- 1: (a) Let $f(x) = \frac{8x}{2^{3x}}$ and let X be the partition of [0, 2] into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the right endpoints of the subintervals.
 - (b) Let $f(x) = \frac{1}{x}$ and let X be the partition of $\left[\frac{1}{5}, \frac{13}{5}\right]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the midpoints of the subintervals.

(c) Let $f(x) = 4^{\cos x}$ and let $X = \{0, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{3\pi}{2}, \frac{5\pi}{3}, 2\pi\}$. Find the average of the upper and lower Riemann sums for f on X.

2: (a) Suppose that f is increasing on [a, b]. Show that f is integrable on [a, b].

(b) Suppose that f(x) = 0 for all but finitely many points $x \in [a, b]$. Show that f is integrable on [a, b]. (c) Define $f: [0, 1] \to \mathbb{R}$ as follows. Let f(0) = f(1) = 0. For $x \in (0, 1)$ with $x \notin \mathbb{Q}$, let f(x) = 0. For $x \in (0, 1)$ with $x \in \mathbb{Q}$, write $x = \frac{a}{b}$ where $0 < a, b \in \mathbb{Z}$ with gcd(a, b) = 1, and then let $f(x) = \frac{1}{b}$. Show that f is integrable in [0, 1].

- **3:** (a) Let f be continuous with $f \ge 0$ on [a, b]. Show that if $\int_a^b f = 0$ then f = 0 on [a, b]. (b) Find g'(1) where $g(x) = \int_{3x-3}^{x^2+1} \sqrt{1+t^3} dt$. (c) Find $\lim_{n \to \infty} \sum_{i=1}^n \frac{1}{n+i}$.
- 4: (a) Let $0 \le a < b$. From the definition, show that $f(x) = x^2$ is integrable on [a, b] with $\int_a^b f = \frac{1}{3}(b^3 a^3)$. (b) Define $f: [1, 2] \to \mathbb{R}$ by $f(x) = \begin{cases} x^2 , \text{ if } x \notin \mathbb{Q} \\ 2x , \text{ if } x \in \mathbb{Q} \end{cases}$. From the definition, show that U(f) = 3 and $L(f) = \frac{7}{3}$.
- 5: (a) Find $\int_{a}^{b} x^{3} dx$ by evaluating the limit of a sequence of Riemann sums. (b) Find $\int_{0}^{8} \sqrt[3]{x} dx$ by evaluating the limit of a sequence of Riemann sums.
- 6: (a) Find $\int_{1}^{2} \frac{1}{x} dx$ by evaluating the limit of a sequence of Riemann sums. (b) Find $\int_{1}^{2} \ln x dx$ by evaluating the limit of a sequence of Riemann sums.
- 7: (a) Find $\int_0^{\pi} \sin x \, dx$ by evaluating the limit of a sequence of Riemann sums. (b) Find $\int_0^1 \sqrt{1-x^2} \, dx$ by evaluating the limit of a sequence of Riemann sums.
- 8: (a) Show that if f is integrable on [a, b] then f^2 is integrable on [a, b].
 - (b) Show that if f and g are both integrable on [a, b], then fg is integrable on [a, b].
 - (c) Show that if f is integrable and non-negative on [a, b], then \sqrt{f} is integrable on [a, b].
- 9: Determine (with proof) which of the following statements are true.

(a) If $f : [a, b] \to [c, d]$ is integrable on [a, b] and $g : [c, d] \to \mathbb{R}$ is integrable on [c, d] then the composite $g \circ f$ must be integrable on [a, b].

(b) If f(x) = 0 for all but countably many $x \in [a, b]$ and f(x) = 1 for countably many $x \in [a, b]$, then f cannot be integrable on [a, b].

(c) If f is integrable on [a, b] and the function $F(x) = \int_{a}^{x} f(t) dt$ is differentiable with F' = f on [a, b] then f is continuous on [a, b].