PMATH 333, Exercises for Chapter 4

1: (a) Define $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ by $f_{n}(x)=n x e^{-n x}$. Find the pointwise limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ and determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.
(b) Define $f_{n}:[0, \infty) \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{x}{1+n x^{2}}$. Find the pointwise limit $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ and determine whether $f_{n} \rightarrow f$ uniformly on $[0, \infty)$.
(c) Define $f_{n}:[0, \infty] \rightarrow \mathbb{R}$ by $f_{n}(x)=\frac{x+n}{x+4 n}$. Show that $\left(f_{n}\right)$ converges uniformly on $[0, r]$ for every $r>0$ but that $\left(f_{n}\right)$ does not converge uniformly on $[0, \infty)$.
2: (a) Find $\int_{0}^{1} \lim _{n \rightarrow \infty} n x\left(1-x^{2}\right)^{n} d x$ and $\lim _{n \rightarrow \infty} \int_{0}^{1} n x\left(1-x^{2}\right)^{n} d x$.
(b) Find $\int_{1}^{4} \lim _{n \rightarrow \infty} \frac{\tan ^{-1}(n x)}{x} d x$ and $\lim _{n \rightarrow \infty} \int_{1}^{4} \frac{\tan ^{-1}(n x)}{x} d x$.
(c) Show that $\sum_{n=0}^{\infty} \frac{\cos \left(2^{n} x\right)}{1+n^{2}}$ converges uniformly on \mathbb{R} and find $\int_{0}^{\pi / 4} \sum_{n=0}^{\infty} \frac{\cos \left(2^{n} x\right)}{1+n^{2}} d x$.
(d) Show that $\sum_{n=1}^{\infty} \sin \left(\frac{x}{n^{2}}\right)$ converges uniformly on any closed interval $[a, b]$.

3: Determine which of the following statements are true for all sequences of functions $\left(f_{n}\right)$ and $\left(g_{n}\right)$ and all $E \subseteq \mathbb{R}$.
(a) If $\left(f_{n}\right)$ and $\left(g_{n}\right)$ converge uniformly on E then $\left(f_{n} g_{n}\right)$ converge uniformly on E.
(b) Show that if $\left(f_{n}\right)$ and $\left(g_{n}\right)$ converge uniformly on E and f and g are bounded on E then $\left(f_{n} g_{n}\right)$ converges uniformly on E.
(c) If $\left(f_{n}\right)$ converges uniformly on (a, b) and pointwise on $[a, b]$ then $\left(f_{n}\right)$ converges uniformly on $[a, b]$.
(d) If each f_{n} is continuous on $[a, b]$ and $\sum f_{n}$ converges uniformly on $[a, b]$ then $\sum M_{n}$ converges, where $M_{n}=\max \left\{\mid f_{n}(x) \| a \leq x \leq b\right\}$.
4: (a) Find the Taylor series centred at 0 , and its interval of convergence, for $f(x)=\frac{x}{x^{2}-6 x+8}$.
(b) Find the Taylor series centred at $\frac{\pi}{4}$, and its interval of convergence, for $f(x)=\sin x \cos x$.
(c) Let $0<a<b$. Note that $\mathbb{Q} \cap[a, b]$ is countable, say $\mathbb{Q} \cap[a, b]=\left\{q_{1}, q_{2}, q_{3}, \cdots\right\}$. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} q_{n} x^{n}$.

5: (a) Find the $4^{\text {th }}$ Taylor polynomial centred at 0 for $f(x)=\frac{\ln (1+x)}{e^{2 x}}$.
(b) Find the $7^{\text {th }}$ Taylor polynomial centred at 0 for $f(x)=\sec (\sqrt{2} x)$.
(c) Let $f(x)=x^{3}+x+1$. Note that f is increasing with $f(0)=1$, and let $g(x)=f^{-1}(x)$. Find the $6^{\text {th }}$ Taylor polynomial centred at 1 for the inverse function $g(x)$.
6: (a) Let $f(x)=\left(8+x^{3}\right)^{2 / 3}$. Find $f^{(9)}(0)$, the $9^{\text {th }}$ derivative of f at 0 .
(b) Evaluate the limit $\lim _{x \rightarrow 0} \frac{x e^{x^{2}}-\sin x}{x-\tan ^{-1} x}$.
(c) Suppose that there exists a function $y=f(x)$, whose Taylor series centred at 0 has a positive radius of convergence, such that $\frac{1}{2} y^{\prime \prime}+y^{\prime}-3 y=x+1$ with $y(0)=1$ and $y^{\prime}(0)=2$. Find the Taylor polynomial of degree 5 centred at 0 for $f(x)$.
7: Estimate each of the following numbers so that the error is at most $\frac{1}{1000}$.
(a) $\sqrt[5]{e}$
(b) $\ln (4 / 5)$
(c) $\int_{0}^{1} \sqrt{4+x^{3}} d x$

8: Find the exact value of each of the following sums.
(a) $\sum_{n=1}^{\infty} \frac{(n+1)^{2}}{n!}$
(b) $\sum_{n=1}^{\infty} \frac{n}{(2 n+1) 2^{n}}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3 n-2}$

