PMATH 333, Exercises for Chapter 4

- (a) Define f_n: [0,∞) → ℝ by f_n(x) = nxe^{-nx}. Find the pointwise limit f(x) = lim_{n→∞} f_n(x) and determine whether f_n → f uniformly on [0,∞).
 (b) Define f_n: [0,∞) → ℝ by f_n(x) = x/(1+nx²). Find the pointwise limit f(x) = lim_{n→∞} f_n(x) and determine whether f_n → f uniformly on [0,∞).
 (c) Define f_n: [0,∞] → ℝ by f_n(x) = x+n/(x+4n). Show that (f_n) converges uniformly on [0, r] for every r > 0 but that (f_n) does not converge uniformly on [0,∞).
- 2: (a) Find $\int_0^1 \lim_{n \to \infty} nx(1-x^2)^n dx$ and $\lim_{n \to \infty} \int_0^1 nx(1-x^2)^n dx$. (b) Find $\int_1^4 \lim_{n \to \infty} \frac{\tan^{-1}(nx)}{x} dx$ and $\lim_{n \to \infty} \int_1^4 \frac{\tan^{-1}(nx)}{x} dx$. (c) Show that $\sum_{n=0}^\infty \frac{\cos(2^n x)}{1+n^2}$ converges uniformly on \mathbb{R} and find $\int_0^{\pi/4} \sum_{n=0}^\infty \frac{\cos(2^n x)}{1+n^2} dx$. (d) Show that $\sum_{n=1}^\infty \sin\left(\frac{x}{n^2}\right)$ converges uniformly on any closed interval [a, b].
- **3:** Determine which of the following statements are true for all sequences of functions (f_n) and (g_n) and all $E \subseteq \mathbb{R}$. (a) If (f_n) and (g_n) converge uniformly on E then $(f_n g_n)$ converge uniformly on E.

(b) Show that if (f_n) and (g_n) converge uniformly on E and f and g are bounded on E then (f_ng_n) converges uniformly on E.

- (c) If (f_n) converges uniformly on (a, b) and pointwise on [a, b] then (f_n) converges uniformly on [a, b].
- (d) If each f_n is continuous on [a, b] and $\sum f_n$ converges uniformly on [a, b] then $\sum M_n$ converges, where $M_n = \max\{|f_n(x)| | a \le x \le b\}.$

4: (a) Find the Taylor series centred at 0, and its interval of convergence, for $f(x) = \frac{x}{x^2 - 6x + 8}$ (b) Find the Taylor series centred at $\frac{\pi}{4}$, and its interval of convergence, for $f(x) = \sin x \cos x$.

(c) Let 0 < a < b. Note that $\mathbb{Q} \cap [a, b]$ is countable, say $\mathbb{Q} \cap [a, b] = \{q_1, q_2, q_3, \cdots\}$. Find the interval of convergence of the power series $\sum_{n=1}^{\infty} q_n x^n$.

5: (a) Find the 4th Taylor polynomial centred at 0 for $f(x) = \frac{\ln(1+x)}{e^{2x}}$.

(b) Find the 7th Taylor polynomial centred at 0 for $f(x) = \sec(\sqrt{2}x)$.

(c) Let $f(x) = x^3 + x + 1$. Note that f is increasing with f(0) = 1, and let $g(x) = f^{-1}(x)$. Find the 6th Taylor polynomial centred at 1 for the inverse function g(x).

- 6: (a) Let $f(x) = (8 + x^3)^{2/3}$. Find $f^{(9)}(0)$, the 9th derivative of f at 0.
 - (b) Evaluate the limit $\lim_{x \to 0} \frac{x e^{x^2} \sin x}{x \tan^{-1} x}$.

(c) Suppose that there exists a function y = f(x), whose Taylor series centred at 0 has a positive radius of convergence, such that $\frac{1}{2}y'' + y' - 3y = x + 1$ with y(0) = 1 and y'(0) = 2. Find the Taylor polynomial of degree 5 centred at 0 for f(x).

(c) $\int_{0}^{1} \sqrt{4 + x^3} dx$

7: Estimate each of the following numbers so that the error is at most $\frac{1}{1000}$.

(a)
$$\sqrt[5]{e}$$
 (b) $\ln(4/5)$

8: Find the exact value of each of the following sums.

(a)
$$\sum_{n=1}^{\infty} \frac{(n+1)^2}{n!}$$
 (b) $\sum_{n=1}^{\infty} \frac{n}{(2n+1)2^n}$ (c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{3n-2}$