PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 4

1: (a) Define $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ by $f_{n}(x)=n x e^{-n x}$. Find the pointwise limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ and determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.
Solution: Note that $f_{n}(0)=0$ hence $\lim _{n \rightarrow \infty} f_{n}(0)=0$. When $x>0$, we have $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{n x}{e^{n x}}=0$ by l'Hôpitals' Rule, indeed

$$
\lim _{n \rightarrow \infty} \frac{n x}{e^{n x}}=\lim _{r \rightarrow \infty} \frac{r x}{e^{r x}}=\lim _{r \rightarrow \infty} \frac{\frac{d}{d r}(r x)}{\frac{d}{d r}\left(e^{r x}\right)}=\lim _{r \rightarrow \infty} \frac{x}{x e^{r x}}=\lim _{r \rightarrow \infty} \frac{1}{e^{r x}}=0
$$

since $e^{r x} \rightarrow \infty$ as $r \rightarrow \infty$. Thus the pointwise limit is $f(x)=\lim _{n \rightarrow \infty} n x e^{-n x}=0$ for all $x \in[0, \infty)$. In other words we have $f_{n} \rightarrow 0$ pointwise on $[0, \infty)$.

Note that $f_{n}\left(\frac{1}{n}\right)=\frac{1}{e}$ for all $n \in \mathbb{Z}^{+}$, and so the convergence is not uniform. To be very explicit, $f_{n} \rightarrow 0$ uniformly on $[0, \infty)$ means that $\forall \epsilon>0 \exists m \in \mathbb{Z}^{+} \forall n \in \mathbb{Z}^{+} \forall x \in[0, \infty)\left(n \geq m \Longrightarrow\left|f_{n}(x)-0\right|<\epsilon\right)$, so the convergence is not uniform when $\exists \epsilon>0 \forall m \in \mathbb{Z}^{+} \exists n \in \mathbb{Z}^{+} \exists x \in[0, \infty)\left(n \geq m\right.$ and $\left.\left|f_{n}(x)-0\right| \geq \epsilon\right)$. To prove this, we choose $\epsilon=\frac{1}{e}$, we let $m \in \mathbb{Z}^{+}$, we choose $n=m$, and we choose $x=\frac{1}{n}$, and then we have $n \geq m$ and $\left|f_{n}(x)-0\right|=f_{n}\left(\frac{1}{n}\right) \stackrel{e}{=} \frac{1}{e} \geq \epsilon$.
(b) Define $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{x}{1+n x^{2}}$. Find the pointwise limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ and determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.
Solution: Note that $\lim _{n \rightarrow \infty} f_{n}(0)=\lim _{n \rightarrow \infty} 0=0$, and when $x>0$ we have $\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x}{1+n x^{2}}=0$ since $1+n x^{2} \rightarrow \infty$ as $n \rightarrow \infty$. Thus the pointwise limit is $f(x)=\lim _{n \rightarrow \infty} \frac{x}{1+n x^{2}}=0$ for all $x \in[0, \infty)$. In other words, we have $f_{n} \rightarrow 0$ pointwise on $[0, \infty)$.

Let $n \in \mathbb{Z}^{+}$. Note that $f_{n}(x)=\frac{x}{1+n x^{2}} \geq 0$ for all $x \in[0, \infty)$ and we have $f_{n}{ }^{\prime}(x)=\frac{\left(1+n x^{2}\right)-x(2 n x)}{\left(1+n x^{2}\right)^{2}}=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}}$ so that $f_{n}{ }^{\prime}(x)>0$ when $0 \leq x<\frac{1}{\sqrt{n}}$ and $f_{n}{ }^{\prime}(x)<0$ when $x>\frac{1}{\sqrt{n}}$. By the First Derivative Test, $f_{n}(x)$ attains its maximum value at $x=\frac{1}{\sqrt{n}}$ and the maximum value is $f_{n}\left(\frac{1}{\sqrt{n}}\right)=\frac{1}{2 \sqrt{n}}$. Since $\left|f_{n}(x)\right|=f_{n}(x) \leq \frac{1}{2 \sqrt{n}}$ for all $x \in[0, \infty)$ and $\frac{1}{2 \sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$, it follows that $f_{n} \rightarrow 0$ uniformly on $[0, \infty)$. To be very explicit, let $\epsilon>0$, choose $m \in \mathbb{Z}^{+}$so that $\frac{1}{2 \sqrt{m}}<\epsilon$, let $n \in \mathbb{Z}^{+}$and let $x \in[0, \infty)$. Suppose that $n \geq m$. Then we have $\left|f_{n}(x)-0\right|=f_{n}(x) \leq \frac{1}{2 \sqrt{n}} \leq \frac{1}{2 \sqrt{m}}<\epsilon$.
(c) Define $f_{n}:[0, \infty] \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{x+n}{x+4 n}$. Show that $\left(f_{n}\right)$ converges uniformly on $[0, r]$ for every $r>0$ but that $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$.
Solution: The pointwise limit is $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=\lim _{n \rightarrow \infty} \frac{x+n}{x+4 n}=\frac{1}{4}$, so we have $f_{n} \rightarrow \frac{1}{4}$ pointwise on $[0, \infty)$. Note that $f_{n}{ }^{\prime}(x)=\frac{(x+4 n)-(x+n)}{(x+4 n)^{2}}=\frac{3 n}{(x+4 n)^{2}}>0$ for all $x \in[0, \infty)$ so that $f_{n}(x)$ is strictly increasing on $[0, \infty)$ with $f_{n}(0)=\frac{1}{4}$ and $\lim _{x \rightarrow \infty} f_{n}(x)=\lim _{x \rightarrow \infty} \frac{x+n}{x+4 n}=1$. Because $\lim _{x \rightarrow \infty} f_{n}(x)=1$ it follows that $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$ to the constant function $\frac{1}{4}$. To be explicit, choose $\epsilon=\frac{1}{2}$, let $m \in \mathbb{Z}^{+}$, choose $n \geq m$, and choose $x \in[0, \infty)$ large enough so that $\left|f_{n}(x)-1\right| \leq \frac{1}{4}$. Then we have $f_{n}(x) \geq 1-\frac{1}{4}=\frac{3}{4}$ so that $\left|f_{n}(x)-\frac{1}{4}\right| \geq \frac{3}{4}-\frac{1}{4}=\frac{1}{4}=\epsilon$.

On the other hand, we claim that for every $r>0$ we have $f_{n} \rightarrow \frac{1}{4}$ uniformly on $[0, r]$. Let $r>0$. Note that $f_{n}(0)=\frac{1}{4}$ and for $0<x \leq r$ we have

$$
\left|f_{n}(x)-\frac{1}{4}\right|=\left|\frac{x+n}{x+4 n}-\frac{1}{4}\right|=\frac{3 x}{4(x+4 n)}=\frac{3}{4+\frac{16 n}{x}} \leq \frac{3}{4+\frac{16 n}{r}} \longrightarrow 0 \text { as } n \rightarrow \infty
$$

It follows that $f_{n} \rightarrow \frac{1}{4}$ uniformly on [0, r], as claimed. Indeed, to be explicit, let $\epsilon>0$, choose $m \in \mathbb{Z}^{+}$large enough that $\frac{3}{4+\frac{16 m}{r}}<\epsilon$, let $x \in[0, r]$ and let $n \in \mathbb{Z}^{+}$with $n \geq m$. Then $\left|f_{n}(x)-\frac{1}{4}\right| \leq \frac{3}{4+\frac{16 n}{r}} \leq \frac{3}{4+\frac{16 m}{r}}<\epsilon$.

2: (a) Find $\int_{0}^{1} \lim _{n \rightarrow \infty} n x\left(1-x^{2}\right)^{n} d x$ and $\lim _{n \rightarrow \infty} \int_{0}^{1} n x\left(1-x^{2}\right)^{n} d x$.
Solution: Let $x \in[0,1]$. If $x=0$ or $x=1$ then $n x\left(1-x^{2}\right)^{n}=0$ for all n and so $\lim _{n \rightarrow \infty} n x\left(1-x^{2}\right)^{n}=0$. If $x \in(0,1)$ then $0<\left(1-x^{2}\right)<1$, so the series $\sum n x\left(1-x^{2}\right)^{n}$ converges by the Ratio Test and so $\lim _{n \rightarrow \infty} n x\left(1-x^{2}\right)^{n}=0$ by the Divergence Test. Thus $\int_{0}^{1} \lim _{n \rightarrow \infty} n x\left(1-x^{2}\right)^{n} d x=\int_{0}^{1} 0 d x=0$. On the other hand, using the substitution $u=1-x^{2}$ so $d u=-2 x d x$ we have

$$
\int_{0}^{1} n x\left(1-x^{2}\right)^{n} d x=\int_{1}^{0}-\frac{1}{2} n u^{2} d u=\left[\frac{-n u^{n+1}}{2(n+1)}\right]_{1}^{0}=\frac{n}{2(n+1)},
$$

and so we have $\lim _{n \rightarrow \infty} \int_{0}^{1} n x\left(1-x^{2}\right)^{n} d x=\frac{1}{2}$.
(b) Find $\int_{1}^{4} \lim _{n \rightarrow \infty} \frac{\tan ^{-1}(n x)}{x} d x$ and $\lim _{n \rightarrow \infty} \int_{1}^{4} \frac{\tan ^{-1}(n x)}{x} d x$.

Solution: Let $x \in[1,4]$. Then $\lim _{n \rightarrow \infty} \frac{\tan ^{-1}(n x)}{x}=\frac{\pi}{2 x}$ and so

$$
\int_{1}^{4} \lim _{n \rightarrow \infty} \frac{\tan ^{-1}(n x)}{x} d x=\int_{1}^{4} \frac{\pi}{2 x} d x=\left[\frac{\pi}{2} \ln x\right]_{1}^{4}=\pi \ln 2 .
$$

We claim that $\left\{\frac{\tan ^{-1}(n x)}{x}\right\} \rightarrow \frac{\pi}{2 x}$ uniformly on [1,4]. Indeed, given $\epsilon>0$ we can choose N so that $x \geq$ $N \Longrightarrow\left|\tan ^{-1} x-\frac{\pi}{2}\right|<\epsilon$ for all $x \geq N$. Then for $n \geq N$ and $x \geq 1$ we have

$$
\left|\frac{\tan ^{-1}(n x)}{x}-\frac{\pi}{2 x}\right|=\frac{\left|\tan ^{-1}(n x)-\frac{\pi}{2}\right|}{x}<\frac{\epsilon}{x} \leq \epsilon .
$$

Since the convergence is uniform, $\lim _{n \rightarrow \infty} \int_{1}^{4} \frac{\tan ^{-1}(n x)}{x} d x=\int_{1}^{4} \lim _{n \rightarrow \infty} \frac{\tan ^{-1}(n x)}{x} d x=\pi \ln 2$.
(c) Show that $\sum_{n=0}^{\infty} \frac{\cos \left(2^{n} x\right)}{1+n^{2}}$ converges uniformly on \mathbb{R} and find $\int_{0}^{\pi / 4} \sum_{n=0}^{\infty} \frac{\cos \left(2^{n} x\right)}{1+n^{2}} d x$.

Solution: For all $x \in \mathbb{R}$ we have $\left|\frac{\cos \left(2^{n} x\right)}{1+n^{2}}\right| \leq \frac{1}{1+n^{2}}<\frac{1}{n^{2}}$, and $\sum \frac{1}{n^{2}}$ converges, so $\sum_{n=0}^{\infty} \frac{\cos \left(2^{n} x\right)}{1+n^{2}}$ converges uniformly by the Weirstrass M-Test. Since the convergence is uniform,

$$
\int_{0}^{\pi / 4} \sum_{n=0}^{\infty} \frac{\cos \left(2^{n} x\right)}{1+n^{2}} d x=\sum_{n=0}^{\infty} \int_{0}^{\pi / 4} \frac{\cos \left(2^{n} x\right)}{1+n^{2}} d x=\sum_{n=0}^{\infty}\left[\frac{1}{2^{n}} \frac{\sin \left(2^{n} x\right)}{1+n^{2}}\right]_{0}^{\pi / 4}=\frac{\sqrt{2}}{2}+\frac{1}{4}+0+0+\cdots=\frac{\sqrt{2}}{2}+\frac{1}{4} .
$$

(d) Show that $\sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)$ converges uniformly on any closed interval $[a, b]$.

Solution: Note that $|\sin x| \leq|x|$ for all $x \in \mathbb{R}$ and so $\left|\sin \left(\frac{x}{n^{2}}\right)\right| \leq \frac{|x|}{n^{2}}$ for all x. Let $[a, b]$ be any closed interval and let $M=\max (|a|,|b|)$. Then for $x \in[a, b]$ we have $|x| \leq M$ and so $\left|\sin \left(\frac{x}{n^{2}}\right)\right| \leq \frac{|x|}{n^{2}} \leq \frac{M}{n^{2}}$. Since $\sum \frac{M}{n^{2}}$ converges, $\sum \sin \left(\frac{x}{n^{2}}\right)$ converges uniformly on $[a, b]$ by the Weirstrass M-Test.

3: Determine which of the following statements are true for all sequences of functions $\left(f_{n}\right)$ and $\left(g_{n}\right)$ and all $E \subseteq \mathbb{R}$.
(a) If $\left(f_{n}\right)$ and $\left(g_{n}\right)$ converge uniformly on E then $\left(f_{n} g_{n}\right)$ converge uniformly on E.

Solution: This is FALSE. Let $E=\mathbb{R}$, let $f(x)=g(x)=x$ and let $f_{n}(x)=g_{n}(x)=x+\frac{1}{n}$. Then we have $f_{n}(x)^{2}=x^{2}+\frac{2 x}{n}+\frac{1}{n^{2}}$ so $\lim _{n \rightarrow \infty} f_{n}(x)^{2}=x^{2}=f(x)^{2}$ for all $x \in \mathbb{R}$, but the convergence is not uniform, since given any positive integer n, when $x \geq n$ we have $\left|f_{n}(x)^{2}-f(x)^{2}\right|=\frac{2 x}{n}+\frac{1}{n^{2}}>2$.
(b) Show that if $\left(f_{n}\right)$ and $\left(g_{n}\right)$ converge uniformly on E and f and g are bounded on E then $\left(f_{n} g_{n}\right)$ converges uniformly on E.
Solution: This is TRUE. Suppose that $\left(f_{n}\right)$ and $\left(g_{n}\right)$ converge uniformly on E and f and g are bounded on E, say $|f(x)| \leq M$ and $|g(x)| \leq M$ for all $x \in E$. Choose N_{1} so that $n \geq N_{1} \Longrightarrow\left|f_{n}(x)-f(x)\right|<1$. Note that for $n \geq N_{1}$ we have $\left|f_{n}(x)\right| \leq\left|f_{n}(x)-f(x)\right|+|f(x)| \leq M+1$. Now choose $N \geq N_{1}$ so that when $n \geq N$ we have $\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{2 M}$ and $\left|g_{n}(x)-g(x)\right|<\frac{\epsilon}{2(M+1)}$ for all x. Then when $n \geq N$ we have

$$
\begin{aligned}
\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| & \leq\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)\right|+\left|f_{n}(x) g(x)-f(x) g(x)\right| \\
& =\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+\left|f_{n}(x)-f(x)\right||g(x)| \\
& \leq(M+1) \frac{\epsilon}{2(M+1)}+\frac{\epsilon}{2 M} M=\epsilon
\end{aligned}
$$

Thus $f_{n} g_{n} \rightarrow f g$ uniformly on E.
(c) If $\left(f_{n}\right)$ converges uniformly on (a, b) and pointwise on $[a, b]$ then $\left(f_{n}\right)$ converges uniformly on $[a, b]$.

Solution: This is TRUE. Indeed, suppose that $\left(f_{n}\right)$ converges uniformly in (a, b) and that $\left(f_{n}(a)\right)$ and $\left(f_{n}(b)\right)$ both converge. Then given $\epsilon>0$ we can choose N so that when $l, m \geq N$ we have $\left|f_{l}(x)-f_{m}(x)\right|<\epsilon$ for all $x \in(0,1)$, and $\left|f_{l}(a)-f_{m}(a)\right|<\epsilon$ and $\left|f_{l}(b)=f_{m}(b)\right|<\epsilon$, and so we have $\left|f_{l}(x)-f_{m}(x)\right|<\epsilon$ for all $x \in[a, b]$.
(d) If each f_{n} is continuous on $[a, b]$ and $\sum f_{n}$ converges uniformly on $[a, b]$ then $\sum M_{n}$ converges, where $M_{n}=\max \left\{\left|f_{n}(x)\right| \mid a \leq x \leq b\right\}$.
Solution: This is FALSE. For a counterexample, let

$$
f_{n}(x)=\left\{\begin{array}{l}
\frac{1}{n} \sin ^{2}\left(2^{n} \pi x\right), \text { if } \frac{1}{2^{n}} \leq x \leq \frac{1}{2^{n-1}} \\
0, \text { otherwise }
\end{array}\right.
$$

Then $M_{n}=\frac{1}{n}$ so $\sum M_{n}$ diverges, and yet we claim that $\sum f_{n}$ converges uniformly on $[0,1]$. Indeed if we write $S(x)=\sum_{n=1}^{\infty} f_{n}(x)$ and $S_{l}(x)=\sum_{n=l}^{\infty} f_{n}(x)$ then for all $x \in[0,1]$ we have

$$
\left|S_{l}(x)-S(x)\right|=\sum_{n=l+1}^{\infty} f_{n}(x) \leq \max \left\{M_{l+1}, M_{l+2}, \cdots\right\}=\frac{1}{l+1}
$$

since for each x, at most one of the terms $f_{n}(x)$ is non-zero.

4: (a) Find the Taylor series centered at 0 , and its interval of convergence, for $f(x)=\frac{x}{x^{2}-6 x+8}$.
Solution: We have

$$
f(x)=\frac{x}{x^{2}-6 x+8}=\frac{x}{(x-2)(x-4)}=\frac{-1}{x-2}+\frac{2}{x-4}=\frac{\frac{1}{2}}{1-\frac{x}{2}}-\frac{\frac{1}{2}}{1-\frac{x}{4}} .
$$

Since $\frac{\frac{1}{2}}{1-\frac{x}{2}}=\sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{x}{2}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{2 \cdot 2^{n}} x^{n}$ when $\left|\frac{x}{2}\right|<1$, that is $|x|<2$, and $\frac{\frac{1}{2}}{1-\frac{x}{4}}=\sum_{n=0}^{\infty} \frac{1}{2 \cdot 4^{n}} x^{n}$ when $|x|<4$, we have

$$
f(x)=\sum_{n=0}^{\infty} \frac{1}{2 \cdot 2^{n}} x^{n}-\sum_{n=0}^{\infty} \frac{1}{2 \cdot 4^{n}} x^{n}=\sum_{n=0}^{\infty} \frac{1}{2}\left(\frac{1}{2^{n}}-\frac{1}{4^{n}}\right) x^{n}
$$

when $|x|<2$.
(b) Find the Taylor series centered at $\frac{\pi}{4}$, and its interval of convergence, for $f(x)=\sin x \cos x$.

Solution: We provide two solutions. The first solution uses the known Taylor series for $\cos x$. We have

$$
\begin{aligned}
f(x) & =\sin x \cos x=\frac{1}{2} \sin 2 x=\frac{1}{2} \cos \left(2 x-\frac{\pi}{2}\right)=\frac{1}{2} \cos \left(2\left(x-\frac{\pi}{4}\right)\right) \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(2\left(x-\frac{\pi}{4}\right)\right)^{2 n}=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n-1}}{(2 n)!}\left(x-\frac{\pi}{4}\right)^{2 n}
\end{aligned}
$$

for all $x \in \mathbb{R}$.
The second solution uses the formula for the coefficients of the Taylor series. We have $f(x)=\frac{1}{2} \sin 2 x$, $f^{\prime}(x)=\cos 2 x, f^{\prime \prime}(x)=-2 \sin 2 x, f^{\prime \prime \prime}(x)=-4 \cos 2 x, f^{\prime \prime \prime \prime}(x)=8 \sin 2 x$ and so on. Put in $x=\frac{\pi}{4}$ to get $f\left(\frac{\pi}{4}\right)=\frac{1}{2}, f^{\prime}\left(\frac{\pi}{4}\right)=0, f^{\prime \prime}\left(\frac{\pi}{4}\right)=-2, f^{\prime \prime \prime}\left(\frac{\pi}{4}\right)=0, f^{\prime \prime \prime \prime}\left(\frac{\pi}{4}\right)=8$ and so on. In general, the odd-order derivatives at 0 are all zero, that is $f^{(2 n+1)}(0)=0$, and the even-order derivatives are given by $f^{(2 n)}(0)=(-1)^{n} 2^{2 n-1}$. Thus the coefficients of the Taylor series are given by $c_{2 n+1}=0$ and $c_{2 n}=\frac{(-1)^{n} 2^{2 n-1}}{(2 n)^{!}}$, so the Taylor series is $T(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{2 n-1}}{(2 n)!}\left(x-\frac{\pi}{4}\right)^{2 n}$. To find the interval of convergence, let $a_{n}=\frac{(-1)^{n} 2^{2 n-1}}{(2 n)!}\left(x-\frac{\pi}{4}\right)^{2 n}$. Then $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{4\left|x-\frac{\pi}{4}\right|^{2}}{(2 n+2)(2 n+1)} \rightarrow 0$ as $n \rightarrow \infty$, so $\sum a_{n}$ converges for all $x \in \mathbb{R}$.
(c) Let $0<a<b$. Note that $\mathbb{Q} \cap[a, b]$ is countable, say $\mathbb{Q} \cap[a, b]=\left\{q_{1}, q_{2}, q_{3}, \cdots\right\}$. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} q_{n} x^{n}$.

Solution: Since $0<a \leq q_{n} \leq b$, we have $0<\sqrt[n]{a} \leq \sqrt[n]{q_{n}} \leq \sqrt[n]{b}$ for all n, and since $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1=\lim _{n \rightarrow \infty} \sqrt[n]{b}$ we have $\lim _{n \rightarrow \infty} \sqrt[n]{q_{n}}=1$ by the Squeeze Theorem. Thus the radius of convergence is $R=1 / \lim _{n \rightarrow \infty} \sqrt[n]{q_{n}}=1$. When $x= \pm 1, \lim _{n \rightarrow \infty} q_{n} x^{n}$ does not exist and so $\sum q_{n} x^{n}$ diverges. Thus the interval of convergence is $I=(-1,1)$.

5: (a) Find the $4^{\text {th }}$ Taylor polynomial centered at 0 for $f(x)=\frac{\ln (1+x)}{e^{2 x}}$.
Solution: We have

$$
\begin{aligned}
f(x) & =e^{-2 x} \ln (1+x) \\
& =\left(1+(-2 x)+\frac{1}{2!}(-2 x)^{2}+\frac{1}{3!}(-2 x)^{3}+\frac{1}{4!}(-2 x)^{4}+\cdots\right)\left(x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\cdots\right) \\
& =\left(1-2 x+2 x^{2}-\frac{4}{3} x^{3}+\frac{2}{3} x^{4}-\cdots\right)\left(x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}-\cdots\right) \\
& =x-\left(\frac{1}{2}+2\right) x^{2}+\left(\frac{1}{3}+1+2\right) x^{3}-\left(\frac{1}{4}+\frac{2}{3}+1+\frac{4}{3}\right) x^{4}+\cdots \\
& =x-\frac{5}{2} x^{2}+\frac{10}{3} x^{3}-\frac{13}{4} x^{4}+\cdots
\end{aligned}
$$

so the Taylor polynomial of degree 4 is $T_{4}(x)=x-\frac{5}{2} x^{2}+\frac{10}{3} x^{3}-\frac{13}{4} x^{4}$.
(b) Find the $7^{\text {th }}$ Taylor polynomial centered at 0 for $f(x)=\sec (\sqrt{2} x)$.

Solution: $f(x)=\frac{1}{\cos (\sqrt{2} x)}=\frac{1}{1-\frac{1}{2}\left(2 x^{2}\right)+\frac{1}{24}\left(4 x^{4}\right)-\frac{1}{720}\left(8 x^{6}\right)+\cdots}=\frac{1}{1-x^{2}+\frac{1}{6} x^{4}-\frac{1}{90} x^{6}+\cdots}$. We perform long division:

$$
\begin{array}{rr}
1-x^{2}+\frac{1}{6} x^{4}-\frac{1}{90} x^{6}+\cdots & \begin{array}{r}
1+x^{2}+\frac{5}{6} x^{4}+\frac{61}{90} x^{6}+\cdots \\
\frac{1+0 x^{2}+0 x^{4}+0 x^{6}+\cdots}{1-x^{2}+\frac{1}{6} x^{4}-\frac{1}{90} x^{6}+\cdots} \\
\frac{x^{2}-\frac{1}{6} x^{4}+\frac{1}{90} x^{6}+\cdots}{x^{2}-x^{4}+\frac{1}{6} x^{6}+\cdots} \\
\\
\end{array} \\
\hline \frac{5}{6} x^{4}-\frac{14}{90} x^{6}+\cdots \\
\frac{5}{6} x^{4}-\frac{5}{6} x^{6}+\cdots \\
\frac{61}{90} x^{6}+\cdots
\end{array}
$$

so $T_{7}(x)=1+x^{2}+\frac{5}{6} x^{4}+\frac{61}{90} x^{6}$.
(c) Let $f(x)=x^{3}+x+1$. Note that f is increasing with $f(0)=1$, and let $g(x)=f^{-1}(x)$. Find the $6^{\text {th }}$ Taylor polynomial centered at 1 for the inverse function $g(x)$.
Solution: Say $g(y)=a_{0}+a_{1}(y-1)+a_{2}(y-1)^{2}+a_{3}(y-1)^{3}+\cdots$. Then

$$
\begin{aligned}
x= & g(f(x))=g\left(x^{3}+x+1\right)=a_{0}+a_{1}\left(x+x^{3}\right)+a_{2}\left(x+x^{3}\right)^{2}+a_{3}\left(x+x^{3}\right)^{3}+\cdots \\
= & a_{0}+a_{1}\left(x+x^{3}\right)+a_{2}\left(x^{2}+2 x^{4}+x^{6}\right)+a_{3}\left(x^{3}+3 x^{5}+\cdots\right) \\
& \quad+a_{4}\left(x^{4}+4 x^{6}+\cdots\right)+a_{5}\left(x^{5}+\cdots\right)+a_{6}\left(x^{6}+\cdots\right)+\cdots \\
= & a_{0}+a_{1} x+a_{2} x^{2}+\left(a_{3}+a_{1}\right) x^{3}+\left(a_{4}+2 a_{2}\right) x^{4}+\left(a_{5}+3 a_{3}\right) x^{5}+\left(a_{6}+4 a_{4}+a_{2}\right) x^{6}+\cdots
\end{aligned}
$$

Comparing coefficients, we see that $a_{0}=0, a_{1}=1, a_{2}=0, a_{3}=-a_{1}=-1, a_{4}=-2 a_{2}=0, a_{5}=-3 a_{3}=3$ and $a_{6}=-4 a_{4}-a_{2}=0$, and so the $6^{\text {th }}$ Taylor polynomial is $T_{6}(x)=(x-1)-(x-1)^{3}+3(x-1)^{5}$.

6: (a) Let $f(x)=\left(8+x^{3}\right)^{2 / 3}$. Find $f^{(9)}(0)$, the $9^{\text {th }}$ derivative of f at 0 .
Solution: $f(x)=\left(8+x^{3}\right)^{2 / 3}=4\left(1+\frac{x^{3}}{8}\right)^{2 / 3}=4\left(1+\frac{2}{3} \frac{x^{3}}{8}+\frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)}{2!}\left(\frac{x^{3}}{8}\right)^{2}+\frac{\left(\frac{2}{3}\right)\left(-\frac{1}{3}\right)\left(-\frac{4}{3}\right)}{3!}\left(\frac{x^{3}}{8}\right)^{3}+\cdots\right)$, so $c_{9}=\frac{4 \cdot 2 \cdot 1 \cdot 4}{3^{3} \cdot 3!\cdot 8^{3}}=\frac{1}{3^{4} 2^{5}}$ and $f^{(9)}(0)=9!c_{9}=\frac{9!}{3^{4} 2^{5}}=140$.
(b) Evaluate the limit $\lim _{x \rightarrow 0} \frac{x e^{x^{2}}-\sin x}{x-\tan ^{-1} x}$.

Solution: $\lim _{x \rightarrow 0} \frac{x e^{x^{2}}-\sin x}{x-\tan ^{-1} x}=\lim _{x \rightarrow 0} \frac{x\left(1+x^{2}+\frac{1}{2} x^{4}+\cdots\right)-\left(x-\frac{1}{6} x^{3}+\cdots\right)}{x-\left(x-\frac{1}{3} x^{3}+\cdots\right)} \lim _{x \rightarrow 0} \frac{\frac{7}{6} x^{3}+\cdots}{\frac{1}{3} x^{3}+\cdots}=\frac{7}{2}$.
(c) Suppose that there exists a function $y=f(x)$, whose Taylor series centered at 0 has a positive radius of convergence, such that $\frac{1}{2} y^{\prime \prime}+y^{\prime}-3 y=x+1$ with $y(0)=1$ and $y^{\prime}(0)=2$. Find the Taylor polynomial of degree 5 centred at 0 for $f(x)$.
Solution: Let $y=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+c_{4} x^{4}+c_{5} x^{5}+\cdots$. Then $y^{\prime}=c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+5 c_{5} x^{4}+\cdots$ and $y^{\prime \prime}=2 c_{2}+6 c_{3} x+12 c_{4} x^{2}+20 c_{5} x^{3}+\cdots$. So we have

$$
\begin{aligned}
0= & \frac{1}{2} y^{\prime \prime}+y^{\prime}-3 y-x-1 \\
= & \left(c_{2}+3 c_{3} x+6 c_{4} x^{2}+10 c_{5} x^{3}+\cdots\right)+\left(c_{1}+2 c_{2} x+3 c_{3} x^{2}+4 c_{4} x^{3}+\cdots\right) \\
& -\left(3 c_{0}+3 c_{1} x+3 c_{2} x^{2}+3 c_{3} x^{3}+\cdots\right)-x-1 \\
= & \left(c_{2}+c_{1}-3 c_{0}-1\right)+\left(3 c_{3}+2 c_{2}-3 c_{1}-1\right) x+\left(6 c_{4}+3 c_{3}-3 c_{2}\right) x^{2}+\left(10 c_{5}+4 c_{4}-3 c_{3}\right) x^{3}+\cdots
\end{aligned}
$$

Since $y(0)=1$ and $y^{\prime}(0)=2$ we have $c_{0}=1$ and $c_{2}=2$. Put these values in the above equation to get

$$
0=\left(c_{2}-2\right)+\left(3 c_{3}+2 c_{2}-7\right) x+\left(6 c_{4}+3 c_{3}-3 c_{2}\right) x^{2}+\left(10 c_{5}+4 c_{4}-3 c_{3}\right) x^{3}+\cdots
$$

For y to be a solution, all the coefficients must be zero, so we have

$$
\begin{aligned}
& \left(c_{2}-2\right)=0 \Longrightarrow c_{2}=2 \\
& \left(3 c_{3}+2 c_{2}-7\right)=0 \Longrightarrow 3 c_{3}=7-2 c_{2}=3 \Longrightarrow c_{3}=1 \\
& \left(6 c_{4}+3 c_{3}-3 c_{2}\right)=0 \Longrightarrow 6 c_{4}=3 c_{2}-3 c_{3}=3 \Longrightarrow c_{4}=\frac{1}{2} \\
& \left(10 c_{5}+4 c_{4}-3 c_{3}\right)=0 \Longrightarrow 10 c_{5}=3 c_{3}-4 c_{4}=1 \Longrightarrow c_{5}=\frac{1}{10}
\end{aligned}
$$

Thus the Taylor polynomial of degree 5 centered at 0 is

$$
T_{5}(x)=1+2 x+2 x^{2}+x^{3}+\frac{1}{2} x^{4}+\frac{1}{10} x^{5} .
$$

7: Estimate each of the following numbers so that the error is at most $\frac{1}{1000}$.
(a) $\sqrt[5]{e}$

Solution: $e^{x}=1+x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\frac{1}{4!} x^{4}+\cdots$, so we have

$$
\sqrt[5]{e}=e^{\frac{1}{5}}=1+\frac{1}{5}+\frac{1}{5^{2} 2!}+\frac{1}{5^{3} 3!}+\frac{1}{5^{4} 4!}+\cdots \cong 1+\frac{1}{5}+\frac{1}{5^{2} 2!}+\frac{1}{5^{3} 3!}=1+\frac{1}{5}+\frac{1}{50}+\frac{1}{750}=\frac{916}{750}
$$

with error

$$
\begin{aligned}
E & =\frac{1}{5^{4} 4!}+\frac{1}{5^{5} 5!}+\frac{1}{5^{6} 6!}+\cdots=\frac{1}{5^{4} 4!}\left(1+\frac{1}{5 \cdot 5}+\frac{1}{5^{2} \cdot 5 \cdot 6}+\frac{1}{5^{3} \cdot 5 \cdot 6 \cdot 7}+\cdots\right) \\
& \leq \frac{1}{5^{4} 4!}\left(1+\frac{1}{5^{2}}+\frac{1}{5^{4}}+\frac{1}{5^{6}}+\cdots\right)=\frac{1}{5^{4} 4!} \frac{1}{1-\frac{1}{25}}=\frac{1}{5^{4} 4!} \frac{25}{24}=\frac{1}{13200}
\end{aligned}
$$

where we used the C.T. and the formula for the sum of a geometric series.
(b) $\ln (4 / 5)$

Solution: We provide two solutions. For the first solution, we use $\ln (1-x)=-x-\frac{1}{2} x^{2}-\frac{1}{3} x^{3}-\cdots$. We have

$$
\ln \left(\frac{4}{5}\right)=\ln \left(1-\frac{1}{5}\right)=-\frac{1}{5}-\frac{1}{2 \cdot 5^{2}}-\frac{1}{3 \cdot 5^{3}}-\frac{1}{4 \cdot 5^{4}}-\cdots \cong-\frac{1}{5}-\frac{1}{2 \cdot 5^{2}}-\frac{1}{3 \cdot 5^{3}}=-\frac{1}{5}-\frac{1}{50}-\frac{1}{375}=-\frac{167}{750}
$$

with error

$$
E=\frac{1}{4 \cdot 5^{4}}+\frac{1}{5 \cdot 5^{5}}+\frac{1}{6 \cdot 5^{6}}+\cdots<\frac{1}{4 \cdot 5^{4}}+\frac{1}{4 \cdot 5^{5}}+\frac{1}{4 \cdot 5^{6}}+\cdots=\frac{\frac{1}{4 \cdot 5^{4}}}{1-\frac{1}{5}}=\frac{1}{4 \cdot 5^{4}} \cdot \frac{5}{4}=\frac{1}{4^{2} \cdot 5^{3}}=\frac{1}{2000},
$$

where we used the C.T. and the formula for the sum of a geometric series.
For the second solution, we use $\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots$. We have

$$
\ln \frac{4}{5}=-\ln \frac{5}{4}=-\ln \left(1+\frac{1}{4}\right)=\left(-\frac{1}{4}+\frac{1}{2 \cdot 4^{2}}-\frac{1}{3 \cdot 4^{3}}+\frac{1}{4 \cdot 4^{4}}-\cdots\right) \cong-\frac{1}{4}+\frac{1}{32}-\frac{1}{192}=-\frac{43}{192}
$$

with error $E \leq \frac{1}{4 \cdot 4^{4}}<\frac{1}{1000}$ by the A.S.T.
(c) $\int_{0}^{1} \sqrt{4+x^{3}} d x$

Solution: Using the Binomial Series, we have

$$
\begin{aligned}
& \sqrt{4+x^{3}} d x=2\left(1+\frac{x^{3}}{4}\right)^{1 / 2} \\
& =2\left(1+\frac{1}{2}\left(\frac{x^{3}}{4}\right)+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)}{2!}\left(\frac{x^{3}}{4}\right)^{2}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)}{3!}\left(\frac{x^{3}}{4}\right)^{3}+\frac{\left(\frac{1}{2}\right)\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)}{4!}\left(\frac{x^{3}}{4}\right)^{4}+\cdots\right) \\
& =2+\frac{1}{4} x^{3}-\frac{1}{2 \cdot 2!\cdot 4^{2}} x^{6}+\frac{1 \cdot 3}{2^{2} \cdot 3!\cdot 4^{3}} x^{9}-\frac{1 \cdot 3 \cdot 5}{2^{3} \cdot 4!\cdot 4^{4}} x^{12}+\cdots
\end{aligned}
$$

and so

$$
\begin{aligned}
\int_{0}^{1} \sqrt{4+x^{3}} d x & =\left[2 x+\frac{1}{4 \cdot 4} x^{4}-\frac{1}{2 \cdot 2!\cdot 4^{2} \cdot 7} x^{7}+\frac{1 \cdot 3}{2^{2} \cdot 3!\cdot 4^{3} \cdot 10} x^{10}-\frac{1 \cdot 3 \cdot 5}{2^{3} \cdot 4!\cdot 4^{4} \cdot 13} x^{13}+\cdots\right]_{0}^{1} \\
& =2+\frac{1}{4 \cdot 4}-\frac{1}{2 \cdot 2!\cdot 4^{2} \cdot 7}+\frac{1 \cdot 3}{2^{2} \cdot 3!\cdot 4^{3} \cdot 10}-\frac{1 \cdot 3 \cdot 5}{2^{3} \cdot 4!\cdot 4^{4} \cdot 13}+\cdots \\
& \cong 2+\frac{1}{4 \cdot 4}-\frac{1}{2 \cdot 2!\cdot 4^{2} \cdot 7}=2+\frac{1}{16}-\frac{1}{448}=\frac{923}{448}
\end{aligned}
$$

with absolute error $E \leq \frac{1 \cdot 3}{2^{2} \cdot 3!\cdot 4^{3} \cdot 10}=\frac{1}{5120}$ by the A.S.T.
To be rigorous, we should justify our application of the A.S.T. When $a_{n}=\frac{(-1)^{n+1} 1 \cdot 3 \cdot 5 \cdots(2 n-3)}{2^{n-1} \cdot n!\cdot 4^{n} \cdot(3 n+1)}$ we have $\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2 n-1}{2 \cdot(n+1) \cdot 4 \cdot(3 n+4)}<\frac{2 n+2}{2 \cdot(n+1) \cdot 4 \cdot(3 n+4)}=\frac{1}{4 \cdot(3 n+4)}$. Since $\left|\frac{a_{n+1}}{a_{n}}\right|<1$ we know that $\left\{\left|a_{n}\right|\right\}$ is decreasing, and since $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$ we know that $\sum a_{n}$ converges by the R.T. so $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ by the D.T. Thus we can indeed apply the A.S.T.

8: Find the exact value of each of the following sums.
(a) $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}$

Solution: For all x we have $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, so $x e^{x}=\sum_{n=0}^{\infty} \frac{x^{n+1}}{n!}$. Differentiate to get $(x+1) e^{x}=\sum_{n=0}^{\infty} \frac{(n+1) x^{n}}{n!}$, so $\left(x^{2}+x\right) e^{x}=\sum_{n=0}^{\infty} \frac{(n+1) x^{n+1}}{n!}$. Differentiate again to get $\left(x^{2}+3 x+1\right) e^{x}=\sum_{n=0}^{\infty} \frac{(n+1)^{2} x^{n}}{n!}$. Put in $x=1$ to get $5 e=\sum_{n=0}^{\infty} \frac{(n+1)^{2}}{n!}=1+\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}$. Thus $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}=5 e-1$.
(b) $\sum_{n=1}^{\infty} \frac{n}{(2 n+1) 2^{n}}$

Solution: Let $S=\sum_{n=1}^{\infty} \frac{n}{(2 n+1) 2^{n}}=\frac{1}{3 \cdot 2^{1}}+\frac{2}{5 \cdot 2^{2}}+\frac{3}{7 \cdot 2^{3}}+\cdots$. For $|x|<1$ we have $\frac{1}{1-x^{2}}=1+x^{2}+x^{4}+x^{6}+\cdots$. Integrate both sides to get $\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)=x+\frac{x^{3}}{3}+\frac{x^{5}}{5}+\frac{x^{7}}{7}+\cdots$. Divide both sides by x and the differentiate to get $\frac{\frac{x}{1-x^{2}}-\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right)}{x^{2}}=\frac{2 x}{3}+\frac{4 x^{3}}{5}+\frac{6 x^{5}}{7}+\cdots$. Multiply by x to get $\frac{1}{1-x^{2}}-\frac{1}{2 x} \ln \left(\frac{1+x}{1-x}\right)=\frac{2 x^{3}}{3}+\frac{4 x^{4}}{5}+\frac{6 x^{6}}{7}+\cdots$. Put in $x=\frac{1}{\sqrt{2}}$ to get $2-\frac{1}{\sqrt{2}} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)=\frac{2}{3 \cdot 2}+\frac{4}{5 \cdot 2^{2}}+\frac{6}{7 \cdot 2^{3}}+\cdots=2 S$. Thus

$$
S=1-\frac{1}{2 \sqrt{2}} \ln \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)=1-\frac{1}{\sqrt{2}} \ln (\sqrt{2}+1) .
$$

(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2}$

Solution: For $|x|<1$ we have $\sum_{n=0}^{\infty}(-1)^{n} x^{3 n}=\frac{1}{1+x^{3}}$, so $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{3 n+1}=\int_{0}^{x} \frac{d t}{1+t^{3}}$. By Abel's Theorem we can put in $x=1$ to get $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n+1}=\int_{0}^{1} \frac{d t}{1+t^{3}}$. Thus

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2}=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{3 n-2}=\frac{1}{2}+\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n+1}=\frac{1}{2}+\int_{0}^{1} \frac{d t}{t^{3}+1}
$$

To get $\frac{1}{t^{3}+1}=\frac{A}{t+1}+\frac{B(2 t-1)+C}{t^{2}-t+1}$, we need $A\left(t^{2}-t+1\right)+B\left(2 t^{2}+t-1\right)+C(t+1)=1$. Equate coefficients to get the three equations $A+2 B=0,-A+B+C=0$ and $A-B+C=1$. Solve these to get $A=\frac{1}{3}, B=-\frac{1}{6}$ and $C=\frac{1}{2}$. Thus we find that

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2} & =\frac{1}{2}+\int_{0}^{1} \frac{d t}{t^{3}+1}=\frac{1}{2}+\int_{0}^{1} \frac{\frac{1}{3}}{t+1}-\frac{\frac{1}{6}(2 t-1)+\frac{1}{2}}{t^{2}-t+1} d t \\
& =\frac{1}{2}+\left[\frac{1}{3} \ln (t+1)-\frac{1}{6} \ln \left(t^{2}-t+1\right)+\frac{1}{\sqrt{3}} \tan ^{-1} \frac{\left(t-\frac{1}{2}\right)}{\frac{\sqrt{3}}{2}}\right]_{0}^{1} \\
& =\frac{1}{2}+\frac{1}{3} \ln 2+\frac{1}{\sqrt{3}} \tan ^{-1} \frac{1}{\sqrt{3}}-\frac{1}{\sqrt{3}} \tan ^{-1} \frac{1}{\sqrt{3}}=\frac{1}{2}+\frac{1}{3} \ln 2+\frac{\pi}{3 \sqrt{3}}
\end{aligned}
$$

