PMATH 333, Exercises for Chapter 3

1: (a) Let $f(x)=\frac{8 x}{2^{3 x}}$ and let X be the partition of $[0,2]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the right endpoints of the subintervals.
(b) Let $f(x)=\frac{1}{x}$ and let X be the partition of $\left[\frac{1}{5}, \frac{13}{5}\right]$ into 6 equal-sized subintervals. Find the Riemann sum for f on X which uses the midpoints of the subintervals.
(c) Let $f(x)=4^{\cos x}$ and let $X=\left\{0 \cdot \frac{\pi}{3}, \frac{\pi}{2}, \frac{2 \pi}{3}, \pi, \frac{4 \pi}{3}, \frac{3 \pi}{2}, \frac{5 \pi}{3}, 2 \pi\right\}$. Find the average of the upper and lower Riemann sums for f on X.

2: (a) Suppose that f is increasing on $[a, b]$. Show that f is integrable on $[a, b]$.
(b) Suppose that $f(x)=0$ for all but finitely many points $x \in[a, b]$. Show that f is integrable on $[a, b]$.
(c) Define $f:[0,1] \rightarrow \mathbb{R}$ as follows. Let $f(0)=f(1)=0$. For $x \in(0,1)$ with $x \notin \mathbb{Q}$, let $f(x)=0$. For $x \in(0,1)$ with $x \in \mathbb{Q}$, write $x=\frac{a}{b}$ where $0<a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$, and then let $f(x)=\frac{1}{b}$. Show that f is integrable in $[0,1]$.

3: (a) Let f be continuous with $f \geq 0$ on $[a, b]$. Show that if $\int_{a}^{b} f=0$ then $f=0$ on $[a, b]$.
(b) Find $g^{\prime}(1)$ where $g(x)=\int_{3 x-3}^{x^{2}+1} \sqrt{1+t^{3}} d t$.
(c) Find $\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n+i}$.

4: (a) Let $0 \leq a<b$. From the definition, show that $f(x)=x^{2}$ is integrable on $[a, b]$ with $\int_{a}^{b} f=\frac{1}{3}\left(b^{3}-a^{3}\right)$.
(b) Define $f:[1,2] \rightarrow \mathbb{R}$ by $f(x)=\left\{\begin{array}{l}x^{2}, \text { if } x \notin \mathbb{Q} \\ 2 x, \text { if } x \in \mathbb{Q} .\end{array}\right.$ From the definition, show that $U(f)=3$ and $L(f)=\frac{7}{3}$.

5: (a) Find $\int_{a}^{b} x^{3} d x$ by evaluating the limit of a sequence of Riemann sums.
(b) Find $\int_{0}^{8} \sqrt[3]{x} d x$ by evaluating the limit of a sequence of Riemann sums.

6: (a) Find $\int_{1}^{2} \frac{1}{x} d x$ by evaluating the limit of a sequence of Riemann sums.
(b) Find $\int_{1}^{2} \ln x d x$ by evaluating the limit of a sequence of Riemann sums.

7: (a) Find $\int_{0}^{\pi} \sin x d x$ by evaluating the limit of a sequence of Riemann sums.
(b) Find $\int_{0}^{1} \sqrt{1-x^{2}} d x$ by evaluating the limit of a sequence of Riemann sums.

8: (a) Show that if f is integrable on $[a, b]$ then f^{2} is integrable on $[a, b]$.
(b) Show that if f and g are both integrable on $[a, b]$, then $f g$ is integrable on $[a, b]$.
(c) Show that if f is integrable and non-negative on $[a, b]$, then \sqrt{f} is integrable on $[a, b]$.

9: Determine (with proof) which of the following statements are true.
(a) If $f:[a, b] \rightarrow[c, d]$ is integrable on $[a, b]$ and $g:[c, d] \rightarrow \mathbb{R}$ is integrable on $[c, d]$ then the composite $g \circ f$ must be integrable on $[a, b]$.
(b) If $f(x)=0$ for all but countably many $x \in[a, b]$ and $f(x)=1$ for countably many $x \in[a, b]$, then f cannot be integrable on $[a, b]$.
(c) If f is integrable on $[a, b]$ and the function $F(x)=\int_{a}^{x} f(t) d t$ is differentiable with $F^{\prime}=f$ on $[a, b]$ then f is continuous on $[a, b]$.

