PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 5

1: (a) Let $A=\operatorname{Range}(f)$ where $f: \mathbb{R} \rightarrow \mathbb{R}^{2}$ is given by $f(t)=(\cos t, \sin 2 t)$ and let $B=\operatorname{Null}(g)$ where $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is given by $g(x, y)=y^{2}+4 x^{2}\left(x^{2}-1\right)$. Prove (algebraically) that $A=B$.
Solution: Note that $A=\operatorname{Range}(f)=\{(\cos t, \sin 2 t) \mid t \in \mathbb{R}\}$ and $B=\operatorname{Null}(g)=\left\{(x, y) \mid y^{2}+4 x^{2}\left(x^{2}-1\right)=0\right\}$. Let $(x, y) \in A$. Choose $t \in \mathbb{R}$ such that $x=\cos t$ and $y=\sin 2 t$. Then $x^{2}=\cos ^{2} t$ and

$$
y^{2}=4 \sin ^{2} t \cos ^{2} t=4 \cos ^{2} t\left(1-\cos ^{2} t\right)=4 x^{2}\left(1-x^{2}\right)
$$

so we have $y^{2}+4 x^{2}\left(x^{2}-1\right)=0$ and so $(x, y) \in B$. Thus $A \subseteq B$.
Conversely, suppose that $(x, y) \in B$ so we have $y^{2}=4 x^{2}\left(1-x^{2}\right)$. Then $y= \pm 2 x \sqrt{1-x^{2}}$ with $-1 \leq x \leq 1$. If $y=2 x \sqrt{1-x^{2}}$ then we can let $t=\cos ^{-1} x \in[0, \pi]$, and then $\cos t=x$ and, since $\sin t \geq 0$,

$$
\sin 2 t=2 \sin t \cos t=2 \cos t \sqrt{\sin ^{2} t}=2 \cos t \sqrt{1-\cos ^{2} t}=2 x \sqrt{1-x^{2}}=y .
$$

If $y=-2 x \sqrt{1-x^{2}}$ then we can let $t=-\cos ^{-1} x \in[-\pi, 0]$, and then $\cos t=x$ and, $\operatorname{since} \sin t \leq 0$,

$$
\sin 2 t=2 \sin t \cos t=-2 \cos t \sqrt{\sin ^{2} t}=-2 \cos t \sqrt{1-\cos ^{2} t}=-2 x \sqrt{1-x^{2}}=y .
$$

In either case, we can choose $t \in \mathbb{R}$ such that $(x, y)=(\cos t, \sin 2 t)$ and so $(x, y) \in A$. Thus $B \subseteq A$.
(b) Let $f(x, y)=x^{2}+2 y^{2}$ and $g(x, y)=4 x-y^{2}$. Find a parametric equation for the curve of intersection of the two surfaces $z=f(x, y)$ and $z=g(x, y)$.
Solution: Set $f(x, y)=g(x, y)$ to get $x^{2}+2 y^{2}=4 x-y^{2}$, which we can write as $(x-2)^{2}+3 y^{2}=4$. This is an ellipse, which we can parametrize as $(x, y)=\left(2+2 \cos t, \frac{2}{\sqrt{3}} \sin t\right)$. We also need to have $z=4 x-y^{2}=8+8 \cos t-\frac{4}{3} \sin ^{2} t$, so a parametric equation for the curve of intersection is

$$
(x, y, z)=\alpha(t)=\left(2+2 \cos t, \frac{2}{\sqrt{3}} \sin t, 8+8 \cos t-\frac{4}{3} \sin ^{2} t\right) .
$$

To be rigorous, let us verify that $\operatorname{Range}(\alpha)=\operatorname{Graph}(f) \cap \operatorname{Graph}(g)$. Let $(x, y, z) \in \operatorname{Range}(\alpha)$. Choose $t \in \mathbb{R}$ such that $(x, y, z)=\alpha(t)$, so we have $x=2+2 \cos t, y=\frac{2}{\sqrt{3}} \sin t$ and $z=8+8 \cos t-\frac{4}{3} \sin ^{2} t$. Then we have

$$
f(x, y)=x^{2}+2 y^{2}=(2+2 \cos t)^{2}+2\left(\frac{2}{\sqrt{3}} \sin t\right)^{2}=4+8 \cos t+4 \cos ^{2} t+\frac{8}{3} \sin ^{2} t=8+8 \cos t-\frac{4}{3} \sin ^{2} t=z
$$

so that $(x, y, z) \in \operatorname{Graph}(f)$, and we have

$$
g(x, y)=4 x-y^{2}=4(2+2 \cos t)-\left(\frac{2}{\sqrt{3}} \sin t\right)^{2}=8+8 \cos t-\frac{4}{3} \sin ^{2} t=z
$$

so that $(x, y, z) \in \operatorname{Graph}(g)$. Thus Range $(\alpha) \subseteq \operatorname{Graph}(f) \cap \operatorname{Graph}(g)$.
Let $(x, y, z) \in \operatorname{Graph}(f) \cap \operatorname{Graph}(g)$. Since $(x, y, z) \in \operatorname{Graph}(f)$ we have $z=f(x, y)=x^{2}+2 y^{2}$, and since $(x, y, z) \in \operatorname{Graph}(g)$ we have $z=g(x, y)=4 x-y^{2}$. It follows that $x^{2}+2 y^{2}=4 x-y^{2}$, that is $(x-2)^{2}+3 y^{2}=4$. Since $(x-2)^{2}=4-3 y^{2} \leq 4$ we have $\left|\frac{x-2}{2}\right| \leq 1$. Since $3 y^{2}=4-(x-2)^{2} \leq 4$, we have $\left|\frac{\sqrt{3}}{2} y\right| \leq 1$. Let $t \in[0,2 \pi)$ be the (unique) angle with $\sin t=\frac{\sqrt{3}}{2} y$ and $\cos t=\frac{x-2}{2}$. Then we have $x=2+2 \cos t, y=\frac{2}{\sqrt{3}} \sin t$ and $z=$ $g(x, y)=4 x-y^{2}=8+8 \cos t-\frac{4}{3} \sin ^{t}$ and so $(x, y, z)=\alpha(t) \in \operatorname{Range}(\alpha)$. Thus $\operatorname{Graph}(f) \cap \operatorname{Graph}(g) \subseteq \operatorname{Range}(\alpha)$.

2: (a) Let $A=\left\{(x, y) \in \mathbb{R}^{2} \mid 0<x, 0<y\right.$ and $\left.x y<1\right\}$. Show, from the definition of an open set, that A is open in \mathbb{R}^{2}.
Solution: Before beginning our proof, let us discuss our strategy. Suppose that $(a, b) \in A$, so we have $a>0, b>0$ and $a b<1$. We want to choose $r>0$ so that the $\operatorname{disc} B_{r}=B((a, b), r)$ is contained in A. Note that the open square Q_{r} given by $|x-a|<r$ and $|y-b|<r$ contains the disc B_{r}, so it suffices to ensure that Q_{r} is contained in A. Note that if $r<a$ then $|x-a|<r \Longrightarrow|x-a|<a \Longrightarrow 0<x<2 a \Longrightarrow x>0$. Similarly, if $r<b$ then $|y-b|<r \Longrightarrow y>0$. Note that if $r<a$ and $r<b$ then $r<a+b$ and so $(a+r)(b+r)=a b+r(a+b)+r^{2}<$ $a b+r(a+b)+r(a+b)=a b+2 r(a+b)$ and we can obtain $(a+r)(b+r)<1$ by choosing $r<\frac{1-a b}{2(a+b)}$.

Now we begin the proof. Let $(a, b) \in A$, so we have $a>0, b>0$ and $a b<1$. Choose $r=\min \left\{a, b, \frac{1-a b}{2(a+b)}\right\}$. Let $(x, y) \in B_{r}=B((a, b), r)$. Then $|x-a|=\sqrt{|x-a|^{2}} \leq \sqrt{|x-a|^{2}+|y-b|^{2}}=|(x, y)-(a, b)|<r$ and similarly $|y-b|<r$. Since $|x-a|<r \leq a$ we have $0 \leq a-r<x<a+r$ and since $|y-b|<r \leq b$ we have $0 \leq b-r<y<b+r$. Since $0<x<a+r$ and $0<y<a+r$ and $r<a+b$ and $r<\frac{1-a b}{2(a+b)}$ we have $x y<(a+r)(b+r)=a b+r(a+b)+r^{2}<a b+2 r(a+b)<a b+(1-a b)=1$. Since $x>0$ and $y>0$ and $x y<1$ we have $(x, y) \in A$. Thus $B_{r} \subseteq A$, as required, and so A is open.
(b) Let $B=\left\{\left.\left(\frac{2 t}{t^{2}+1}, \frac{t^{2}-1}{t^{2}+1}\right) \in \mathbb{R}^{2} \right\rvert\, t \in \mathbb{R}\right\}$. Show that B is not closed in \mathbb{R}^{2}.

Solution: To solve this problem, you might find it helpful to draw a picture of the set B by choosing various values of t and plotting points. You should find that B looks like the unit circle centred at $(0,0)$ with the point $(0,1)$ removed. If you wish, you can show, algebraically, that this is indeed the case.

Let $a=(0,1)$. Let $x(t)=\frac{2 t}{t^{2}+1}$ and $y(t)=\frac{t^{2}-1}{t^{2}+1}$ and $f(t)=(x(t), y(t))$ so that $B=\{f(t) \mid t \in \mathbb{R}\}$. We claim that $a \in B^{\prime}$ (that is a is a limit point of B) but $a \notin B$. It is clear that $a \notin B$ because to get $f(t)=a$ we need $x(t)=0$ and $y(t)=1$, but to get $x(t)=\frac{2 t}{t^{2}+1}=0$ we must choose $t=0$, and then $y(t)=\frac{t^{2}-1}{t^{2}+1}=-1 \neq 1$. To show that $a \in B^{\prime}$, we shall show that for all $r>0$ we have $B(a, r) \cap B \neq \emptyset$. Let $r>0$. Since $\lim _{t \rightarrow \infty} x(t)=0$ and $\lim _{t \rightarrow \infty} y(t)=1$ we can choose $t \in \mathbb{R}$ so that $|x(t)-0|<\frac{r}{2}$ and $|y(t)-1|<\frac{r}{2}$. Then we have

$$
|f(t)-a|=|(x(t), y(t))-(0,1)|=|(x(t), y(t)-1)| \leq|x(t)|+|y(t)-1|<\frac{r}{2}+\frac{r}{2}=r
$$

and so $f(t) \in B(a, r) \cap B$. This shows that for all $r>0$ we have $B(a, r) \cap B \neq \emptyset$, and so $a \in B^{\prime}$. Since $a \in B^{\prime}$ and $a \notin B$ we do not have $B^{\prime} \subseteq B$ and so B is not closed (by Part (2) of Theorem 5.19).

3: Let $A \subseteq \mathbb{R}^{n}$.
(a) Show that A^{\prime} is closed in \mathbb{R}^{n}.

Solution: By Part (2) of Theorem 5.19, we know that A^{\prime} is closed if and only if $\left(A^{\prime}\right)^{\prime} \subseteq A^{\prime}$. Let $a \in\left(A^{\prime}\right)^{\prime}$, that is let a be a limit point of A^{\prime}. Let $r>0$. Since a is a limit point of A^{\prime}, we know that $B^{*}(a, r) \cap A^{\prime} \neq \emptyset$. Choose $b \in B^{*}(a, r) \cap A^{\prime}$. Note that $0<|a-b|<r$. Let $s=\min (|a-b|, r-|a-b|)>0$. Since $b \in A^{\prime}$ we know that $B^{*}(b, s) \cap A \neq \emptyset$. Choose $c \in B^{*}(b, s) \cap A$. We claim that $c \in B^{*}(a, r) \cap A$. By the Triangle Inequality we have $|a-c| \leq|a-b|+|b-c|<|a-b|+s \leq|a-b|+r-|a-b|=r$, and by the Triangle Inequality again, we have $|a-b| \leq|a-c|+|c-b|$ and so $|a-c| \geq|a-b|-|b-c|>|a-b|-s \geq|a-b|-|a-b|=0$. Thus $0<|a-c|<r$ and so $c \in B^{*}(a, r) \cap A$, as claimed. Since $c \in B^{*}(a, r) \cap A$, we see that $B^{*}(a, r) \cap A \neq \emptyset$. We have shown that for every $r>0$ we have $B^{*}(a, r) \cap A \neq \emptyset$, and so $a \in A^{\prime}$. This proves that $\left(A^{\prime}\right)^{\prime} \subseteq A^{\prime}$, and so A^{\prime} is closed.
(b) Show that $\partial A=\bar{A} \backslash A^{o}$.

Solution: Let $a \in \partial A$. We claim first that $a \in \bar{A}$. Since $\bar{A}=A \cup A^{\prime}$ it suffices to show that either $a \in A$ or $a \in A^{\prime}$. Suppose that $a \notin A$. Let $r>0$ be arbitrary. Since $a \in \partial A$ we have $B(a, r) \cap A \neq \emptyset$. Since $a \notin A$ we have $B^{*}(a, r) \cap A=B(a, r) \cap A$ and so $\left.B^{*}(a, r) \cap A\right) \neq \emptyset$. Since $r>0$ was arbitrary, we have $a \in A^{\prime}$, as required.

Next we claim that $a \notin A^{0}$. Suppose, for a contradiction, that $a \in A^{0}$. By Part (b), a is an interior point of A so we can choose $r>0$ so that $B(a, r) \subseteq A$. Since $B(a, r) \subseteq A$ we have $B(a, r) \cap A^{c}=\emptyset$. But since $a \in \partial A$ we have $B(a, r) \cap A^{c} \neq \emptyset$, so we have obtained the desired contradiction. Thus $a \notin A^{0}$, as claimed. This completes the proof that $\partial A \subseteq \bar{A} \backslash A^{0}$.

Now let $a \in \bar{A} \backslash A^{0}$, that is let $a \in \bar{A}$ with $a \notin A^{0}$. Let $r>0$ be arbitrary. Case 1: suppose that $a \in A$. Let $r>0$ be arbitrary. Since $a \in A$ and $a \in B(a, r)$ we have $B(a, r) \cap A \neq \emptyset$. Since $a \notin A^{0}$ we have $B(a, r) \nsubseteq A$ and so $B(a, r) \cap A^{c} \neq \emptyset$. Thus $a \in \partial A$. Case 2: suppose that $a \notin A$. Let $r>0$ be arbitrary. Since $a \notin A$ and $a \in B(a, r)$ we have $B(a, r) \cap A^{c} \neq \emptyset$. Since $a \in \bar{A}=A \cup A^{\prime}$ and $a \notin A$ we have $a \in A^{\prime}$ and so $B^{*}(a, r) \cap A \neq \emptyset$ hence $B(a, r) \cap A \neq \emptyset$. Thus $a \in \partial A$. In either case we find that $a \in \partial A$. This completes the proof that $\bar{A} \backslash A^{0} \subseteq \partial A$.

4: (a) Let $A, B \subseteq \mathbb{R}^{n}$ show that if A is connected and $A \subseteq B \subseteq \bar{A}$ then B is connected.
Solution: Suppose that A is connected and that $A \subseteq B \subseteq \bar{A}$. Suppose, for a contradiction, that B is disconnected. Choose open sets $U, V \subseteq \mathbb{R}^{n}$ which separate B, so we have $U \cap B \neq \emptyset, V \cap B \neq \emptyset, U \cap V=\emptyset$ and $B \subseteq U \cup V$. We claim that U and V also separate A (contradicting the fact that A is connected). Since $A \subseteq B \subseteq U \cup V$, it suffices to prove that $U \cap A \neq \emptyset$ and $V \cap A \neq \emptyset$. We claim that $U \cap A \neq \emptyset$. Since $U \cap B \neq \emptyset$ we can choose $b \in U \cap B$. Then we have $b \in B \subseteq \bar{A}=A \cup A^{\prime}$, and so either $b \in A$ or $b \in A^{\prime}$. If $b \in A$ then we have $b \in U \cap A$ so that $U \cap A \neq \emptyset$. Suppose that $b \in A^{\prime}$. Since $b \in U$ and U is open, we can choose $r>0$ such that $B(b, r) \subseteq U$. Since $b \in A^{\prime}$ we have $B(b, r) \cap A \neq \emptyset$ so we can choose $c \in B(b, r) \cap A$. Then we have $c \in B(b, r) \subseteq U$ and $c \in A$, hence $c \in U \cap A$, and so $U \cap A \neq \emptyset$. This proves that $U \cap A \neq \emptyset$, as claimed. The proof that $V \cap A \neq \emptyset$ is similar, and so U and V separate A giving the desired contradiction.
(b) Let S be a nonempty set and let $A_{j} \subseteq \mathbb{R}^{n}$ for each $j \in S$. Suppose that A_{j} is connected for all $j \in S$ and that $A_{k} \cap A_{\ell} \neq \emptyset$ for all $k, \ell \in S$. Show that $\bigcup_{j \in S} A_{j}$ is connected.
Solution: Let $B=\bigcup_{j \in S} A_{j}$. Suppose, for a contradiction, that B is disconnected. Choose open sets $U, V \subseteq \mathbb{R}^{n}$ which separate B, that is $B \cap U \neq \emptyset, B \cap V \neq \emptyset, U \cap V=\emptyset$ and $B \subseteq U \cup V$. Choose $a \in B \cap U$ and $b \in B \cap V$. Since $a \in B=\bigcup_{j \in S} A_{j}$, we can choose $k \in S$ such that $a \in A_{k}$. Similarly we can choose $\ell \in S$ such that $b \in A_{\ell}$. Then we have $a \in A_{k} \cap U$ and $b \in A_{\ell} \cap V$. Since A_{k} is connected, and $a \in A_{k} \cap U$ so that $A_{k} \cap U \neq \emptyset$, and $A_{k} \subseteq \bigcup_{j \in S} A_{j}=B \subseteq U \cup V$, it follows that we must have $A_{k} \subseteq U$ because otherwise we would have $A_{k} \cap V \neq \emptyset$ and so U and V would separate A_{k}. Similarly, we must have $A_{\ell} \subseteq V$. Since $A_{k} \subseteq U$ and $A_{\ell} \subseteq V$ we have $A_{k} \cap A_{\ell} \subseteq U \cap V=\emptyset$. This contradicts our assumption that $A_{k} \cap A_{\ell} \neq \emptyset$, and so B is connected, as required.

5: Let $A \subseteq P \subseteq \mathbb{R}^{n}$. Define the interior of A in P to be the union of all sets $E \subseteq P$ such that E is open in P and $E \subseteq A$. Define the closure of A in P to be the intersection of all sets $F \subseteq P$ such that F is closed in P and $A \subseteq F$. Denote the interior of A in \mathbb{R}^{n} and the closure of A in \mathbb{R}^{n} by A^{o} and \bar{A} (as usual). Denote the interior of A in P and the closure of A in P by $\operatorname{Int}_{P}(A)$ and $\mathrm{Cl}_{P}(A)$.
(a) Show that $\mathrm{Cl}_{P}(A)=\bar{A} \cap P$.

Solution: Since \bar{A} is closed in \mathbb{R}^{n} it follows that $\bar{A} \cap P$ is closed in P. Since $A \subseteq \bar{A}$ and $A \subseteq P$ we have $A \subseteq \bar{A} \cap P$. Since $\bar{A} \cap P$ is closed in P and $A \subseteq \bar{A} \cap P$, it follows from the definition of $\overline{\mathrm{Cl}}_{P}(A)$ that $\overline{\mathrm{Cl}}_{P}(A) \subseteq \bar{A} \cap \bar{P}$.

Let F be any closed set in P with $A \subseteq F$. Choose a closed set K in \mathbb{R}^{n} such that $F=K \cap P$. Since K is closed in \mathbb{R}^{n} and $A \subseteq K$ we have $\bar{A} \subseteq K$. Thus $\bar{A} \cap P \subseteq K \cap P=F$. Since $\bar{A} \cap P \subseteq F$ for every closed set F in P which contains A, it follows, from the definition of $\mathrm{Cl}_{P}(A)$, that $\bar{A} \cap P \subseteq \mathrm{Cl}_{P}(A)$.
(b) Show that $\operatorname{Int}_{P}(A)=\left(A \cup P^{c}\right)^{o} \cap P$, where $P^{c}=\mathbb{R}^{n} \backslash P$.

Solution: Let $F=\left(A \cup P^{c}\right)^{o} \cap P$. Since $\left(A \cup P^{c}\right)^{o}$ is open in \mathbb{R}^{n} it follows that $F=\left(A \cup P^{c}\right)^{o} \cap P$ is open in P. Also note that we have $F=\left(A \cup P^{c}\right)^{o} \cap P \subseteq\left(A \cup P^{c}\right) \cap P=(A \cap P) \cup\left(P^{c} \cap P\right)=(A \cap P) \cup \emptyset=A \cap P=A$, since $A \subseteq P$. Since F is open in P and $F \subseteq A$ it follows, from the definition of $\operatorname{Int}_{P}(A)$, that $F \subseteq \operatorname{Int}_{P}(A)$.

Let E be any open set in P with $E \subseteq A$. Choose an open set U in \mathbb{R}^{n} such that $U \cap P=E$. Then we have $U=U \cap \mathbb{R}^{n}=U \cap\left(P \cup P^{c}\right)=(U \cap P) \cup\left(U \cap P^{c}\right)=E \cup\left(U \cap P^{c}\right) \subseteq A \cup P^{c}$, since $E \subseteq A$ and $U \cap P^{c} \subseteq P^{c}$. Since U is open in \mathbb{R}^{n} and $U \subseteq A \cup P^{c}$ it follows that $U \subseteq\left(A \cup P^{c}\right)^{o}$. Since $E=U \cap P \subseteq U \subseteq\left(A \cup P^{c}\right)^{o}$ and $E \subseteq A \subseteq P$ we have $E \subseteq\left(A \cup P^{c}\right)^{o} \cap P=F$. Since $E \subseteq F$ for every open set E in P with $E \subseteq A$ it follows, from the definition of $\operatorname{Int}_{P}(A)$, that $\operatorname{Int}_{P}(A) \subseteq F$.

6: (a) Show, from the definition of compactness, that the set $A=\mathbb{Q} \cap[0,1]$ is not compact.
Solution: Let $a \in[0,1]$ with $a \notin \mathbb{Q}$ and note that a is a limit point of A because \mathbb{Q} is dense in \mathbb{R}. For each $n \in \mathbb{Z}^{+}$let $U_{n}=\bar{B}\left(a, \frac{1}{n}\right)^{c}=\left(-\infty, a-\frac{1}{n}\right) \cup\left(a+\frac{1}{n}, \infty\right)$, and let $S=\left\{U_{n} \mid n \in \mathbb{Z}^{+}\right\}$. Note that each U_{n} is open and we have $\bigcup_{n=1}^{\infty} U_{n}=\mathbb{R} \backslash\{a\}$, so S is an open cover of A. Let T be any nonempty finite subset of A, say $T=\left\{U_{n_{1}}, U_{n_{2}}, \cdots, U_{n_{\ell}}\right\}$ with $n_{1}<n_{2}<\cdots<n_{\ell}$. Note that $U_{1} \subseteq U_{2} \subseteq U_{3} \subseteq \cdots$ and so we have $\bigcup T=\bigcup_{k=1}^{\ell} U_{n_{k}}=U_{n_{\ell}}=\bar{B}\left(a, \frac{1}{n_{\ell}}\right)^{c}$. Since a is a limit point of A we have $B\left(a, \frac{1}{n}\right) \cap A \neq \emptyset$, hence $\bar{B}\left(a, \frac{1}{n}\right) \cap A \neq \emptyset$, and so A is not a subset of $\bigcup T$. Since no finite subset of S covers A, it follows that A is not compact.
(b) Show, from the definition of compactness, that the set $B=\left\{\left.\frac{n|n|}{1+n^{2}} \right\rvert\, n \in \mathbb{Z}\right\} \cup\{1,-1\}$ is compact.

Solution: Note that $\lim _{n \rightarrow \infty} \frac{n|n|}{1+n^{2}}=1$ and $\lim _{n \rightarrow-\infty} \frac{n|n|}{1+n^{2}}=-1$. Let S be any open cover of B. Since S covers B and $\pm 1 \in B$ we can choose $V, W \in S$ such that $1 \in V$ and $-1 \in W$. Since V and W are open we can choose $r>0$ such that $B(1, r) \subseteq V$ and $B(-1, r) \subseteq W$. Since $\lim _{n \rightarrow \infty} \frac{n|n|}{1_{+} n^{2}}=1$ and $\lim _{n \rightarrow \infty} \frac{n|n|}{1+n^{2}}=-1$ we can choose $N \in \mathbb{Z}^{+}$ such that for all $n \in \mathbb{Z}$, if $n \geq N$ then $\left|\frac{n|n|}{1+n^{2}}-1\right|<r$ so that $\frac{n|n|}{1+n^{2}} \in V$ and if $n \leq-N$ then $\left|\frac{n|n|}{1+n^{2}}+1\right|<r$ so that $\frac{n|n|}{1+n^{2}} \in W$. For each $n \in \mathbb{Z}$ with $-N<n<N$, choose $U_{n} \in S$ so that $\frac{n|n|}{1+n^{2}} \in U_{n}$. Then the set $T=\left\{U_{n} \mid-N<n<n\right\} \cup\{V, W\}$ is a finite subcover of S. Thus B is compact.
(c) Show that the set $O_{n}(\mathbb{R})=\left\{A \in M_{n}(\mathbb{R}) \mid A^{T} A=I\right\}$ is compact. Here, we are identifying $M_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$, so that the dot product of two matrices is given by $A \cdot B=\sum_{k, \ell} A_{k, \ell} B_{k, \ell}=\operatorname{trace}\left(B^{T} A\right)$.

Solution: Note that for $A \in M_{n}(\mathbb{R})$ we have

$$
A \in O_{n}(\mathbb{R}) \Longleftrightarrow A^{T} A=I \Longleftrightarrow\left(A^{T} A\right)_{k, l}=I_{k, l} \text { for all } k, l \Longleftrightarrow \sum_{i=1}^{n} A_{i, k} A_{i, l}=\delta_{k, l} \text { for all } k, l,
$$

where

$$
\delta_{k, l}=\left\{\begin{array}{l}
1 \text { if } k=l \\
0 \text { if } k \neq l
\end{array}\right.
$$

For each pair k, l, define $f_{k, l}: M_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ by $f_{k, l}(A)=\sum_{i=1}^{n} A_{i, k} A_{i, l}-\delta_{k, l}$. Note that each function $f_{k, l}$ is continuous since it is an elementary function on the n^{2} variables $A_{i, j}$. We have

$$
O_{n}(\mathbb{R})=\left\{A \in M_{r}(\mathbb{R}) \mid f_{k, l}(A)=0 \text { for all } k, l\right\}=\bigcap_{k, l}\left\{A \in M_{n}(\mathbb{R}) \mid f_{k, l}(A)=0\right\}=\bigcap_{k, l} f_{k, l}^{-1}(0)
$$

Note that $f_{k, l}^{-1}(0)$ is the complement in $M_{n}(\mathbb{R})$ of the set $f_{k, l}^{-1}(\mathbb{R} \backslash\{0\})$. Since $\mathbb{R} \backslash\{0\}$ is open in \mathbb{R} and each function $f_{k, l}$ is continuous, it follows that each set $f_{k, l}^{-1}(\mathbb{R} \backslash\{0\})$ is open, and hence each set $f_{k, l}^{-1}(0)$ is closed. Thus $O_{n}(\mathbb{R})$ is closed because it is the intersection of finitely many closed sets.

We claim that $O_{n}(\mathbb{R})$ is bounded. Let $A \in O_{n}(\mathbb{R})$. Let $u_{1}, u_{2}, \cdots, u_{n}$ be the columns of A. Note that

$$
A^{T} A=\left(\begin{array}{c}
u_{1}^{T} \\
\vdots \\
u_{n}{ }^{T}
\end{array}\right)\left(u_{1}, \cdots, u_{n}\right)=\left(\begin{array}{cccc}
u_{1} \cdot u_{1} & u_{1} \cdot u_{2} & \cdots & u_{1} \cdot u_{n} \\
\vdots & & & \vdots \\
u_{n} \cdot u_{1} & u_{n} \cdot u_{2} & \cdots & u_{n} \cdot u_{n}
\end{array}\right)
$$

and so

$$
\begin{aligned}
A^{T} A=I & \Longrightarrow\left(A^{T} A\right)_{k, k}=1 \text { for all } k \Longrightarrow u_{k} \cdot u_{k}=1 \text { for all } k \Longrightarrow\left|u_{k}\right|=1 \text { for all } k, l \\
& \Longrightarrow|A|^{2}=\sum_{k=1}^{n} \sum_{i=1}^{n}\left(A_{i, k}\right)^{2}=\sum_{k=1}^{n}\left|u_{k}\right|^{2}=\sum_{k=1}^{n} 1=n
\end{aligned}
$$

Thus for every $A \in O_{n}\left(\mathbb{R}^{n}\right)$ we have $|A|=\sqrt{n}$ and so $O_{n}(\mathbb{R})$ is bounded, as claimed. We have shown that $O_{n}(\mathbb{R})$ is closed and bounded, and so it is compact, by the Heine Borel Theorm (which we can apply because we are identifying $M_{n}(\mathbb{R})$ with $\mathbb{R}^{n^{2}}$.

7: For each of the following functions $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$, find $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ or show that the limit does not exist.
(a) $f(x, y)=\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$

Solution: Let $\theta \in \mathbb{R}$ and define $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\alpha(t)=(t \cos \theta, t \sin \theta)$. Then we have $\lim _{t \rightarrow 0} \alpha(t)=(0,0)$ and $f(\alpha(t))=\frac{t^{2} \cos ^{2} \theta-t^{2} \sin ^{2} \theta}{t^{2} \cos ^{2} \theta+t^{2} \sin ^{2} \theta}=\cos 2 \theta$ for all $t \neq 0$, and so (by Composites and Limits) if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ existed then it would be equal to $\cos 2 \theta$. Since different choices of θ yield different values for the limit, the limit cannot exist.
(b) $f(x, y)=\frac{x^{2} y^{3}}{x^{4}+y^{6}}$

Solution: Consider the graph $z=f(x, y)$. The level set $y=c>0$ is given by $z=g(x)=f(x, c)=\frac{c^{3} x^{2}}{x^{4}+c^{6}}$. Then

$$
z^{\prime}=g^{\prime}(x)=\frac{c^{3}\left(2 x\left(x^{4}+c^{6}\right)-\left(x^{2}\right)\left(4 x^{3}\right)\right)}{\left(x^{4}+c^{6}\right)^{2}}=\frac{c^{3}(2 x)\left(c^{6}-x^{4}\right)}{\left(x^{4}+c^{6}\right)^{2}},
$$

so we have $z^{\prime}=0$ when $x=0$ and when $x= \pm c^{3 / 2}$. When $x=0$ we have $z=0$ and when $x= \pm c^{3 / 2}$ we have $z=\frac{c^{3} \cdot c^{3}}{c^{6}+c^{6}}=\frac{1}{2}$. The graph $z=f(x, y)$ with $y>0$ has a maximum ridge of height $z=\frac{1}{2}$ along $x= \pm y^{3 / 2}$, that is $x^{2}=y^{3}$.

Define $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\alpha(t)=(0, t)$. Then $\lim _{t \rightarrow 0} \alpha(t)=(0,0)$ and $f(\alpha(t))=0$ for all $t \neq 0$, and so (by Composites and Limits) if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ existed then it would be equal to 0 . Define $\beta: \mathbb{R} \rightarrow \mathbb{R}^{2}$ by $\beta(t)=\left(t^{3}, t^{2}\right)$. Then $\lim _{t \rightarrow 0} \beta(t)=(0,0)$ and $f(\beta(t))=\frac{t^{6} \cdot t^{6}}{t^{12}+t^{12}}=\frac{1}{2}$ for all $t \neq 0$, and so if $\lim _{(x, y) \rightarrow(0,0)} f(x, y)$ existed then it would be equal to $\frac{1}{2}$. Thus the limit cannot exist.
(c) $f(x, y)=\frac{x^{4} y^{5}}{x^{8}+y^{6}}$

Solution: Recall that for all $u, v \in \mathbb{R}$ we have $0 \leq(|u|-|v|)^{2}=u^{2}-2|u v|+v^{2}$ and so $|u v| \leq \frac{1}{2}\left(u^{2}+v^{2}\right)$. It follows that for all $(x, y) \neq(0,0)$ we have

$$
|f(x, y)-0|=\left|\frac{x^{4} y^{5}}{x^{8}+y^{6}}\right|=\frac{\left|x^{4} y^{3}\right| y^{2}}{x^{8}+y^{6}} \leq \frac{\frac{1}{2}\left(x^{8}+y^{6}\right) y^{2}}{x^{8}+y^{6}}=\frac{1}{2} y^{2} .
$$

Given $\epsilon>0$ choose $\delta=\sqrt{2 \epsilon}$. Then for all x, y with $0<|(x, y)|<\delta$ we have $0<x^{2}+y^{2}<\delta^{2}$ and so

$$
|f(x, y)-0| \leq \frac{1}{2} y^{2} \leq \frac{1}{2}\left(x^{2}+y^{2}\right)<\frac{1}{2} \delta^{2}=\epsilon
$$

8: Let $f: A \subseteq \mathbb{R}^{n} \rightarrow B \subseteq \mathbb{R}^{m}$.
(a) Show that f is continuous if and only if $f^{-1}(F)$ is closed in A for every closed set F in B.

Solution: We already know that f is continuous if and only if $f^{-1}(E)$ is open in A for every open set E in B. Suppose that f is continuous. Let F be a closed set in B. Then $B \backslash F$ is open in B and so $f^{-1}(B \backslash F)$ is open in A and hence $A \backslash f^{-1}(B \backslash F)$ is closed in A. But notice that $f^{-1}(F)=A \backslash f^{-1}(B \backslash F)$ because for $a \in A$ we have

$$
a \in f^{-1}(F) \Longleftrightarrow f(a) \in F \Longleftrightarrow f(a) \notin B \backslash F \Longleftrightarrow a \notin f^{-1}(B \backslash F) \Longleftrightarrow a \in A \backslash f^{-1}(B \backslash F)
$$

Thus $f^{-1}(F)$ is closed in A for every closed set F in B.
Conversely, suppose that $f^{-1}(F)$ is closed in A for every closed set F in B. Let E be an open set in B. Then $B \backslash E$ is closed in B, hence $f^{-1}(B \backslash E)$ is closed in B, and so $A \backslash f^{-1}(B \backslash E)$ is open in A. But notice that $f^{-1}(E)=A \backslash f^{-1}(B \backslash E)$, as above. This shows that that $f^{-1}(E)$ is open in A for every open set E in B, and so f is continuous.
(b) Let E and F be closed sets in A with $E \cup F=A$. Let g be the restriction of f to E, and let h be the restriction of f to F. Show that f is continuous if and only if both g and h are continuous.
Solution: We begin by remarking that when $S \subseteq A \subseteq \mathbb{R}^{n}$, the open sets in S are the sets of the form $L \cap S$ with L being an open set in A. Indeed when L is open in A we can choose an open set U in \mathbb{R}^{n} such that $L=U \cap A$, and then we have $L \cap S=(U \cap A) \cap S=U \cap S$ since $S \subseteq A$. On the other hand, when E is open in S we can choose an open set U in \mathbb{R}^{n} such that $E=U \cap S$ and then the set $L=U \cap A$ is open in A with $L \cap S=(U \cap A) \cap S=U \cap S=E$. Similarly, the closed sets in S are the sets of the form $K \cap S$ with K being a closed set in A.

Suppose $f: A \rightarrow B$ is continuous. We claim that the restriction of f to any subset $S \subseteq A$ is continuous. Let $S \subseteq A$ and let $p: S \subseteq A \rightarrow B$ be the restriction of f to S. Let E be an open set in B. Then $f^{-1}(E)$ is open in A and so $S \cap f^{-1}(E)$ is open in S. But notice that $p^{-1}(E)=S \cap f^{-1}(E)$ since for $a \in A$ we have

$$
\begin{aligned}
a \in p^{-1}(E) & \Longleftrightarrow a \in S \text { and } p(a) \in E \Longleftrightarrow a \in S \text { and } f(a) \in E \\
& \Longleftrightarrow a \in S \text { and } a \in f^{-1}(E) \Longleftrightarrow a \in S \cap f^{-1}(E)
\end{aligned}
$$

This shows that $p^{-1}(E)$ is open in S for every open set E in B, and so p is continuous in S.
Conversely, suppose that both of the two restrictions g and h are continuous. Let C be a closed set in B. Then $g^{-1}(C)$ is closed in E and $h^{-1}(C)$ is closed in F. Since $g^{-1}(C)$ is closed in E we can choose a closed set K in A so that $g^{-1}(C)=E \cap K$. Since E and K are both closed in A, it follows that $g^{-1}(C)$ is closed in A. Similarly, since $h^{-1}(C)$ is closed in F and F is closed in A, it follows that $h^{-1}(C)$ is closed in A. Since $g^{-1}(C)$ and $h^{-1}(C)$ are both closed in A, their union $g^{-1}(C) \cup h^{-1}(C)$ is closed in A. But notice that $f^{-1}(C)=g^{-1}(C) \cup h^{-1}(C)$ because for $a \in A$ we have

$$
\begin{aligned}
a \in f^{-1}(C) & \Longleftrightarrow a \in A \text { and } f(a) \in C \Longleftrightarrow a \in E \cup F \text { and } f(a) \in C \\
& \Longleftrightarrow(a \in E \text { and } f(a) \in C) \text { or }(a \in F \text { and } f(a) \in C) \\
& \Longleftrightarrow(a \in E \text { and } g(a) \in C) \text { or }(a \in F \text { and } h(a) \in C) \\
& \Longleftrightarrow a \in g^{-1}(C) \text { or } a \in h^{-1}(C)
\end{aligned}
$$

(c) Show that f is continuous if and only if for every $E \subseteq A$ we have $f(\bar{E}) \subseteq \overline{f(E)}$.

Solution: Suppose that f is continuous. Let $E \subseteq A$. Let $b \in f(\bar{E})$, say $b=f(a)$ where $a \in A \cap \bar{E}$. We must show that $b \in \overline{f(E)}$. Let $r>0$. Since $B_{B}(b, r)$ is open in B and f is continuous, $f^{-1}\left(B_{B}(b, r)\right)$ is open in A, so we can choose $s>0$ so that $B_{A}(a, s) \subseteq f^{-1}\left(B_{B}(b, r)\right)$. Since $a \in A \cap \bar{E}$, we have $B_{A}(a, s) \cap E \neq \emptyset$, so we can choose a point $c \in B_{A}(a, s) \cap E$. Since $c \in B_{A}(a, s) \subseteq f^{-1}\left(B_{B}(b, r)\right)$ we have $f(c) \in B_{B}(b, r)$, and since $c \in E$ we have $f(c) \in f(E)$, and so $f(c) \in B_{B}(b, r) \cap f(E)$. Thus $B_{B}(b, r) \cap f(E) \neq \emptyset$ for all $r>0$, so $b \in \overline{f(E)}$, as required.

Conversely, suppose that for every $E \subseteq A$ we have $f(\bar{E}) \subseteq \overline{f(E)}$. Let $K \subseteq B$ be closed in B. We claim that $f^{-1}(K)$ is closed in A. Let $C=f^{-1}(K)$. Note that $f(C) \subseteq K$. Let $x \in \bar{C}$. Then $f(x) \in f(\bar{C}) \subseteq \overline{f(C)} \subseteq \bar{K}=K$ and so $x \in f^{-1}(K)=C$. Thus $\bar{C} \subseteq C$. Of course we also have $C \subseteq \bar{C}$, so $C=\bar{C}$, and so C is closed, as claimed. Thus f is continuous.

9: (a) Let $f: A \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Show that if A is compact and f is continuous then f is uniformly continuous.
Solution: Suppose that A is compact and f is continuous. Let $\epsilon>0$. For each $a \in A$, since f is continuous at a we can choose $\delta_{a}>0$ such that $|x-a|<2 \delta_{a} \Longrightarrow|f(x)-f(a)|<\frac{\epsilon}{2}$. Let $S=\left\{B\left(a, \delta_{a}\right) \mid a \in A\right\}$ and note that S is an open cover of A. Since A is compact, we can choose a finite subcover T of S, say $T=\left\{B\left(a_{k}, \delta_{a_{k}}\right) \mid 1 \leq k \leq \ell\right\}$. Let $\delta=\min \left\{\delta_{a_{k}} \mid 1 \leq k \leq \ell\right\}$. Let $x, y \in A$ with $|x-y|<\delta$. Since T covers A we can choose an index k such that $x \in B\left(a_{k}, \delta_{a_{k}}\right)$. Since $\left|x-a_{k}\right|<\delta_{a_{k}}$ and $|x-y|<\delta \leq \delta_{a_{k}}$ we have $\left|y-a_{k}\right| \leq 2 \delta_{a_{k}}$. Since $\left|x-a_{k}\right|<2 \delta_{a_{k}}$ and $\left|y-a_{k}\right|<2 \delta_{a_{k}}$ we have $\left|f(x)-f\left(a_{k}\right)\right|<\frac{\epsilon}{2}$ and $\left|f(y)-f\left(a_{k}\right)\right|<\frac{\epsilon}{2}$ and hence $|f(x)-f(y)|<\epsilon$.
(b) Let $f: A \subseteq \mathbb{R}^{n} \rightarrow B \subseteq \mathbb{R}^{m}$. Show that if A is compact and f is continuous and bijective then f^{-1} is continuous. Solution: Suppose that A is compact and f is continuous and bijective, and let $g=f^{-1}: B \rightarrow A$. Let E be a closed set in A. By the Heine-Borel Theorem, A is closed and bounded. Since E is closed in A we can choose a closed set K in \mathbb{R}^{n} such that $E=K \cap A$ (by Theorem 5.31). Since K and A are closed in \mathbb{R}^{n}, so is $E=K \cap A$ (by Theorem 5.14). Since $E \subseteq A \subseteq \mathbb{R}^{n}$ with E closed and A compact, it follows that E is compact (by Theorem 5.28). Since E is compact and f is continuous, it follows that $f(E)$ is compact (by Theorem 5.70 Part 2) hence $f(E)$ closed (by the Heine-Borel Theorem). Since f and g are inverses, we have $g^{-1}(E)=f(E)$, which is closed. Since $g^{-1}(E)$ is closed for every closed set E in A, it follows that g is continuous (by Theorem 5.69 Part 2, proved in Problem 8 (a)).
(c) Let $\emptyset \neq A, B \subseteq \mathbb{R}^{n}$. Define the distance between A and B to be

$$
d(A, B)=\inf \{|x-y| \mid x \in A, y \in B\}
$$

Show that if A is compact and B is closed and $A \cap B=\emptyset$ then $d(A, B)>0$.
Solution: Since B is closed, hence $B^{c}=\mathbb{R}^{n} \backslash B$ is open, for each $a \in A$ we can choose $r_{a}>0$ so that $B\left(a, 2 r_{a}\right) \subseteq B^{c}$. The set $S=\left\{B\left(a, r_{a}\right) \mid a \in A\right\}$ is an open cover of A. Since A is compact, we can choose a finite subcover $T \subseteq S$, say $T=\left\{B\left(a_{1}, r_{a_{1}}\right), B\left(a_{2}, r_{a_{2}}\right), \cdots, B\left(a_{\ell}, r_{a_{\ell}}\right)\right\}$ where each $a_{k} \in A$. Let $r=\min \left\{r_{a_{1}}, r_{a_{2}}, \cdots, r_{a_{\ell}}\right\}$. We claim that $d(A, B) \geq r$. Let $x \in A$ and $y \in B$. Since T covers A, we can choose an index k so that $x \in B\left(a_{k}, r_{a_{k}}\right)$ hence $\left|x-a_{k}\right|<r_{a_{k}}$. Since $y \in B$ and $B\left(a_{k}, 2 r_{a_{k}}\right) \subseteq B^{c}$ we must have $\left|y-a_{k}\right| \geq 2 r_{a_{k}}$. By the Triangle Inequality, $\left|y-a_{k}\right| \leq|y-x|+\left|x-a_{k}\right|$ hence $|y-x| \geq\left|y-a_{k}\right|-\left|x-a_{k}\right| \geq 2 r_{a_{k}}-r_{a_{k}}=r_{a_{k}} \geq r$. Since $|y-x| \geq r$ for all $x \in A$ and $y \in B$ we have $d(A, B)=\inf \{|y-x| \mid x \in A, y \in B\} \geq r$, as claimed.

10: Let $A \subseteq \mathbb{R}^{n}$.
(a) For $a, b \in A$, write $a \sim b$ when there exists a continuous path in A from a to b. Show that \sim is an equivalence relation on A (this means that for all $a, b, c \in A$ we have $a \sim a$, and if $a \sim b$ then $b \sim a$, and if $a \sim b$ and $b \sim c$ then $a \sim c$).
Solution: Let $a, b, c \in A$. We have $a \sim a$ because we can define $\alpha:[0,1] \rightarrow A$ by $\alpha(t)=a$ for all t, and then α is continuous with $\alpha(0)=a$ and $\alpha(1)=a$, so α is a path in A from a to a.

Suppose that $a \sim b$. Let α be a path in A from a to b, so $\alpha:[0,1] \rightarrow A$ is continuous with $\alpha(0)=a$ and $\alpha(1)=b$. Define $\beta:[0,1] \rightarrow A$ by $\beta(t)=\alpha(1-t)$. Note that β is continuous since it is the composite of the continuous map α with the continuous map $s:[0,1] \rightarrow[0,1]$ given by $s(t)=1-t$, and note that we have $\beta(0)=\alpha(1)=b$ and $\beta(1)=\alpha(0)=a$. Thus β is a path in A from b to a and so $b \sim a$.

Finally, suppose that $a \sim b$ and $b \sim c$. Let α be a path from a to b in A and let β be a path from b to c in A. Define $\gamma:[0,1] \rightarrow A$ by

$$
\gamma(t)=\left\{\begin{array}{cl}
\alpha(2 t) & , \text { for } 0 \leq t \leq \frac{1}{2} \\
\beta(2 t-1), & \text { for } \frac{1}{2} \leq t \leq 1
\end{array}\right.
$$

Note that $\gamma(0)=\alpha(0)=a, \gamma\left(\frac{1}{2}\right)=\alpha(1)=\beta(0)=b$, and $\gamma(1)=\beta(1)=c$. Gamma is continuous by Problem $8(\mathrm{~b})$, because the sets $E=\left[0, \frac{1}{2}\right]$ and $F=\left[\frac{1}{2}, 1\right]$ are closed in $[0,1]$ with $E \cup F=[0,1]$, and the restriction of γ to E is given by $\alpha(2 t)$, which is continuous (being the composite of two continuous functions), and the restriction of γ to F is given by $\beta(2 t-1)$, which is also continuous.
(b) Suppose that A is open and connected. Show that A is path connected.

Solution: The empty set is open, connected and path-connected (vacuously). Suppose $A \neq \emptyset$ and let $a \in A$. Let

$$
E=\{b \in A \mid a \sim b\}
$$

We claim that E is open in A. Let $b \in E$. Since $b \in A$ and A is open in \mathbb{R}^{n}, we can choose $r>0$ so that $B(b, r) \subseteq A$. Let $c \in B(b, r)$. Since $b \in E$ we have $a \sim b$. Since $c \in B(b, r) \subseteq A$ we have $b \sim c$, indeed we can define $\alpha:[0,1] \rightarrow B(b, r) \subseteq A$ by $\alpha(t)=b+t(c-b)$ and then α is continuous (since it elementary), and $\alpha(0)=b$ and $\alpha(1)=c$, and $\alpha(t) \in B(b, r)$ for all $t \in[0,1]$ because $|\alpha(t)-b|=|t(c-b)|=|t||c-b| \leq|c-b|<r$. Since $a \sim b$ and $b \sim c$ we have $a \sim c$ by Part (a). Since $a \sim c$ we have $c \in E$, hence $B(b, r) \subseteq E$. This shows that E is open in \mathbb{R}^{n} hence also in A.

We claim that E is also closed in A. Let $b \in A \backslash E$. Since $b \in A$ and A is open in \mathbb{R}^{n}, we can choose $r>0$ so that $B(b, r) \subseteq A$. Let $c \in B(b, r)$. Since $b \notin E$ we have $a \nsim b$. Since $c \in B(b, r) \subseteq A$ we have $b \sim c$, as above. It follows from Part (a) that $a \nsim c$ since otherwise we would have $a \sim c$ and $c \sim b$ and hence $a \sim b$. Since $c \nsim a$ we have $c \in A \backslash E$. Thus $B(b, r) \subseteq A \backslash E$. This shows that $A \backslash E$ is open (both in \mathbb{R}^{n} and in A) so that E is closed in A.

Since A is connected, the only subsets of A which are both open and closed are \emptyset and A. Since E is both open and closed we must have $E=\emptyset$ or $E=A$. Since $a \sim a$ we have $a \in E$ so $E \neq \emptyset$ and so $E=A$. Since $A=E=\{b \in A \mid a \sim b\}$ we have $a \sim b$ for every $b \in A$. Thus A is path connected.

