-1}(F)$ is closed in A for every closed set F in B. Let E be an open set in B. Then $B \setminus E$ is closed in B, hence $f^{-1}(B \setminus E)$ is closed in B, and so $A \setminus f^{-1}(B \setminus E)$ is open in A. But notice that $f^{-1}(E) = A \setminus f^{-1}(B \setminus E)$, as above. This shows that that $f^{-1}(E)$ is open in A for every open set E in B, and so f is continuous.

(b) Let E and F be closed sets in A with $E \cup F = A$. Let g be the restriction of f to E, and let h be the restriction of f to F. Show that f is continuous if and only if both g and h are continuous.

Solution: We begin by remarking that when $S \subseteq A \subseteq \mathbb{R}^n$, the open sets in S are the sets of the form $L \cap S$ with L being an open set in A. Indeed when L is open in A we can choose an open set U in \mathbb{R}^n such that $L = U \cap A$, and then we have $L \cap S = (U \cap A) \cap S = U \cap S$ since $S \subseteq A$. On the other hand, when E is open in S we can choose an open set U in \mathbb{R}^n such that $E = U \cap S$ and then the set $L = U \cap A$ is open in A with $L \cap S = (U \cap A) \cap S = E$. Similarly, the closed sets in S are the sets of the form $K \cap S$ with K being a closed set in A.

Suppose $f: A \to B$ is continuous. We claim that the restriction of f to any subset $S \subseteq A$ is continuous. Let $S \subseteq A$ and let $p: S \subseteq A \to B$ be the restriction of f to S. Let E be an open set in B. Then $f^{-1}(E)$ is open in A and so $S \cap f^{-1}(E)$ is open in S. But notice that $p^{-1}(E) = S \cap f^{-1}(E)$ since for $a \in A$ we have

$$a \in p^{-1}(E) \iff a \in S \text{ and } p(a) \in E \iff a \in S \text{ and } f(a) \in E$$

 $\iff a \in S \text{ and } a \in f^{-1}(E) \iff a \in S \cap f^{-1}(E).$

This shows that $p^{-1}(E)$ is open in S for every open set E in B, and so p is continuous in S.

Conversely, suppose that both of the two restrictions g and h are continuous. Let C be a closed set in B. Then $g^{-1}(C)$ is closed in E and $h^{-1}(C)$ is closed in F. Since $g^{-1}(C)$ is closed in E we can choose a closed set K in A so that $g^{-1}(C) = E \cap K$. Since E and K are both closed in A, it follows that $g^{-1}(C)$ is closed in A. Similarly, since $h^{-1}(C)$ is closed in F and F is closed in A, it follows that $h^{-1}(C)$ is closed in A. Since $g^{-1}(C)$ and $h^{-1}(C)$ are both closed in A, their union $g^{-1}(C) \cup h^{-1}(C)$ is closed in A. But notice that $f^{-1}(C) = g^{-1}(C) \cup h^{-1}(C)$ because for $a \in A$ we have

$$a \in f^{-1}(C) \iff a \in A \text{ and } f(a) \in C \iff a \in E \cup F \text{ and } f(a) \in C$$
$$\iff (a \in E \text{ and } f(a) \in C) \text{ or } (a \in F \text{ and } f(a) \in C)$$
$$\iff (a \in E \text{ and } g(a) \in C) \text{ or } (a \in F \text{ and } h(a) \in C)$$
$$\iff a \in g^{-1}(C) \text{ or } a \in h^{-1}(C).$$

(c) Show that f is continuous if and only if for every $E \subseteq A$ we have $f(\overline{E}) \subseteq \overline{f(E)}$.

Solution: Suppose that f is continuous. Let $E \subseteq A$. Let $b \in f(\overline{E})$, say b = f(a) where $a \in A \cap \overline{E}$. We must show that $b \in \overline{f(E)}$. Let r > 0. Since $B_B(b,r)$ is open in B and f is continuous, $f^{-1}(B_B(b,r))$ is open in A, so we can choose s > 0 so that $B_A(a,s) \subseteq f^{-1}(B_B(b,r))$. Since $a \in A \cap \overline{E}$, we have $B_A(a,s) \cap E \neq \emptyset$, so we can choose a point $c \in B_A(a,s) \cap E$. Since $c \in B_A(a,s) \subseteq f^{-1}(B_B(b,r))$ we have $f(c) \in B_B(b,r)$, and since $c \in E$ we have $f(c) \in f(E)$, and so $f(c) \in B_B(b,r) \cap f(E)$. Thus $B_B(b,r) \cap f(E) \neq \emptyset$ for all r > 0, so $b \in \overline{f(E)}$, as required.

Conversely, suppose that for every $E \subseteq A$ we have $f(\overline{E}) \subseteq \overline{f(E)}$. Let $K \subseteq B$ be closed in B. We claim that $f^{-1}(K)$ is closed in A. Let $C = f^{-1}(K)$. Note that $f(C) \subseteq K$. Let $x \in \overline{C}$. Then $f(x) \in f(\overline{C}) \subseteq \overline{f(C)} \subseteq \overline{K} = K$ and so $x \in f^{-1}(K) = C$. Thus $\overline{C} \subseteq C$. Of course we also have $C \subseteq \overline{C}$, so $C = \overline{C}$, and so C is closed, as claimed. Thus f is continuous.

9: (a) Let $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$. Show that if A is compact and f is continuous then f is uniformly continuous.

Solution: Suppose that A is compact and f is continuous. Let $\epsilon > 0$. For each $a \in A$, since f is continuous at a we can choose $\delta_a > 0$ such that $|x - a| < 2\delta_a \implies |f(x) - f(a)| < \frac{\epsilon}{2}$. Let $S = \{B(a, \delta_a) | a \in A\}$ and note that S is an open cover of A. Since A is compact, we can choose a finite subcover T of S, say $T = \{B(a_k, \delta_{a_k}) | 1 \le k \le \ell\}$. Let $\delta = \min\{\delta_{a_k} | 1 \le k \le \ell\}$. Let $x, y \in A$ with $|x - y| < \delta$. Since T covers A we can choose an index k such that $x \in B(a_k, \delta_{a_k})$. Since $|x - a_k| < \delta_{a_k}$ and $|x - y| < \delta \le \delta_{a_k}$ we have $|y - a_k| \le 2\delta_{a_k}$. Since $|x - a_k| < 2\delta_{a_k}$ and $|y - a_k| < 2\delta_{a_k}$ we have $|f(x) - f(a_k)| < \frac{\epsilon}{2}$ and $|f(y) - f(a_k)| < \frac{\epsilon}{2}$ and hence $|f(x) - f(y)| < \epsilon$.

(b) Let $f: A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^m$. Show that if A is compact and f is continuous and bijective then f^{-1} is continuous.

Solution: Suppose that A is compact and f is continuous and bijective, and let $g = f^{-1} : B \to A$. Let E be a closed set in A. By the Heine-Borel Theorem, A is closed and bounded. Since E is closed in A we can choose a closed set K in \mathbb{R}^n such that $E = K \cap A$ (by Theorem 5.31). Since K and A are closed in \mathbb{R}^n , so is $E = K \cap A$ (by Theorem 5.14). Since $E \subseteq A \subseteq \mathbb{R}^n$ with E closed and A compact, it follows that E is compact (by Theorem 5.28). Since E is compact and f is continuous, it follows that f(E) is compact (by Theorem 5.70 Part 2) hence f(E) closed (by the Heine-Borel Theorem). Since f and g are inverses, we have $g^{-1}(E) = f(E)$, which is closed. Since $g^{-1}(E)$ is closed for every closed set E in A, it follows that g is continuous (by Theorem 5.69 Part 2, proved in Problem 8 (a)).

(c) Let $\emptyset \neq A, B \subseteq \mathbb{R}^n$. Define the **distance** between A and B to be

$$d(A, B) = \inf \{ |x - y| \mid x \in A, y \in B \}.$$

Show that if A is compact and B is closed and $A \cap B = \emptyset$ then d(A, B) > 0.

Solution: Since B is closed, hence $B^c = \mathbb{R}^n \setminus B$ is open, for each $a \in A$ we can choose $r_a > 0$ so that $B(a, 2r_a) \subseteq B^c$. The set $S = \{B(a, r_a) | a \in A\}$ is an open cover of A. Since A is compact, we can choose a finite subcover $T \subseteq S$, say $T = \{B(a_1, r_{a_1}), B(a_2, r_{a_2}), \dots, B(a_\ell, r_{a_\ell})\}$ where each $a_k \in A$. Let $r = \min\{r_{a_1}, r_{a_2}, \dots, r_{a_\ell}\}$. We claim that $d(A, B) \geq r$. Let $x \in A$ and $y \in B$. Since T covers A, we can choose an index k so that $x \in B(a_k, r_{a_k})$ hence $|x - a_k| < r_{a_k}$. Since $y \in B$ and $B(a_k, 2r_{a_k}) \subseteq B^c$ we must have $|y - a_k| \geq 2r_{a_k}$. By the Triangle Inequality, $|y - a_k| \leq |y - x| + |x - a_k|$ hence $|y - x| \geq |y - a_k| - |x - a_k| \geq 2r_{a_k} - r_{a_k} = r_{a_k} \geq r$. Since $|y - x| \geq r$ for all $x \in A$ and $y \in B$ we have $d(A, B) = \inf\{|y - x| \mid x \in A, y \in B\} \geq r$, as claimed.

10: Let $A \subseteq \mathbb{R}^n$.

(a) For $a, b \in A$, write $a \sim b$ when there exists a continuous path in A from a to b. Show that \sim is an equivalence relation on A (this means that for all $a, b, c \in A$ we have $a \sim a$, and if $a \sim b$ then $b \sim a$, and if $a \sim b$ and $b \sim c$ then $a \sim c$).

Solution: Let $a, b, c \in A$. We have $a \sim a$ because we can define $\alpha : [0,1] \to A$ by $\alpha(t) = a$ for all t, and then α is continuous with $\alpha(0) = a$ and $\alpha(1) = a$, so α is a path in A from a to a.

Suppose that $a \sim b$. Let α be a path in A from a to b, so $\alpha : [0,1] \to A$ is continuous with $\alpha(0) = a$ and $\alpha(1) = b$. Define $\beta : [0,1] \to A$ by $\beta(t) = \alpha(1-t)$. Note that β is continuous since it is the composite of the continuous map α with the continuous map $s : [0,1] \to [0,1]$ given by s(t) = 1 - t, and note that we have $\beta(0) = \alpha(1) = b$ and $\beta(1) = \alpha(0) = a$. Thus β is a path in A from b to a and so $b \sim a$.

Finally, suppose that $a \sim b$ and $b \sim c$. Let α be a path from a to b in A and let β be a path from b to c in A. Define $\gamma : [0,1] \to A$ by

$$\gamma(t) = \begin{cases} \alpha(2t) &, \text{ for } 0 \le t \le \frac{1}{2}, \\ \beta(2t-1) &, \text{ for } \frac{1}{2} \le t \le 1. \end{cases}$$

Note that $\gamma(0) = \alpha(0) = a$, $\gamma(\frac{1}{2}) = \alpha(1) = \beta(0) = b$, and $\gamma(1) = \beta(1) = c$. Gamma is continuous by Problem 8(b), because the sets $E = [0, \frac{1}{2}]$ and $F = [\frac{1}{2}, 1]$ are closed in [0, 1] with $E \cup F = [0, 1]$, and the restriction of γ to E is given by $\alpha(2t)$, which is continuous (being the composite of two continuous functions), and the restriction of γ to F is given by $\beta(2t-1)$, which is also continuous.

(b) Suppose that A is open and connected. Show that A is path connected.

Solution: The empty set is open, connected and path-connected (vacuously). Suppose $A \neq \emptyset$ and let $a \in A$. Let

$$E = \left\{ b \in A \, \big| \, a \sim b \right\}.$$

We claim that E is open in A. Let $b \in E$. Since $b \in A$ and A is open in \mathbb{R}^n , we can choose r > 0 so that $B(b,r) \subseteq A$. Let $c \in B(b,r)$. Since $b \in E$ we have $a \sim b$. Since $c \in B(b,r) \subseteq A$ we have $b \sim c$, indeed we can define $\alpha : [0,1] \to B(b,r) \subseteq A$ by $\alpha(t) = b + t(c-b)$ and then α is continuous (since it elementary), and $\alpha(0) = b$ and $\alpha(1) = c$, and $\alpha(t) \in B(b,r)$ for all $t \in [0,1]$ because $|\alpha(t) - b| = |t(c-b)| = |t||c-b| \le |c-b| < r$. Since $a \sim b$ and $b \sim c$ we have $a \sim c$ by Part (a). Since $a \sim c$ we have $c \in E$, hence $B(b,r) \subseteq E$. This shows that E is open in \mathbb{R}^n hence also in A.

We claim that E is also closed in A. Let $b \in A \setminus E$. Since $b \in A$ and A is open in \mathbb{R}^n , we can choose r > 0 so that $B(b,r) \subseteq A$. Let $c \in B(b,r)$. Since $b \notin E$ we have $a \not\sim b$. Since $c \in B(b,r) \subseteq A$ we have $b \sim c$, as above. It follows from Part (a) that $a \not\sim c$ since otherwise we would have $a \sim c$ and $c \sim b$ and hence $a \sim b$. Since $c \not\sim a$ we have $c \in A \setminus E$. Thus $B(b,r) \subseteq A \setminus E$. This shows that $A \setminus E$ is open (both in \mathbb{R}^n and in A) so that E is closed in A.

Since A is connected, the only subsets of A which are both open and closed are \emptyset and A. Since E is both open and closed we must have $E = \emptyset$ or E = A. Since $a \sim a$ we have $a \in E$ so $E \neq \emptyset$ and so E = A. Since $A = E = \{b \in A | a \sim b\}$ we have $a \sim b$ for every $b \in A$. Thus A is path connected.