PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 3

1: (a) Let $f(x)=\frac{8 x}{2^{3 x}}$ and let X be the partition of [0,2] into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the right endpoints of the subintervals.
Solution: The six intervals are of size $\Delta x=\frac{2-0}{6}=\frac{1}{3}$ and the right endpoints are the points $x_{k}=0+k \Delta x=\frac{k}{3}$, that is the points $\frac{1}{3}, \frac{2}{3}, 1, \frac{4}{3}, \frac{5}{3}$ and 2 . We have

$$
\begin{aligned}
\sum_{k=1}^{n} f\left(x_{i}\right) \Delta x & =\left(f\left(\frac{1}{3}\right)+f\left(\frac{2}{3}\right)+f(1)+f\left(\frac{4}{3}\right)+f\left(\frac{5}{3}\right)+f(2)\right)\left(\frac{1}{3}\right) \\
& =\left(\frac{8 \cdot 1}{3 \cdot 2}+\frac{8 \cdot 2}{3 \cdot 4}+\frac{8 \cdot 3}{3 \cdot 8}+\frac{8 \cdot 4}{3 \cdot 16}+\frac{8 \cdot 5}{3 \cdot 32}+\frac{8 \cdot 6}{3 \cdot 64}\right)\left(\frac{1}{3}\right) \\
& =\left(\frac{4}{3}+\frac{4}{3}+\frac{3}{3}+\frac{2}{3}+\frac{5}{12}+\frac{3}{12}\right)\left(\frac{1}{3}\right) \\
& =\left(\frac{15}{3}\right)\left(\frac{1}{3}\right) \\
& =\frac{5}{3} .
\end{aligned}
$$

We remark that by using Integration by Parts, one can show that $\int_{0}^{2} f(x) d x=\frac{21-2 \ln 2}{24(\ln 2)^{2}}$.
(b) Let $f(x)=\frac{1}{x}$ and let X be the partition of $\left[\frac{1}{5}, \frac{13}{5}\right]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the midpoints of the subintervals.
Solution: The subintervals are of size $\Delta x=\frac{b-a}{n}=\frac{\frac{13}{5}-\frac{1}{5}}{6}=\frac{2}{5}$, and the endpoints are $x_{k}=a+\frac{b-a}{n} k=\frac{1}{5}+\frac{2}{5} k$ so that $x_{0}, x_{1}, x_{2}, \cdots x_{6}=\frac{1}{5}, \frac{3}{5}, \frac{5}{5}, \cdots, \frac{13}{5}$, and the midpoints of the subintervals are $c_{k}=\frac{x_{k}+x_{k-1}}{2}$ so that $c_{1}, c_{2}, c_{3}, \cdots, c_{6}=\frac{2}{5}, \frac{4}{5}, \frac{6}{5}, \cdots, \frac{12}{5}$. We have

$$
\begin{aligned}
\sum_{k=1}^{6} f\left(c_{k}\right) \Delta x & =\left(f\left(c_{1}\right)+f\left(c_{2}\right)+\cdots+f\left(c_{6}\right)\right)\left(\frac{2}{5}\right) \\
& =\frac{2}{5}\left(f\left(\frac{2}{5}\right)+f\left(\frac{4}{5}\right)+\cdots f\left(\frac{12}{5}\right)\right) \\
& =\frac{2}{5}\left(\frac{5}{2}+\frac{5}{4}+\frac{5}{6}+\cdots+\frac{5}{12}\right) \\
& =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6} \\
& =\frac{60+30+20+15+12+10}{60}=\frac{147}{60}=\frac{49}{20}
\end{aligned}
$$

We remark that $\int_{1 / 5}^{13 / 5} f(x) d x=\ln 13$.
(c) Let $f(x)=4^{\cos x}$ and let $X=\left\{0 \cdot \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}, 2 \pi\right\}$. Find the average of the upper and lower Riemann sums for f on X.
Solution: Note that $\cos x$ (and hence $f(x))$ is decreasing on $[0, \pi]$ and increasing on $[\pi .2 \pi]$ and that $\cos x$ (hence $f(x))$ and the partition X are both symmetric about π, and so

$$
\begin{aligned}
U(f, X) & =2\left(f(0) \cdot \frac{\pi}{3}+f\left(\frac{\pi}{3}\right) \cdot \frac{\pi}{6}+f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{6}+f\left(\frac{2 \pi}{3}\right) \cdot \frac{\pi}{3}\right) \\
& =2\left(4 \cdot \frac{\pi}{3}+2 \cdot \frac{\pi}{6}+1 \cdot \frac{\pi}{6}+\frac{1}{2} \cdot \frac{\pi}{3}\right)=4 \pi
\end{aligned}
$$

and

$$
\begin{aligned}
L(f, X) & =2\left(f\left(\frac{\pi}{3}\right) \cdot \frac{\pi}{3}+f\left(\frac{\pi}{2}\right) \cdot \frac{\pi}{6}+f\left(\frac{2 \pi}{3}\right) \cdot \frac{\pi}{6}+f(\pi) \cdot \frac{\pi}{3}\right) \\
& =2\left(2 \cdot \frac{\pi}{3}+1 \cdot \frac{\pi}{6}+\frac{1}{2} \cdot \frac{\pi}{6}+\frac{1}{4} \cdot \frac{\pi}{3}\right)=2 \pi
\end{aligned}
$$

and so the average of the upper and lower Riemann sums is 3π.

2: (a) Suppose that f is increasing on $[a, b]$. Show that f is integrable on $[a, b]$.
Solution: Suppose that f is increasing (and hence bounded, below by $f(a)$ and above by $f(b))$ on $[a, b]$. Notice that since f is increasing we have $M_{k}=f\left(x_{k}\right)$ and $m_{k}=f\left(x_{k-1}\right)$, where $M_{k}=\sup \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$ and $m_{k}=\inf \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$, and so $\sum_{k=1}^{n}\left(M_{k}-m_{k}\right)=\sum_{k=1}^{n}\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)=f\left(x_{n}\right)-f\left(x_{0}\right)=f(b)-f(a)$. Now let $\epsilon>0$. Choose a partition $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[a, b]$ with $|X|<\frac{\epsilon}{f(b)-f(a)}$. Then

$$
\begin{aligned}
U(f, X)-L(f, X) & =\sum_{k=1}^{n} M_{k} \Delta_{k} x-\sum_{k=1}^{n} m_{k} \Delta_{k} x=\sum_{k=1}^{n}\left(M_{k}-m_{k}\right) \Delta_{k} x \\
& \leq \sum_{k=1}^{n}\left(M_{k}-m_{k}\right)|X|=(f(b)-f(a))|X|<\epsilon .
\end{aligned}
$$

Thus f is integrable on $[a, b]$ (by Part 2 of Theorem 1.16).
(b) Suppose that $f(x)=0$ for all but finitely many points $x \in[a, b]$. Show that f is integrable on $[a, b]$.

Solution: Suppose that $f(x)=0$ except possibly at some of the points $p_{0}, p_{1}, p_{2}, \cdots, p_{n}$, where we have

$$
a=p_{0}<p_{1}<\cdots<p_{\ell}=b .
$$

Let $M=\max \left\{\left|f\left(p_{k}\right)\right| \mid 0 \leq k \leq \ell\right\}$. Let $\epsilon>0$ be arbitrary. Choose $\delta>0$ so that $\delta<\frac{\epsilon}{2 \ell M}$ and so that $\delta<\frac{p_{k}-p_{k-1}}{2}$ (so that $p_{k-1}+\delta<p_{k}-\delta$) for all $k=1,2, \cdots, \ell$. Let X be the partition

$$
X=\left\{p_{0}, p_{0}+\delta, p_{1}-\delta, p_{1}+\delta, p_{2}-\delta, p_{2}+\delta, \cdots, p_{\ell-1}-\delta, p_{\ell-1}+\delta, p_{\ell}-\delta, p_{\ell}\right\} .
$$

For each $k=0,1, \cdots \ell$ let $M_{k}=\max \left\{f\left(p_{k}\right), 0\right\}$ and let $m_{k}=\min \left\{f\left(p_{k}\right), 0\right\}$. Note that $M_{k}-m_{k}=\left|f\left(p_{k}\right)\right|$, and we have

$$
\begin{aligned}
U(f, X) & =M_{0} \cdot \delta+0+M_{1} \cdot 2 \delta+0+M_{2} \cdot 2 \delta+0+\cdots+M_{\ell-1} \cdot 2 \delta+0+M_{\ell} \cdot \delta \\
L(f, X) & =m_{0} \cdot \delta+0+m_{1} \cdot 2 \delta+0+m_{2} \cdot 2 \delta+0+\cdots+m_{\ell-1} \cdot 2 \delta+0+m_{\ell} \cdot \delta .
\end{aligned}
$$

Thus

$$
\begin{aligned}
U(f, X)-L(f, X) & =\left(M_{0}-m_{0}\right) \cdot \delta+\left(M_{1}-m_{1}\right) \cdot 2 \delta+\cdots+\left(M_{\ell-1}-m_{\ell-1}\right) \cdot 2 \delta+\left(M_{\ell}-m_{\ell}\right) \cdot \delta \\
& =\left(\left|f\left(p_{0}\right)\right|+2\left|f\left(p_{1}\right)\right|+2\left|f\left(p_{2}\right)\right|+\cdots+2\left|f\left(p_{\ell-1}\right)\right|+\left|f\left(p_{\ell}\right)\right|\right) \cdot \delta \\
& \leq 2 \ell M \delta<\epsilon .
\end{aligned}
$$

(c) Define $f:[0,1] \rightarrow \mathbb{R}$ as follows. Let $f(0)=f(1)=0$. For $x \in(0,1)$ with $x \notin \mathbb{Q}$, let $f(x)=0$. For $x \in(0,1)$ with $x \in \mathbb{Q}$, write $x=\frac{a}{b}$ where $0<a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$, and then let $f(x)=\frac{1}{b}$. Show that f is integrable in $[0,1]$.
Solution: Let $\epsilon>0$ be arbitrary. Choose an integer $N>0$ so that $\frac{1}{N}<\frac{\epsilon}{2}$. Note that there are only finitely many points $x \in[0,1]$ such that $f(x)>\frac{1}{N}$ (indeed the only such points are the points $x=\frac{a}{b}$ with $0<a<b \in \mathbb{Z}$ with $b<N)$. Say these points are $p_{1}, p_{2}, \cdots, p_{\ell-1}$ where

$$
0=p_{0}<p_{1}<p_{2}<\cdots<p_{\ell-1}<p_{\ell}=1 .
$$

Choose $\delta>0$ so that $\delta<\frac{\epsilon}{2 \ell}$ and so that $\delta<\frac{p_{k}-p_{k-1}}{2}$ for all $k=1,2, \cdots, \ell$. Let X be the partition

$$
X=\left\{0, p_{1}-\delta, p_{1}+\delta, p_{2}-\delta, p_{2}+\delta, \cdots, p_{\ell-1}-\delta, p_{\ell-1}+\delta, 1\right\}
$$

Note that $L(f, X)=0$ and since $f(x) \leq \frac{1}{N}$ for all $x \neq p_{k}$, and $f\left(p_{k}\right) \leq \frac{1}{2}$ for all $k=1,2, \cdots, \ell-1$, we have

$$
\begin{aligned}
U(f, X) & \leq \frac{1}{N}\left(p_{1}-\delta\right)+f\left(p_{1}\right) \cdot 2 \delta+\frac{1}{N}\left(p_{2}-p_{1}-2 \delta\right)+f\left(p_{2}\right) \cdot 2 \delta+\cdots+f\left(p_{\ell-1}\right) \cdot 2 \delta+\frac{1}{N}\left(1-p_{\ell-1}-\delta\right) \\
& =\frac{1}{N}(1-2(\ell-1) \delta)+\left(f\left(p_{1}\right)+f\left(p_{2}\right)+\cdots+f\left(p_{\ell-1}\right)\right) \cdot 2 \delta \\
& <\frac{1}{N}+\frac{\ell-1}{2} \cdot 2 \delta<\frac{1}{N}+\ell \delta<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

3: (a) Let f be continuous with $f \geq 0$ on $[a, b]$. Show that if $\int_{a}^{b} f=0$ then $f=0$ on $[a, b]$.
Solution: Suppose that $f \neq 0$ on $[a, b]$. Choose $c \in[a, b]$ so that $f(c) \neq 0$. Note that $f(c)>0$ since $f \geq 0$. Either $c \in[a, b)$ or $c \in(a, b]$. Let us suppose that $c \in[a, b)$ (the case $c \in(a, b]$ is similar). By the continuity of f we can choose $\delta>0$ with $\delta<b-c$ so that for all $x \in[a, b]$ we have

$$
|x-c|<\delta \Longrightarrow|f(x)-f(c)|<\frac{f(c)}{2} \Longrightarrow \frac{f(c)}{2}<f(x)<\frac{3 f(c)}{2} .
$$

Then by Additivity and Comparison we have

$$
\begin{aligned}
\int_{a}^{b} f & =\int_{a}^{c} f+\int_{c}^{c+\delta} f+\int_{c+\delta}^{b} f \\
& \geq \int_{a}^{c} 0+\int_{c}^{c+\delta} \frac{f(c)}{2}+\int_{c-\delta}^{b} 0 \\
& =0+\frac{f(c)}{2} \delta+0>0
\end{aligned}
$$

(b) Find $g^{\prime}(1)$ where $g(x)=\int_{3 x-3}^{x^{2}+1} \sqrt{1+t^{3}} d t$.

Solution: Let $u(x)=x^{2}+1$ and let $v(x)=3 x-3$. Also, let $f(t)=\sqrt{1+t^{3}}$ and let $F(u)=\int_{0}^{u} \sqrt{1+t^{3}} d t$ so that $F^{\prime}(u)=f(u)$, by the FTC. Then

$$
g(x)=\int_{3 x-3}^{x^{2}+1} \sqrt{1+t^{3}} d t=\int_{0}^{x^{2}+1} \sqrt{1+t^{3}} d t-\int_{0}^{3 x-3} \sqrt{1+t^{3}} d t=F(u(x))-F(v(x))
$$

and so $g^{\prime}(x)=F^{\prime}(u(x)) u^{\prime}(x)-F^{\prime}(v(x)) v^{\prime}(x)=f(u(x))(2 x)-f(v(x))(3)=2 x f\left(x^{2}+1\right)-3 f(3 x-3)$. Put in $x=1$ to get $g^{\prime}(1)=2 f(2)-3 f(0)=2 \sqrt{1+8}-3 \sqrt{1+0}=6-3=3$.
(c) Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n+i}$.

Solution: Let $f(x)=\frac{1}{1+x}$ and let X_{n} be the partition of $[0,1]$ into n equal-sized subintervals so $x_{n, k}=\frac{k}{n}$ and $\Delta_{n, k} x=\frac{1}{n}$. By recognizing a limit of Riemann sums as an integral, then applying the FTC, we have

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n+k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{1+\frac{k}{n}} \cdot \frac{1}{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{n, k}\right) \Delta_{n, k} x=\int_{0}^{1} \frac{d x}{1+x}=[\ln (1+x)]_{0}^{1}=\ln 2
$$

4: (a) Let $0 \leq a<b$. From the definition, show that $f(x)=x^{2}$ is integrable on $[a, b]$ with $\int_{a}^{b} f=\frac{1}{3}\left(b^{3}-a^{3}\right)$.
Solution: Let $\epsilon>0$ be arbitrary. Choose $\delta=\frac{\epsilon}{2 b(b-a)}$. Let X be any partition of $[a, b]$ with $|X|<\delta$. Let $t_{k} \in$ $\left[x_{k-1}, x_{k}\right]$ be any sample points. Let $s_{k}=\sqrt{\frac{1}{3}\left(x_{k-1}^{2}+x_{k-1} x_{k}+x_{k}^{2}\right)} \in\left[x_{k-1}, x_{k}\right]$. Note that $\sum_{k=1}^{n} f\left(s_{k}\right) \Delta_{k} x=$

$$
\begin{aligned}
& \sum_{k=1}^{n} \frac{1}{3}\left(x_{k-1}{ }^{2}+x_{k-1} x_{k}+x_{k}^{2}\right)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} \frac{1}{3}\left(x_{k}^{3}-x_{k-1}^{3}\right)=\frac{1}{3}\left(b^{3}-a^{3}\right), \text { so } \\
& \left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta_{k} x-\frac{1}{3}\left(b^{3}-a^{3}\right)\right|=\left|\sum_{k=1}^{n} f\left(t_{k}\right) \Delta_{k} x-\sum_{k=1}^{n} f\left(s_{k}\right) \Delta_{k} x\right| \leq \sum_{k=1}^{n}\left|f\left(t_{k}\right)-f\left(s_{k}\right)\right| \Delta_{k} x \\
& =\sum_{k=1}^{n}\left|t_{k}{ }^{2}-s_{k}{ }^{2}\right| \Delta_{k} x=\sum_{k=1}^{n}\left|t_{k}+s_{k}\right|\left|t_{k}-s_{k}\right| \Delta_{k} x<\sum_{k=1}^{n} 2 b \delta \Delta_{k} x=\epsilon
\end{aligned}
$$

(b) Define $f:[1,2] \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{l}x^{2}, \text { if } x \notin \mathbb{Q} \\ 2 x, \text { if } x \in \mathbb{Q} .\end{array}\right.$ From the definition, show that $U(f)=3$ and $L(f)=\frac{7}{3}$.

Solution: First we shall show that $U(f)=3$. To do this, we must show that for every partition X of $[1,2]$ we have $3 \leq U(f, X)$, and also that for every $\epsilon>0$ we can find a partition X of $[1,2]$ such that $U(f, X)-3<\epsilon$. Let $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be any partition of [1,2]. Let $M_{k}=\sup \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$. Note that $M_{k}=2 x_{k}$ (since we can choose $t \in\left[x_{k-1}, x_{k}\right]$ arbitrarily close to x_{k} with $t \in \mathbb{Q}$ so that $f(t)=2 t$), so we have

$$
\begin{aligned}
& U(f, X)=\sum_{k=1}^{n} M_{k} \Delta_{k} x=\sum_{k=1}^{n} 2 x_{k}\left(x_{k}-x_{k-1}\right) \geq \sum_{k=1}^{n}\left(x_{k}+x_{k-1}\right)\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n}\left(x_{k}^{2}-x_{k-1}^{2}\right) \\
& =x_{n}{ }^{2}-x_{0}^{2}=2^{2}-1^{2}=3
\end{aligned}
$$

since the sum $\sum_{k=1}^{n}\left(x_{k}{ }^{2}-x_{k-1}^{2}\right)$ is a telescoping sum. Now let $\epsilon>0$ be arbitrary. Choose a partition $X=$ $\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ with $|X|<\epsilon$. Let $M_{k}=\sup \left\{f(t) \mid f(t) \in\left[x_{k-1}, x_{k}\right]\right\}$ Note, as above, that $M_{k}=2 x_{k}$ and that $\sum_{k=1}^{n}\left(x_{k}+x_{k-1}\right)\left(x_{k}-x_{k-1}\right)=3$, so we have

$$
U(f, X)-3=\sum_{k=1}^{n} 2 x_{k} \Delta_{k} x-\sum_{k=1}^{n}\left(x_{k}+x_{k-1}\right) \Delta_{k} x=\sum_{k=1}^{n}\left(x_{k}-x_{k-1}\right) \Delta_{k} x \leq \sum_{k=1}^{n}|X| \Delta_{k} x<\sum_{k=1}^{n} \epsilon \Delta_{k} x=\epsilon
$$

To show that $L(f, X)=\frac{7}{3}$, we must show that for any partition X of $[1,2]$, we have $L(f, X) \leq \frac{7}{3}$, and also that given any $\epsilon>0$ there exists a partition X of $[1,2]$ such that $\frac{7}{3}-L(f, X)<\epsilon$. Let $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be any partition of $[1,2]$. Let $s_{k}=\sqrt{\frac{1}{3}\left(x_{k-1}^{2}+x_{k-1} x_{k}+x_{k}^{2}\right)}$. Note that, as shown in Part (a), we have $\sum_{k=1}^{n} s_{k}{ }^{2} \Delta_{k} x=\frac{1}{3}\left(2^{3}-1^{3}\right)=\frac{7}{3}$. Let $m_{k}=\inf \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$. Note that $m_{k}=x_{k-1}{ }^{2}$ (since we can choose $t \in\left[x_{k-1}, x_{k}\right]$ arbitrarily close to x_{k-1} with $\left.t \notin \mathbb{Q}\right)$, and so

$$
L(f, X)=\sum_{k=1}^{n} m_{k} \Delta_{k} x=\sum_{k=1}^{n} x_{k-1}^{2} \Delta_{k} x \leq \sum_{k=1}^{n} s_{k}^{2} \Delta_{k} x=\frac{7}{3}
$$

Now let $\epsilon>0$ be arbitrary. Choose a partition $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[1,2]$ with $|X|<\frac{\epsilon}{3}$. As above, let $s_{k}=\sqrt{\frac{1}{3}\left(x_{k-1}^{2}+x_{k-1} x_{k}+x_{k}^{2}\right)}$ so that $\sum_{k=1}^{n} s_{k}^{2} \Delta_{k} x=\frac{7}{3}$, and let $m_{k}=\inf \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}=x_{k-1}^{2}$. Then

$$
\begin{aligned}
\frac{7}{3}-L(f, X) & =\sum_{k=1}^{n} s_{k}^{2} \Delta_{k} x-\sum_{k=1}^{n} x_{k-1}{ }^{2} \Delta_{k} x=\sum_{k=1}^{n}\left(s_{k}{ }^{2}-x_{k-1}^{2}\right) \Delta_{k} x \leq \sum_{k=1}^{n}\left(x_{k}^{2}-x_{k-1}^{2}\right) \Delta_{k} x \\
& \leq \sum_{k=1}^{n}\left(x_{k}{ }^{2}-x_{k-1}{ }^{2}\right)|X|<\frac{\epsilon}{3} \sum_{k=1}^{n}\left(x_{k}{ }^{2}-x_{k-1}^{2}\right)=\frac{\epsilon}{3}\left(2^{2}-1^{2}\right)=\epsilon
\end{aligned}
$$

5: (a) Find $\int_{a}^{b} x^{3} d x$ by evaluating the limit of a sequence of Riemann sums.
Solution: Let $f(x)=x^{3}$ and let $X_{n}=\left(x_{n, 0}, x_{n, 1}, \cdots, x_{n, n}\right)$ where $x_{n, k}=a+\frac{b-a}{n} k$ so $\Delta_{n, k} x=\frac{b-a}{n}$. Then

$$
\begin{aligned}
\int_{a}^{b} x^{3} d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{n, k}\right) \Delta_{n, k} x \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(a+\frac{b-a}{n} k\right)^{3}\left(\frac{b-a}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(a^{3}+3 a^{2}\left(\frac{b-a}{n}\right) k+3 a\left(\frac{b-a}{n}\right)^{2} k^{2}+\left(\frac{b-a}{n}\right)^{3} k^{3}\right)\left(\frac{b-a}{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(a^{3}\left(\frac{b-a}{n}\right) \sum_{k=1}^{n} 1+3 a^{2}\left(\frac{b-a}{n}\right)^{2} \sum_{k=1}^{n} k+3 a\left(\frac{b-a}{n}\right)^{3} \sum_{k=1}^{n} k^{2}+\left(\frac{b-a}{n}\right)^{4} \sum_{k=1}^{n} k^{4}\right) \\
& =\lim _{n \rightarrow \infty}\left(a^{3}\left(\frac{b-a}{n}\right) n+3 a^{2}\left(\frac{b-a}{n}\right)^{2} \frac{n(n+1)}{2}+3 a\left(\frac{b-a}{n}\right)^{3} \frac{n(n+1)(2 n+1)}{6}+\left(\frac{b-a}{n}\right)^{4} \frac{n^{2}(n+1)^{2}}{4}\right) \\
& =a^{3}(b-a)+\frac{3}{2} a^{2}(b-a)^{2}+a(b-a)^{3}+\frac{1}{4}(b-a)^{4} \\
& =\frac{1}{4}(b-a)\left(4 a^{3}+6 a^{2}(b-a)+4 a(b-a)^{2}+(b-a)^{3}\right) \\
& =\frac{1}{4}(b-a)\left(4 a^{3}+6 a b^{2}-6 a^{3}+4 a b^{2}-8 a^{2} b+4 a^{3}+b^{3}-3 a b^{2}+3 a^{2} b-a^{3}\right) \\
& =\frac{1}{4}(b-a)\left(a^{3}+a^{2} b+a b^{2}+b^{3}\right) \\
& =\frac{1}{4}\left(b^{4}-a^{4}\right) .
\end{aligned}
$$

(b) Find $\int_{0}^{8} \sqrt[3]{x} d x$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x)=\sqrt[3]{x}$ and let $X_{n}=\left(x_{n, 0}, x_{n, 1}, \cdots, x_{n, n}\right)$ where $x_{n, k}=\left(\frac{2 k}{n}\right)^{3}$. We have

$$
\Delta_{n, k} x=x_{n, k}-x_{n, k-1}=\left(\frac{2 k}{n}\right)^{3}-\left(\frac{2(k-1)}{n}\right)^{3}=\frac{8}{n^{3}}\left(k^{3}-(k-1)^{3}\right)=\frac{8}{n^{3}}\left(3 k^{2}-3 k+1\right) .
$$

Note that $3 k^{2}-3 k+1$ is increasing for $k \geq 1$ (since $g(x)=3 x^{2}-3 x+1$ is increasing for $x \geq-\frac{1}{2}$) and so we have $\left|X_{n}\right|=\Delta_{n, n} x=\frac{8}{n^{3}}\left(3 n^{2}-3 n+1\right) \rightarrow 0$ as $n \rightarrow \infty$. Thus

$$
\begin{aligned}
\int_{0}^{\infty} \sqrt[3]{x} d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{n, k}\right) \Delta_{n, k} x \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{2 k}{n}\right)\left(\frac{8}{n^{3}}\right)\left(3 k^{2}-3 k+1\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{48}{n^{4}} \sum_{k=1}^{n} k^{3}+\frac{48}{n^{4}} \sum_{k=1}^{n} k^{2}+\frac{16}{n^{4}} \sum_{k=1}^{n} k\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{48}{n^{4}} \frac{n^{2}(n+1)^{2}}{4}-\frac{48}{n^{4}} \frac{n(n+1)(2 n+1)}{6}+\frac{16}{n^{4}} \frac{n(n+1)}{2}\right) \\
& =\frac{48}{4}-0+0 \\
& =12 .
\end{aligned}
$$

6: (a) Find $\int_{1}^{2} \frac{1}{x} d x$ by evaluating the limit of a sequence of Riemann sums.
Solution: Let $f(x)=\frac{1}{x}$ and let $X_{n}=\left(x_{n, 0}, x_{n, 1}, \cdots, x_{n, n}\right)$ with $x_{n, k}=2^{k / n}$. Note that

$$
\Delta_{n, k} x=x_{n, k}-x_{n, k-1}=2^{k / n}-2^{(k-1) / n}=2^{k / n}\left(1-2^{-1 / n}\right)
$$

Since $2^{k / n}$ is increasing with k, we have $\left|X_{n}\right|=\Delta_{n, n} x=2\left(1-2^{-1 / n}\right) \rightarrow 0$ as $n \rightarrow \infty$, and so

$$
\begin{aligned}
\int_{1}^{2} \frac{1}{x} d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{n, k}\right) \Delta_{n, k} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} 2^{-k / n} 2^{k / n}\left(1-2^{-1 / n}\right) \\
& =\lim _{n \rightarrow \infty}\left(1-2^{-1 / n}\right) \sum_{k=1}^{n}=\lim _{n \rightarrow \infty}\left(1-2^{-1 / n}\right) n=\lim _{n \rightarrow \infty} \frac{1-2^{-1 / n}}{\frac{1}{n}} \\
& =\lim _{x \rightarrow 0} \frac{1-2^{-x}}{x}=\lim _{x \rightarrow 0} \frac{\ln 2 \cdot 2^{-x}}{1} \quad \text { by l'Hospital's Rule } \\
& =\ln 2 .
\end{aligned}
$$

(b) Find $\int_{1}^{2} \ln x d x$ by evaluating the limit of a sequence of Riemann sums.

Solution: We shall need a formula for $S=\sum_{k=1}^{n} k r^{k}$. We have

$$
\begin{aligned}
S & =1 r+2 r^{2}+3 r^{3}+\cdots n r^{n} \text { and } \\
r S & =1 r^{2}+2 r^{3}+\cdots+(n-1) r^{n}+n r^{n+1}
\end{aligned}
$$

so that

$$
r S-S=n r^{n+1}-\left(r+r^{2}+r^{3}+\cdots+r^{n}\right)=n r^{n+1}-\frac{r^{n+1}-r}{r-1}=\frac{n r^{n+2}-n r^{n+1}-r^{n+1}-r}{r-1}
$$

and hence

$$
\sum_{k=1}^{n} k r^{k}=S=\frac{n r^{n+2}-(n+1) r^{n+1}-r}{(r-1)^{2}}
$$

Now let $f(x)=\ln x$ and let $X_{n}=\left(x_{n, 0}, x_{n, 1}, \cdots, x_{n, n}\right)$ with $x_{n, k}=e^{k \ln 2 / n}=2^{k / n}$, as above. Then

$$
\begin{aligned}
\int_{1}^{2} \ln x d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{n, k}\right) \Delta_{n, k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{k \ln 2}{n}\right)\left(2^{k / n}\right)\left(1-2^{-1 / n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{\ln 2}{n}\right)\left(1-2^{-1 / n}\right) \sum_{k=1}^{n} k\left(2^{1 / n}\right)^{k} \\
& =\lim _{n \rightarrow \infty} \frac{\ln 2}{n} \cdot \frac{2^{1 / n}-1}{2^{1 / n}} \cdot \frac{2^{1 / n}\left(n 2^{(n+1) / n}-(n+1) 2+1\right)}{\left(2^{1 / n}-1\right)^{2}}, \text { by the formula for } \sum_{k=1}^{n} k r^{k} \\
& =\lim _{n \rightarrow \infty} \frac{\ln 2\left(2^{(n+1) / n}-\frac{n+1}{n} 2+\frac{1}{n}\right)}{2^{1 / n}-1}=\lim _{n \rightarrow \infty} \frac{\ln 2\left(2 \cdot 2^{1 / n}-2-\frac{2}{n}+\frac{1}{n}\right)}{2^{1 / n}-1} \\
& =\lim _{n \rightarrow \infty} \frac{\ln 2\left(2\left(2^{1 / n}-1\right)-\frac{1}{n}\right)}{2^{1 / n}-1}=\ln 2\left(2-\lim _{n \rightarrow \infty} \frac{\frac{1}{n}}{2^{1 / n}-1}\right) \\
& =\ln 2\left(2-\lim _{x \rightarrow 0} \frac{x}{2^{x}-1}\right)=\ln 2\left(2-\lim _{x \rightarrow 0} \frac{1}{\ln 2 \cdot 2^{x}}\right) \quad, \text { by l'Hospital's Rule } \\
& =\ln 2\left(2-\frac{1}{\ln 2}\right)=2 \ln 2-1 .
\end{aligned}
$$

7: (a) Find $\int_{0}^{\pi} \sin x d x$ by evaluating the limit of a sequence of Riemann sums.
Solution: Let $f(x)=\sin x$ and let X_{n} be the partition of $[0, \pi]$ into n equal-sized subintervals, so $x_{n, k}=\frac{\pi k}{n}$ and $\Delta_{n, k} x=\frac{\pi}{n}$. Then we have

$$
\int_{0}^{\pi} \sin x d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{n, k}\right) \Delta_{n, k} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\pi}{n} \sin \left(\frac{k \pi}{n}\right) .
$$

To find a formula for the sum $\sum_{k=1}^{n} \sin \left(\frac{k \pi}{n}\right)$, let $\alpha=e^{i \pi / n}$ so $\sin \frac{k \pi}{n}=\operatorname{Im}\left(\alpha^{k}\right)$. Note that $\alpha^{n}=-1$ and $\alpha \bar{\alpha}=1$, so we have

$$
\begin{aligned}
\sum_{k=1}^{n} \sin \frac{k \pi}{n} & =\operatorname{Im}\left(\sum_{k=1}^{n} \alpha^{k}\right)=\operatorname{Im}\left(\frac{\alpha\left(1-\alpha^{n}\right)}{1-\alpha}\right)=\operatorname{Im}\left(\frac{2 \alpha}{1-\alpha}\right)=\operatorname{Im}\left(\frac{2 \alpha(1-\bar{\alpha})}{(1-\alpha)(1-\bar{\alpha})}\right) \\
& =\operatorname{Im}\left(\frac{2(\alpha-\alpha \bar{\alpha})}{1-2 \operatorname{Re}(\alpha)+\alpha \bar{\alpha}}\right)=\operatorname{Im}\left(\frac{\alpha-1}{1-\operatorname{Re}(\alpha)}\right)=\frac{\operatorname{Im}(\alpha)}{1-\operatorname{Re}(\alpha)}=\frac{\sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}} .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\int_{0}^{\pi} \sin x d & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{\pi}{n} \sin \left(\frac{k \pi}{n}\right)=\lim _{n \rightarrow \infty} \frac{\frac{\pi}{n} \sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}}=\lim _{x \rightarrow 0} \frac{x \sin x}{1-\cos x} \\
& =\lim _{x \rightarrow 0} \frac{\sin x+x \cos x}{\sin x}, \text { by l'Hospital's Rule } \\
& =\lim _{x \rightarrow 0} \frac{\cos x+\cos x-x \sin x}{\cos x}, \text { by l'Hospital's Rule again } \\
& =2
\end{aligned}
$$

(b) Find $\int_{0}^{1} \sqrt{1-x^{2}} d x$ by evaluating the limit of a sequence of Riemann sums.

Solution: Let $f(x)=\sqrt{1-x^{2}}$. Let $X_{n}=\left\{x_{n, 0}, x_{n, 1}, \cdots, x_{n, n}\right\}$ where $x_{n, k}=\sin \left(\frac{k \pi}{2 n}\right)$. We have

$$
\begin{aligned}
\Delta_{n, k} x & =\sin \left(\frac{k \pi}{2 n}\right)-\sin \left(\frac{(k-1) \pi}{2 n}\right) \\
& =\sin \left(\frac{k \pi}{2 n}\right)-\sin \left(\frac{k \pi}{2 n}\right) \cos \left(\frac{\pi}{2 n}\right)+\cos \left(\frac{k \pi}{2 n}\right) \sin \left(\frac{k \pi}{2 n}\right) \\
& =\sin \left(\frac{k \pi}{2 n}\right)\left(1-\cos \left(\frac{\pi}{2 n}\right)\right)+\cos \left(\frac{k \pi}{2 n}\right) \sin \left(\frac{\pi}{2 n}\right) .
\end{aligned}
$$

Note that $\left|X_{n}\right| \leq \Delta_{n, k} x \leq 1-\cos \frac{\pi}{2 n}+\sin \frac{\pi}{2 n} \rightarrow 0$ as $n \rightarrow \infty$. Using the formula $\sum_{k=1}^{n} \sin \frac{k \pi}{n}=\frac{\sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}}$, which we derived in the solution to Part (a), and the formula $\sum_{k=1}^{n} \cos \frac{k \pi}{n}=-1$ (which could be derived in the same way as the previous formula, but can also be seen immediately using the symmetry $\left.\cos \frac{k \pi}{n}=-\cos \frac{(n-k) \pi}{n}\right)$, we have

$$
\begin{aligned}
\int_{0}^{1} \sqrt{1-x^{2}} d x & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \sqrt{1-\sin ^{2}\left(\frac{k \pi}{2 n}\right)} \Delta_{n, k} x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\cos \frac{k \pi}{2 n}\right)\left(\sin \frac{k \pi}{2 n}\left(1-\cos \frac{\pi}{2 n}\right)+\cos \frac{k \pi}{2 n} \sin \frac{\pi}{2 n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{1}{2} \sin \frac{k \pi}{n}\left(1-\cos \frac{\pi}{2 n}\right)+\frac{1}{2}\left(1+\cos \frac{k \pi}{n}\right) \sin \frac{\pi}{2 n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{2}\left(1-\cos \frac{\pi}{2 n}\right) \sum_{k=1}^{n} \sin \frac{k \pi}{n}+\frac{1}{2} \sin \frac{\pi}{2 n} \sum_{i=1}^{n} 1+\frac{1}{2} \sin \frac{\pi}{2 n} \sum_{k=1}^{n} \cos \frac{k \pi}{n}\right) \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{2}\left(1-\cos \frac{\pi}{2 n}\right) \frac{\sin \frac{\pi}{n}}{1-\cos \frac{\pi}{n}}+\frac{1}{2} n \sin \frac{\pi}{2 n}-\frac{1}{2} \sin \frac{\pi}{2 n}\right) \\
& =0+\frac{\pi}{4}-0=\frac{\pi}{4}, \text { where we used l'Hôpital's Rule. }
\end{aligned}
$$

8: (a) Show that if f is integrable on $[a, b]$ then f^{2} is integrable on $[a, b]$.
Solution: Suppose that f is integrable on $[a, b]$. Then we know that $|f|$ is also integrable on $[a, b]$. Let M be an upper bound for $|f|$. Let $\epsilon>0$ be arbitrary. Choose a partition X of $[a, b]$ so that $U(|f|, X)-L(|f|, X)<\frac{\epsilon}{2 M}$. Note that $M_{k}\left(f^{2}\right)=M_{k}(|f|)^{2}$ and $m_{k}\left(f^{2}\right)=m_{k}(|f|)^{2}$ so we have

$$
\begin{aligned}
M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right) & =M_{k}(|f|)^{2}-m_{k}(|f|)^{2} \\
& =\left(M_{k}(|f|)-m_{k}(|f|)\right)\left(M_{k}(|f|)+m_{k}(|f|)\right) \\
& \leq\left(M_{k}(|f|)-m_{k}(|f|)\right) \cdot 2 M
\end{aligned}
$$

Thus

$$
\begin{aligned}
U\left(f^{2}, X\right)-L\left(f^{2}, X\right) & =\sum_{k-1}^{n}\left(M_{k}\left(f^{2}\right)-m_{k}\left(f^{2}\right)\right) \Delta_{k} x \\
& \leq \sum_{k=1}^{n}\left(M_{k}(|f|)-m_{k}(|f|)\right) \cdot 2 M \cdot \Delta_{k} x \\
& =2 M(U(|f|, X)-L(|f|, X))<\epsilon
\end{aligned}
$$

(b) Show that if f and g are both integrable on $[a, b]$, then $f g$ is integrable on $[a, b]$.

Solution: Suppose that f and g are both integrable on $[a, b]$. Then, by linearity, $(f+g)$ is also integrable and so f^{2}, g^{2} and $(f+g)^{2}$ are all integrable by part (a). Since $f g=\frac{1}{2}\left((f+g)^{2}-f^{2}-g^{2}\right)$, it is integrable too, by linearity.
(c) Show that if f is integrable and non-negative on $[a, b]$, then \sqrt{f} is integrable on $[a, b]$.

Solution: Suppose that f is integrable and non-negative on $[a, b]$. When $X=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ is a partition of $[a, b]$, let us write $M_{k}(\sqrt{f})=\sup \left\{\sqrt{f(t)} \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$ and $M_{k}(f)=\sup \left\{f(t) \mid t \in\left[x_{k-1}, x_{k}\right]\right\}$, and similarly for $m_{k}(\sqrt{f})$ and $m_{k}(f)$. Note that $M_{k}(f)=M_{k}(\sqrt{f})^{2}$ and $m_{k}(f)=m_{k}(\sqrt{f})^{2}$, and so we have

$$
M_{k}(f)-m_{k}(f)=\left(M_{k}(\sqrt{f})-m_{k}(\sqrt{f})\right)\left(M_{k}(\sqrt{f})+m_{k}(\sqrt{f})\right)
$$

For any constant $c>0$, when $M_{k}(\sqrt{f})<c$ we have $M_{k}(\sqrt{f})-m_{k}(\sqrt{f})<c$, and when $M_{k}(\sqrt{f})>c$ we have $M_{k}(\sqrt{f})+m_{k}(\sqrt{f})>c$ so that $M_{k}(f)-m_{k}(f) \geq\left(M_{k}(\sqrt{f})-m_{k}(\sqrt{f})\right) c$, that is $M_{k}(\sqrt{f})-m_{k}(\sqrt{f}) \leq$ $\frac{1}{c}\left(M_{k}(f)-m_{k}(f)\right)$. Thus for any partition X and any constant $c>0$ we have
$\sum_{k \text { such that } M_{k}(\sqrt{f})<c}\left(M_{k}(\sqrt{f})-m_{k}(\sqrt{f})\right) \Delta_{k} x \leq \sum_{k=1}^{n} c \Delta_{k} x=c(b-a)$, and
$\sum_{k \text { such that } M_{k}(\sqrt{f}) \geq c}\left(M_{k}(\sqrt{f})-m_{k}(\sqrt{f})\right) \Delta_{k} x \leq \sum_{k=1}^{n} \frac{1}{c}\left(M_{k}(f)-m_{k}(f)\right) \Delta_{k} x=\frac{1}{c}(U(f, X)-L(f, X))$.
Now, let $\epsilon>0$. Set $c=\frac{\epsilon}{2(b-a)}$ and choose a partition X of $[a, b]$ such that $U(f, X)-L(f, X)<\frac{\epsilon^{2}}{4(b-a)}$. Then

$$
\begin{aligned}
U(\sqrt{f}, X)- & L(\sqrt{f}, X)=\sum_{k=1}^{n}\left(M_{k}(\sqrt{f})-m_{k}(\sqrt{f})\right) \Delta_{k} x \\
& =\sum \quad \sum_{k}\left(M_{k}(\sqrt{f})-m_{k}(\sqrt{f})\right) \Delta_{k} x+\sum_{k \text { with } M_{k}(\sqrt{f})<c}\left(M_{k}(\sqrt{f}) \geq c\right. \\
& \leq c(b-a)+\frac{1}{c}(U(f, X)-L(f, X)) \\
& <\frac{\epsilon}{2(b-a)}(b-a)+\frac{2(b-a)}{\epsilon} \frac{\left.\epsilon_{k}(\sqrt{f})\right) \Delta_{k} x}{4(b-a)}=\epsilon
\end{aligned}
$$

Thus \sqrt{f} is integrable on $[a, b]$.

9: Determine (with proof) which of the following statements are true.
(a) If $f:[a, b] \rightarrow[c, d]$ is integrable on $[a, b]$ and $g:[c, d] \rightarrow \mathbb{R}$ is integrable on $[c, d]$ then the composite $g \circ f$ must be integrable on $[a, b]$.
Solution: This is false. Indeed let $f:[0,1] \rightarrow[0,1]$ be an integrable function with $f(x)>0$ whenever $x \in \mathbb{Q}$ and $f(x)=0$ whenever $x \notin \mathbb{Q}$, such as the function $f(x)$ from Problem $2(\mathrm{c})$, and let $g:[0,1] \rightarrow[0,1]$ be the map given by $g(0)=0$ and $g(x)=1$ for $x>0$. We know that g is integrable on $[0,1]$ by Problem 2(b). But the composite function $g \circ f$ is not integrable on $[0,1]$, indeed we have $g(f(x))=0$ whenever $x \notin \mathbb{Q}$ and $g(f(x))=1$ whenever $x \in \mathbb{Q}$, and we have seen (in Example 1.4) that this function is not integrable.
(b) If $f(x)=0$ for all but countably many $x \in[a, b]$ and $f(x)=1$ for countably many $x \in[a, b]$, then f cannot be integrable on $[a, b]$.
Solution: This is false. Indeed, let

$$
f(x)=\left\{\begin{array}{l}
1 \text { if } x=1-\frac{1}{2^{n}} \text { for some integer } n \geq 1 \\
0 \text { otherwise }
\end{array}\right.
$$

We shall show that f is integrable on $[0,1]$. Let $\epsilon>0$. We shall find a partition X of $[a, b]$ such that $U(f, X)-L(f, X)<\epsilon$. Choose n so that $\frac{n+1}{2^{n}}<\epsilon$ (we can do this since $\lim _{n \rightarrow \infty} \frac{n+1}{2^{n}}=0$, by l'Hôptal's Rule). For $k=1,2, \cdots, n$ let $x_{k}=1-\frac{1}{2^{k}}-\frac{1}{2^{n+1}}$ and $y_{k}=1-\frac{1}{2^{k}}+\frac{1}{2^{n+1}}$. Then $y_{k}-x_{k}=\frac{1}{2^{n}}$, and $x_{k}-y_{k-1}=\frac{1}{2^{k}}-\frac{1}{2^{n}}$, so for $k<n$ we have $x_{k}>y_{k-1}$ and we have $x_{n}=y_{n-1}$ and $y_{n}=1-\frac{1}{2^{n+1}}$. Let X be the partition $\left\{0, x_{1}, y_{1}, x_{2}, y_{2}, \cdots, x_{n-1}, y_{n-1}=x_{n}, y_{n}, 1\right\}$. On every subinterval, the minimum value of f is equal to 0 , and so $L(f, X)=0$. On each of the subintervals $\left[x_{k}, y_{k}\right]$, and also in the final subinterval $\left[y_{n}, 1\right]$, the maximum value of f is equal to 1 , while in all the other subintervals, the maximum value of f is 0 , and so

$$
\begin{aligned}
U(f, X) & \left.=0+\left(y_{1}-x_{1}\right)+0+\left(y_{2}-x_{2}\right)+0+\cdots+0+\left(y_{n-1}-x_{n-1}\right)+\left(y_{n}-x_{n}\right)+\left(1-y_{n}\right)\right) \\
& =n \frac{1}{2^{n}}+\frac{1}{2^{n+1}}<\frac{n+1}{2^{n}}<\epsilon
\end{aligned}
$$

Thus $U(f, X)-L(f, X)<\epsilon$ as required.
(c) If f is integrable on $[a, b]$ and the function $F(x)=\int_{a}^{x} f(t) d t$ is differentiable with $F^{\prime}=f$ on $[a, b]$ then f is continuous on $[a, b]$.
Solution: This is false. To find a counterexample, consider the function G given by $G(x)=x^{2} \sin \frac{1}{x}$ when $x \neq 0$ and $G(0)=0$. Note that G is differentiable. Let $f(x)=G^{\prime}(x)$ for $x \in\left[-\frac{1}{\pi}, \frac{1}{\pi}\right]$, so we have $f(x)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}$ for $x \neq 0$ and $f(0)=0$. Since f is continuous except at $0, f$ is integrable by part (a). We know, from the Fundamental Theorem, that the function $F(x)=\int_{-1 / \pi}^{x} f(t) d t$ is continuous on $\left[-\frac{1}{\pi}, \frac{1}{\pi}\right]$ and is differentiable with $F^{\prime}(x)=f(x)$ for all $x \neq 0$. For $x<0$ we have $F^{\prime}=f=G^{\prime}$ so $F=G+c_{1}$ for some constant c_{1}. Since $F\left(-\frac{1}{\pi}\right)=0=G\left(-\frac{1}{\pi}\right)$, we must have $c_{1}=0$, and so $F(x)=G(x)$ for all $x<0$. Since F and G are both continuous at 0 , we also have have $F(0)=G(0)=0$. For $x>0$ we again have $F^{\prime}=f=G^{\prime}$ so $F=G+c_{2}$ for some constant c_{2}. Since F and G are both continuous at 0 with $F(0)=G(0)$, we must have $c_{2}=0$ and so $F(x)=G(x)$ for all x. Thus F is differentiable with $F^{\prime}=f$ for all x (including 0), but f is not continuous at 0 .

