- (a) Let A = Range(f) where f : R → R² is given by f(t) = (cos t, sin 2t) and let B = Null(g) where g : R² → R is given by g(x, y) = y² + 4x²(x² 1). Prove (algebraically) that A = B.
 (b) Let f(x, y) = x² + 2y² and g(x, y) = 4x y². Find a parametric equation for the curve of intersection of the two surfaces z = f(x, y) and z = g(x, y).
- **2:** (a) Let $A = \{(x, y) \in \mathbb{R}^2 \mid 0 < x, 0 < y \text{ and } xy < 1\}$. Show, from the definition of an open set, that A is open in \mathbb{R}^2 . (b) Let $B = \left\{ \left(\frac{2t}{t^2+1}, \frac{t^2-1}{t^2+1} \right) \in \mathbb{R}^2 \mid t \in \mathbb{R} \right\}$. Show that B is not closed in \mathbb{R}^2 .
- **3:** Let $A \subseteq \mathbb{R}^n$.
 - (a) Show that A' is closed in \mathbb{R}^n .
 - (b) Show that $\partial A = \overline{A} \setminus A^o$.
- **4:** (a) Let $A, B \subseteq \mathbb{R}^n$ show that if A is connected and $A \subseteq B \subseteq \overline{A}$ then B is connected.
 - (b) Let S be a nonempty set and let $A_j \subseteq \mathbb{R}^n$ for each $j \in S$. Suppose that A_j is connected for all $j \in S$ and that $A_k \cap A_\ell \neq \emptyset$ for all $k, \ell \in S$. Show that $\bigcup_{i \in S} A_j$ is connected.
- 5: Let $A \subseteq P \subseteq \mathbb{R}^n$. Define the **interior of** A in P to be the union of all sets $E \subseteq P$ such that E is open in P and $E \subseteq A$. Define the **closure of** A in P to be the intersection of all sets $F \subseteq P$ such that F is closed in P and $A \subseteq F$. Denote the interior of A in \mathbb{R}^n and the closure of A in \mathbb{R}^n by A^o and \overline{A} (as usual). Denote the interior of A in P by $\text{Int}_P(A)$ and $\text{Cl}_P(A)$.
 - (a) Show that $\operatorname{Cl}_P(A) = \overline{A} \cap P$.
 - (b) Show that $\operatorname{Int}_P(A) = (A \cup P^c)^o \cap P$, where $P^c = \mathbb{R}^n \setminus P$.
- **6:** (a) Show, from the definition of compactness, that the set $A = \mathbb{Q} \cap [0, 1]$ is not compact.
 - (b) Show, from the definition of compactness, that the set $B = \left\{ \frac{n|n|}{1+n^2} \mid n \in \mathbb{Z} \right\} \cup \{1, -1\}$ is compact.

7: For each of the following functions $f : \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$, find $\lim_{(x,y)\to(0,0)} f(x,y)$ or show that the limit does not exist.

(a)
$$f(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$

(b) $f(x,y) = \frac{x^2y^3}{x^4 + y^6}$
(c) $f(x,y) = \frac{x^4y^5}{x^8 + y^6}$

- 8: Let $f : A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^m$.
 - (a) Show that f is continuous if and only if $f^{-1}(F)$ is closed in A for every closed set F in B.

(b) Let E and F be closed sets in A with $E \cup F = A$. Let g be the restriction of f to E, and let h be the restriction of f to F. Show that f is continuous if and only if both g and h are continuous.

(c) Show that f is continuous if and only if for every $E \subseteq A$ we have $f(\overline{E}) \subseteq \overline{f(E)}$.

- **9:** (a) Let $f : A \subseteq \mathbb{R}^n \to \mathbb{R}^m$. Show that if A is compact and f is continuous then f is uniformly continuous.
 - (b) Let $f: A \subseteq \mathbb{R}^n \to B \subseteq \mathbb{R}^m$. Show that if A is compact and f is continuous and bijective then f^{-1} is continuous. (c) Let $\emptyset \neq A, B \subseteq \mathbb{R}^n$. Define the **distance** between A and B to be

$$d(A, B) = \inf \{ |x - y| \mid x \in A, y \in B \}.$$

Show that if A is compact and B is closed and $A \cap B = \emptyset$ then d(A, B) > 0.

10: Let $A \subseteq \mathbb{R}^n$.

(a) For $a, b \in A$, write $a \sim b$ when there exists a continuous path in A from a to b. Show that \sim is an equivalence relation on A (this means that for all $a, b, c \in A$ we have $a \sim a$, and if $a \sim b$ then $b \sim a$, and if $a \sim b$ and $b \sim c$ then $a \sim c$).

(b) Suppose that A is open and connected. Show that A is path connected.