1: (a) Let $x_k = \frac{2k+1}{k-1}$ for $k \ge 2$. Use the definition of the limit to show that $\lim_{k \to \infty} x_k = 2$ in \mathbb{R} .

Solution: For $k \geq 2$ and $\epsilon > 0$, we have

$$|x_k - 2| = \left|\frac{2k+1}{k-1} - 2\right| = \left|\frac{2k+1-2k+2}{k-1}\right| = \frac{3}{k-1}$$

and

$$\frac{3}{k-1} < \epsilon \iff \frac{k-1}{3} > \frac{1}{\epsilon} \iff k-1 > \frac{3}{\epsilon} \iff k > 1 + \frac{3}{\epsilon}.$$

Let $\epsilon > 0$. Choose $m \in \mathbb{Z}$ with $m > 1 + \frac{3}{\epsilon}$. For $k \in \mathbb{Z}_{\geq 2}$ with $k \geq m$ we have $k \geq m > 1 + \frac{3}{\epsilon}$ and hence, as shown above, $|x_k - 2| = \frac{3}{k-1} < \epsilon$.

(b) Let $x_1 = \frac{7}{2}$ and for $k \ge 1$ let $x_{k+1} = \frac{6}{5-a_k}$. Find $\lim_{k \to \infty} x_k$ if it exists in \mathbb{R} (with proof).

Solution: Suppose for now that $(x_k)_{k\geq 1}$ does converge, and let $a = \lim_{n \to \infty} x_k$. Then we also have $\lim_{k \to \infty} x_{k+1} = a$ and so taking the limit on both sides of the recursion formula $x_{k+1} = \frac{6}{5-a_k}$ gives

$$a = \frac{6}{5-a} \Longrightarrow 5a - a^2 = 6 \Longrightarrow a^2 - 5a + 6 = 0 \Longrightarrow (a - 2)(a - 3) = 0,$$

and so we must have a = 2 or a = 3.

We claim that $x_n < x_{n+1} < 2$ for all $n \ge 4$. We have $x_1 = \frac{7}{2}$, $x_2 = 4$, $x_3 = 6$, $x_4 = -6$ and $x_5 = \frac{6}{11}$, so the claim is true when n = 4. Let $k \ge 4$ and suppose the claim is true when n = k. Then we have

$$\begin{aligned} x_k < x_{k+1} < 2 \implies -x_k > -x_{k+1} > -2 \implies 5 - x_k > 5 - x_{k+1} > 3 \implies \frac{1}{5 - x_k} < \frac{1}{5 - x_{k+1}} < \frac{1}{3} \\ \implies \frac{6}{5 - x_k} < \frac{6}{5 - x_{k+1}} < 2 \implies x_{k+1} < x_{k+2} < 2, \end{aligned}$$

so the claim is true when n = k + 1. By induction, the claim is true for all $n \ge 4$. Thus $(x_n)_{n\ge 4}$ is increasing and is bounded above by 2, so (x_n) converges by the Monotone Convergence Theorem and $\lim_{n\to\infty} x_n \le 2$ by the Comparison Theorem. We showed above that the limit must be 2 or 3, and so we must have $\lim_{n\to\infty} x_n = 2$.

(c) Let $(x_k)_{k\geq p}$ and $(y_k)_{k\geq p}$ be sequences in \mathbb{R} with $\lim_{k\to\infty} x_k = c$ where $0 < c \in \mathbb{R}$, and $\lim_{k\to\infty} y_k = \infty$. Use the definition of the limit to show that $\lim_{k\to\infty} \frac{x_k}{y_k} = 0$.

Solution: Let $\epsilon > 0$. Since $x_k \to c$ we can choose $m_1 \in \mathbb{Z}$ so that $k \ge m_1 \Longrightarrow |x_k - c| < \frac{c}{2} \Longrightarrow \frac{c}{2} < x_k < \frac{3c}{2}$. Since $y_k \to \infty$, we can choose $m_2 \in \mathbb{Z}$ so that $k \ge m_2 \Longrightarrow y_k > \frac{3c}{2\epsilon}$. Let $m = \max\{m_1, m_2\}$. Then for $k \ge m$ we have $x_k < \frac{3c}{2}$ and we have $y_k > \frac{3c}{2\epsilon}$, and so $\frac{x_k}{y_k} < \frac{3c}{2}/\frac{3c}{2\epsilon} = \epsilon$. Thus $\frac{x_k}{y_k} \to 0$, as required. **2:** (a) Find a divergent sequence $(x_k)_{k\geq 0}$ in \mathbb{R} with $|x_k - x_{k-1}| \leq \frac{1}{k}$ for all $k \geq 1$.

Solution: Let $x_0 = 0$ and for $k \ge 1$, let $x_k = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k}$. Note that $|x_k - x_{k-1}| = x_k - x_{k-1} = \frac{1}{k}$ for all $k \ge 1$. Consider the subsequence $(x_{2^k})_{k\ge 0} = (x_1, x_2, x_4, x_8, \dots)$. We have $x_{2^0} = x_1 = 1$. Let $k \ge 0$ and suppose, inductively, that $x_{2^k} \ge 1 + \frac{k}{2}$. Then

$$\begin{split} x_{2^{k+1}} &= \left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{2^k}\right) + \left(\frac{1}{2^{k}+1} + \frac{1}{2^{k}+2} + \dots + \frac{1}{2^{k+1}}\right) \\ &= x_{2^k} + \left(\frac{1}{2^{k}+1} + \frac{1}{2^{k}+2} + \dots + \frac{1}{2^{k+1}}\right) \ge x_{2^k} + \left(\frac{1}{2^{k}+1} + \frac{1}{2^{k+1}} + \dots + \frac{1}{2^{k+1}}\right) \\ &= x_{2^k} + 2^k \cdot \frac{1}{2^{k+1}} = x_{2^k} + \frac{1}{2} \ge 1 + \frac{k}{2} + \frac{1}{2} = 1 + \frac{k+1}{2}. \end{split}$$

By induction, we have $x_{2^n} \ge 1 + \frac{n}{2}$ for all $n \ge 0$. Since (x_k) is increasing and $x_{2^n} \ge 1 + \frac{n}{2}$ for all $n \ge 0$, it follows that $x_k \to \infty$. Indeed, given $r \in \mathbb{R}$ we can choose n so that $1 + \frac{n}{2} > r$ and then for $m = 2^n$ we have $k \ge m \Longrightarrow k \ge 2^n \Longrightarrow x_k \ge x_{2^n} \ge 1 + \frac{n}{2} > r$.

(b) Let $(x_k)_{k\geq 0}$ be a sequence in \mathbb{R} with $|x_k - x_{k-1}| \leq \frac{1}{k^2}$ for all $k \geq 1$. Show that (x_k) converges in \mathbb{R} . Solution: Notice that for all $k \geq 2$ we have $\frac{1}{k^2} \leq \frac{1}{(k-1)k} = \frac{1}{k-1} - \frac{1}{k}$. It follows that for $1 \leq k < l$ we have

$$\begin{aligned} |x_k - x_l| &= \left| x_k - x_{k+1} + x_{k+1} - x_{k+2} + x_{k+2} - x_{k+3} + \dots - x_{l-1} + x_{l-1} - x_l \right| \\ &\leq |x_k - x_{k+1}| + |x_{k+1} - x_{k+2}| + |x_{k+2} - x_{k+3}| + \dots + |x_{l-1} - x_l| \\ &\leq \frac{1}{(k+1)^2} + \frac{1}{(k+2)^2} + \frac{1}{(k+3)^2} + \dots + \frac{1}{(l-1)^2} + \frac{1}{l^2} \\ &\leq \frac{1}{k(k+1)} + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+2)(k+3)} + \dots + \frac{1}{(l-2)(l-1)} + \frac{1}{(l-1)l} \\ &= \frac{1}{k} - \frac{1}{k+1} + \frac{1}{k+1} - \frac{1}{k+2} + \frac{1}{k+2} - \frac{1}{k+3} + \dots - \frac{1}{l-1} + \frac{1}{l-1} - \frac{1}{l} \\ &= \frac{1}{k} - \frac{1}{l} \leq \frac{1}{k}. \end{aligned}$$

Let $\epsilon > 0$. Choose $m \in \mathbb{Z}$ with $m > \frac{1}{\epsilon}$. For $k, l \ge m$ say with $k \le l$, if k = l then $|x_k - x_l| = 0$ and if k < l then, as shown above, $|x_k - x_l| \le \frac{1}{k} \le \frac{1}{m} < \epsilon$. Thus (x_k) is a Cauchy sequence, and so it converges by the Cauchy Criterion.

3: For a sequence $(x_k)_{k\geq p}$ in \mathbb{R} and for $a \in \mathbb{R}$ we say a is a **limiting value** of $(x_k)_{k\geq p}$ when

 $\forall \epsilon > 0 \ \forall m \in \mathbb{Z}_{>p} \ \exists k \in \mathbb{Z}_{>p} \ (k \ge m \text{ and } |x_k - a| \le \epsilon).$

We denote the set of limiting values of $(x_k)_{k\geq p}$ by $\operatorname{Lim}((x_k)_{k\geq p})$.

(a) Determine whether, for every sequence $(x_k)_{k \ge p}$ in \mathbb{R} , we have $\lim_{k \to \infty} x_k = a \Longrightarrow \operatorname{Lim}((x_k)_{k \ge p}) = \{a\}.$

Solution: This is true. Let $(x_k)_{k\geq p}$ be a sequence in \mathbb{R} with $x_k \to a$. We claim that $\operatorname{Lim}((x_k)) = \{a\}$. First we show that $\{a\} \subseteq \operatorname{Lim}((x_k))$. Let $\epsilon > 0$ and let $m \in \mathbb{Z}_{\geq p}$. Since $x_k \to a$ we can choose $m_0 \in \mathbb{Z}_{\geq p}$ so that $k \geq m_0 \Longrightarrow |x_k - a| < \epsilon$. Let $k = \max\{m, m_0\}$. Then $k \in \mathbb{Z}_{\geq p}$ with $k \geq m$ and $|x_k - a| < \epsilon$. This proves that $a \in \operatorname{Lim}((x_k))$, so we have $\{a\} \subseteq \operatorname{Lim}((x_k))$.

Conversely, we need to show that $\operatorname{Lim}((x_k)) \subseteq \{a\}$. Let $b \in \operatorname{Lim}((x_k))$. Suppose, for a contradiction, that $b \neq a$. Since $x_k \to a$, we can choose $m \in \mathbb{Z}_{\geq p}$ so that $k \geq m \Longrightarrow |x_k - a| < \frac{|b-a|}{2}$. Since $b \in \operatorname{Lim}((x_k))$, we can choose an index k with $k \geq m$ and $|x_k - b| \leq \frac{|b-a|}{2}$. Then we have

$$|b-a| = |b-x_k + x_k - a| \le |b-x_k| + |x_k - a| < \frac{|b-a|}{2} + \frac{|b-a|}{2} = |b-a|,$$

which is not possible. Thus we must have b = a, and this shows that $\text{Lim}((x_k)) \subseteq \{a\}$, as required.

(b) Determine whether, for every sequence $(x_k)_{k \ge p}$ in \mathbb{R} we have $\operatorname{Lim}((x_k)_{k \ge p}) = \{a\} \Longrightarrow \lim_{k \to \infty} x_k = a$.

Solution: This is false. For example, for the sequence $(x_k)_{k\geq 0}$ given by $x_k = a$ when k is even and $x_k = k$ when k is odd, we have $\operatorname{Lim}((x_k)) = \{a\}$ but $\lim_{k\to\infty} x_k \neq a$, indeed (x_k) diverges.

Here is a proof that $\operatorname{Lim}((x_k)) = \{a\}$. Given $\epsilon > 0$ and given $m \in \mathbb{N}$ we can choose an even number $k \ge m$ and then we have $|x_k - a| = |a - a| = 0 \le \epsilon$. This shows that $a \in \operatorname{Lim}((x_k))$ so we have $\{a\} \subseteq \operatorname{Lim}((x_k))$. Conversely, let $b \in \operatorname{Lim}((x_k))$. Suppose, for a contradiction, that $b \ne a$. Let $\epsilon = \frac{|b-a|}{2}$ and let m = |b-a| + |b|. Then for $k \ge m$, if k is even then $x_k = a$ so $|x_k - b| = |a - b| = 2\epsilon > \epsilon$, and if k is odd then $x_k = k$ so $|x_k - b| = |k - b| \ge k - |b| \ge m - |b| = |b - a| + |b| - |b| = |b - a| = 2\epsilon > \epsilon$. But this contradicts the fact that $b \in \operatorname{Lim}((x_k))$. Thus we must have b = a, and this shows that $\operatorname{Lim}((x_k)) \subseteq \{a\}$.

Here is a proof that $\lim_{k\to\infty} x_k \neq a$. Suppose, for a contradiction, that $x_k \to a$. Choose $m \in \mathbb{N}$ so that $k \geq m \implies |x_k - a| < 1$. Then for all $k \geq m$ we have $a - 1 < x_k < a + 1$. But we can choose an odd number $k \in \mathbb{N}$ with $k \geq \max\{m, a + 1\}$ to get $k \geq m$ with $x_k = k \geq a + 1$, giving the desired contradiction.

(c) Determine whether there exists a sequence $(x_k)_{k\geq p}$ in \mathbb{R} with $\operatorname{Lim}((x_k)_{k\geq p}) = \mathbb{R}$.

Solution: There does exist such a sequence (x_k) . For example, choose a surjective map $f : \mathbb{Z}^+ \to \mathbb{Q}$ and let $x_k = f(k)$ for $k \in \mathbb{Z}^+$. We claim that for this sequence $(x_k)_{k\geq 1}$, we have $\operatorname{Lim}((x_k)_{k\geq 1}) = \mathbb{R}$. Let $a \in \mathbb{R}$. Let $\epsilon > 0$ and let $m \in \mathbb{Z}^+$. Since \mathbb{Q} is dense in \mathbb{R} , we can choose distinct rational numbers $q_1, q_2, q_3, \dots \in \mathbb{Q}$ with $|q_i - a| \leq \epsilon$ for all $i \geq 1$. For each $i \geq 1$, since f is surjective we can choose $k_i \in \mathbb{Z}^+$ with $f(k_i) = q_i$. Note that the numbers k_i are distinct (since the q_i are distinct and f is a function). Since k_1, k_2, k_3, \dots are distinct, we can choose an index j such that $k_j \geq m$. For $k = k_j$ we have $k \geq m$ and $|x_k - a| = |f(k) - a| = |q_j - a| \leq \epsilon$. This shows that $a \in \operatorname{Lim}((x_k))$. Since $a \in \mathbb{R}$ was arbitrary, we have $\operatorname{Lim}((x_k)) = \mathbb{R}$.

Here is an example of a surjective map $f : \mathbb{Z}^+ \to \mathbb{Q}$: Given $n \in \mathbb{Z}^+$, write n (uniquely in the form) $n = 2^k (2\ell - 1)$ where $k \in \mathbb{N}$ and $\ell \in \mathbb{Z}^+$. Then define $f(n) = \frac{k/2}{\ell}$ if k is even, and $f(n) = -\frac{(k+1)/2}{\ell}$ is k is odd.

- 4: In this problem, we explore the rate at which the approximations found using Newton's Method approach a square root of a positive real number. Let $a \ge 0$. To approximate \sqrt{a} , let $x_1 \ge \sqrt{a}$ and for $k \ge 1$ let $x_{k+1} = \frac{1}{2}\left(x_k + \frac{a}{x_k}\right)$. For $k \ge 1$ let $\epsilon_k = x_k \sqrt{a}$.
 - (a) Show that (x_k) is decreasing with $x_k \to \sqrt{a}$.

Solution: We are given that $x_1 \ge \sqrt{a}$. Let $k \ge 1$ and suppose, inductively, that $x_k \ge \sqrt{a}$. Then

$$x_{k+1} - \sqrt{a} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right) - \sqrt{a} = \frac{1}{2 x_k} \left(x_k^2 - 2\sqrt{a} x_k + a \right) = \frac{1}{2 x_k} (x_k - \sqrt{a})^2 \ge 0$$

and so $x_{k+1} \ge \sqrt{a}$. By induction, it follows that $x_k \ge \sqrt{a}$ for all $k \ge 1$. This shows that the sequence (x_k) is bounded below by \sqrt{a} . For all $k \ge 1$, since $x_k \ge \sqrt{a}$ so that $x_k^2 \ge a$, we have

$$x_k - x_{k+1} = x_k - \frac{1}{2} \left(x_k + \frac{a}{x_k} \right) = \frac{1}{2} \left(x_k - \frac{a}{x_k} \right) = \frac{1}{2x_k} \left(x_k^2 - a \right) \ge 0$$

and so $x_k \ge x_{k+1}$. This shows that the sequence (x_k) is decreasing. Since (x_k) is decreasing and bounded below by \sqrt{a} , it converges with $\lim_{k\to\infty} x_k = \sup\{x_k\} \ge \sqrt{a}$. Let $u = \lim_{k\to\infty} x_k$. By taking the limit on both sides of the formula $x_{k+1} = \frac{1}{2}(x_k + \frac{a}{x_k})$ we obtain $u = \frac{1}{2}(u + \frac{a}{u})$, and

$$u = \frac{1}{2} \left(u + \frac{a}{u} \right) \Longrightarrow 2u^2 = u^2 + a \Longrightarrow u^2 = a \Longrightarrow u = \pm \sqrt{a} \Longrightarrow u = \sqrt{a}$$

since we know $u \ge \sqrt{a}$. Thus $x_k \to \sqrt{a}$.

(b) Show that for all $k \ge 1$ we have $\epsilon_{k+1} = \frac{\epsilon_k^2}{2x_k}$ and that $\frac{\epsilon_{k+1}}{2\sqrt{a}} \le \left(\frac{\epsilon_1}{2\sqrt{a}}\right)^{2^k}$.

Solution: For $k \ge 1$ we have

$$\epsilon_{k+1} = x_{k+1} - \sqrt{a} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right) - \sqrt{a} = \frac{x_k^2 - 2x_k\sqrt{a} + a}{2x_k} = \frac{(x_k - \sqrt{a})^2}{2x_k} = \frac{\epsilon_k^2}{2x_k}$$

Since $x_k \ge \sqrt{a}$ this gives $\epsilon_{k+1} = \frac{\epsilon_k^2}{2x_k} \le \frac{\epsilon_k^2}{2\sqrt{a}}$ so that $\frac{\epsilon_{k+1}}{2\sqrt{a}} \le \left(\frac{\epsilon_k}{2\sqrt{a}}\right)^2$. Using this formula repeatedly, we obtain

$$\frac{\epsilon_{k+1}}{2\sqrt{a}} \le \left(\frac{\epsilon_k}{2\sqrt{a}}\right)^2 \le \left(\frac{\epsilon_{k-1}}{2\sqrt{a}}\right)^{2^2} \le \left(\frac{\epsilon_{k-2}}{2\sqrt{a}}\right)^{2^3} \le \dots \le \left(\frac{\epsilon_1}{2\sqrt{a}}\right)^{2^k}$$

(c) Show that when a = 3 and $x_1 = 2$ we have $\epsilon_6 \le 4 \cdot 10^{-32}$.

Solution: Let
$$a = 3$$
 and $x_1 = 2$. Then $\frac{\epsilon_1}{2\sqrt{a}} = \frac{x_1 - \sqrt{a}}{2\sqrt{a}} = \frac{2-\sqrt{3}}{2\sqrt{3}} = \frac{1}{\sqrt{3}} - \frac{1}{2}$ Note that
 $\frac{1}{\sqrt{3}} - \frac{1}{2} \le \frac{1}{10} \iff \frac{1}{\sqrt{3}} \le \frac{3}{5} \iff 5 \le 3\sqrt{3} \iff 25 \le 9 \cdot 3 = 27,$

which is true, and so we have $\frac{\epsilon_1}{2\sqrt{a}} \leq \frac{1}{10}$. Using the formula $\frac{\epsilon_{k+1}}{2\sqrt{a}} \leq \left(\frac{\epsilon_1}{2\sqrt{a}}\right)^{2^*}$ with a = 3 and k = 5, gives $\frac{\epsilon_6}{2\sqrt{3}} \leq \left(\frac{\epsilon_1}{2\sqrt{3}}\right)^{32} \leq \left(\frac{1}{10}\right)^{32} = 10^{-32}$

and so $\epsilon_6 \le 2\sqrt{3} \cdot 10^{-32} \le 4 \cdot 10^{-32}$.

5: Solve the following problems using the definition of the limit and the definition of the derivative as a limit.

(a) Let $f(x) = \frac{1}{x^2 - 1}$ for $x \neq \pm 1$. Show that $\lim_{x \to 2} f(x) = \frac{1}{3}$.

Solution: First we note that for $x \in \mathbb{R}$ with $x \neq \pm 1$ we have

$$\left|\frac{1}{x^2 - 1} - \frac{1}{3}\right| = \left|\frac{3 - (x^2 - 1)}{3(x^2 - 1)}\right| = \left|\frac{4 - x^2}{3(x^2 - 1)}\right| = \frac{|x+2|}{3|x^2 - 1|} \cdot |x - 2|.$$

Next note that when $|x-2| < \frac{1}{2}$ we have $\frac{3}{2} < x < \frac{5}{2}$ so that $\frac{7}{2} < (x+2) < \frac{9}{2}$ and we have $\frac{9}{4} < x^2 < \frac{25}{4}$ so that $\frac{5}{4} < (x^2 - 1) < \frac{21}{4}$, and so we have $\frac{|x+2|}{3|x^2 - 1|} = \frac{x+2}{3(x^2 - 1)} < \frac{\frac{9}{2}}{3 \cdot \frac{5}{4}} = \frac{6}{5}$.

Let $\epsilon > 0$. Choose $\delta = \min\left\{\frac{1}{2}, \frac{5\epsilon}{6}\right\}$. Let $x \in \mathbb{R}$ with $0 < |x-2| < \delta$. As shown above, since $|x-2| < \frac{1}{2}$ we have $\frac{|x+2|}{3|x^2-1|} < \frac{6}{5}$, and since $|x-2| < \frac{5\epsilon}{6}$ we have

$$\frac{1}{x^2 - 1} - \frac{1}{3} \bigg| = \frac{|x + 2|}{3|x^2 - 1|} \cdot |x - 2| < \frac{6}{5} \cdot \frac{5\epsilon}{6} = \epsilon.$$

(b) Let $g(x) = \sqrt{5 - x^2}$ for $|x| \le \sqrt{5}$. Show that g'(2) = -2.

Solution: First we note that for $x \in \mathbb{R}$ with $|x| \leq \sqrt{5}$ and $x \neq 2$ we have

$$\frac{g(x)-g(2)}{x-2} - (-2) \bigg| = \bigg| \frac{\sqrt{5-x^2}-1}{x-2} + 2 \bigg| = \bigg| \frac{\sqrt{5-x^2}+2x-5}{x-2} \bigg| = \bigg| \frac{\sqrt{5-x^2}+(2x-5)}{x-2} \cdot \frac{\sqrt{5-x^2}-(2x-5)}{\sqrt{5-x^2}-(2x-5)} \bigg| \\ = \bigg| \frac{(5-x^2)-(4x^2-20x+25)}{(x-2)(\sqrt{5-x^2}-(2x-5))} \bigg| = \bigg| \frac{-5(x-2)^2}{(x-2)(\sqrt{5-x^2}-(2x-5))} \bigg| = \frac{5}{\sqrt{5-x^2}+(5-2x)} \cdot |x-2|$$

Next note that when $|x-2| < \frac{1}{5}$ we have $\frac{9}{5} < x < \frac{11}{5}$ and since $x < \frac{11}{5}$ we have $x^2 < \frac{121}{25}$ so $5-x^2 > \frac{4}{25}$ so that $\sqrt{5-x^2} > \frac{2}{5}$, and we have $2x < \frac{22}{5}$ so that $5-2x > \frac{3}{5}$, and so we have $\frac{5}{\sqrt{5-x^2+(5-2x)}} < \frac{5}{\frac{2}{5}+\frac{3}{5}} = 5$. Let $\epsilon > 0$. Choose $\delta = \min\left\{\frac{1}{5}, \frac{\epsilon}{5}\right\}$. Then for $0 < |x-2| < \delta$, as shown above, since $|x-2| < \frac{1}{5}$ we have $\frac{5}{\sqrt{5-x^2+(5-2x)}} < 5$ and since $|x-2| < \frac{\epsilon}{5}$ we have

$$\frac{g(x) - g(2)}{x - 2} - (-2) \bigg| = \frac{5}{\sqrt{5 - x^2} + (5 - 2x)} \cdot |x - 2| < 5 \cdot \frac{\epsilon}{5} = \epsilon.$$

(c) Let $h(x) = \frac{1}{x}$ for $x \neq 0$. Show that $h'(x) = -\frac{1}{x^2}$ for all $x \neq 0$. Solution: First note that for $x \neq 0$, $u \neq 0$ and $u \neq x$ we have

$$\left|\frac{h(u)-h(x)}{u-x} - \left(-\frac{1}{x^2}\right)\right| = \left|\frac{\frac{1}{u}-\frac{1}{x}}{u-x} + \frac{1}{x^2}\right| = \left|\frac{x-u}{ux(u-x)} + \frac{1}{x^2}\right| = \left|-\frac{1}{ux} + \frac{1}{x^2}\right| = \left|\frac{u-x}{ux^2}\right| = \frac{1}{|u||x|^2} \cdot |u-x|.$$

Next note that when $|u-x| < \frac{|x|}{2}$ we have $|x| = |(x-u)+u| \le |x-u|+|u| < \frac{|x|}{2}+|u|$ so that $|u| > |x| - \frac{|x|}{2} = \frac{|x|}{2}$ and hence $\frac{1}{|u||x|^2} < \frac{1}{\frac{|x|}{2} \cdot |x|^2} = \frac{2}{|x|^3}$.

Let $x \in \mathbb{R}$ with $x \neq 0$. Let $\epsilon > 0$. Choose $\delta = \min\left\{\frac{|x|}{2}, \frac{|x|^3 \epsilon}{2}\right\}$. Then for $u \in \mathbb{R}$ with $|u - x| < \delta$, as shown above, since $|u-x| < \frac{|x|}{2}$ we have $\frac{1}{|u||x|^2} < \frac{2}{|x|^3}$ and since $|u-x| < \frac{|x|^3\epsilon}{2}$ we have

$$\left|\frac{h(u)-h(x)}{u-x} - \left(-\frac{1}{x^2}\right)\right| = \frac{1}{|u||x|^2} \cdot |u-x| < \frac{2}{|x|^3} \cdot \frac{|x|^3\epsilon}{2} = \epsilon.$$

6: Let
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, \text{ if } x \neq 0, \\ 0, \text{ if } x = 0, \end{cases}$$
 and let $g(x) = \begin{cases} 0, \text{ if } x \notin \mathbb{Q}, \\ \frac{1}{b}, \text{ if } x = \frac{a}{b} \text{ with } a \in \mathbb{Z}, b \in \mathbb{Z}^+ \text{ and } \gcd(a, b) = 1. \end{cases}$

(a) Show that f is differentiable at x = 0.

Solution: We claim that f is differentiable at 0 with f'(0) = 0. Let $\epsilon > 0$. Choose $\delta = \epsilon$. For $x \in \mathbb{R}$ with $0 < |x - 0| < \delta$ we have $0 < |x| < \epsilon$ and so

$$\frac{f(x) - f(0)}{x - 0} - 0 \bigg| = \bigg| \frac{x^2 \sin \frac{1}{x} - 0}{x - 0} - 0 \bigg| = \bigg| x \sin \frac{1}{x} \bigg| = |x| \bigg| \sin \frac{1}{x} \bigg| \le |x| \cdot 1 < \epsilon$$

since $|\sin u| \leq 1$ for all $u \in \mathbb{R}$.

(b) Determine where g is continuous.

Solution: We claim that g is continuous at $a \in \mathbb{R}$ if and only if $a \notin \mathbb{Q}$. Suppose first that $a \in \mathbb{Q}$, say $a = \frac{k}{n}$ with $k \in \mathbb{Z}, n \in \mathbb{Z}^+$ and gcd(k, n) = 1 so that $g(a) = \frac{1}{n}$. We claim that g is not continuous at a (we need to show that there exists $\epsilon > 0$ such that for all $\delta > 0$ there exists $x \in \mathbb{R}$ such that $|x - a| < \delta$ and $|g(x) - g(a)| \ge \epsilon$). Choose $\epsilon = \frac{1}{n}$. Let $\delta > 0$. Choose $x \in \mathbb{R}$ with $x \notin \mathbb{Q}$ and $|x - a| < \delta$ (for example, choose $m \in \mathbb{Z}^+$ with $m > \frac{\sqrt{2}}{\delta}$ and then let $x = a + \frac{\sqrt{2}}{m}$). Then we have g(x) = 0 and $g(a) = \frac{1}{n}$ and so $|g(x) - g(a)| = \frac{1}{n} = \epsilon$. Next suppose that $a \notin \mathbb{Q}$ and note that g(a) = 0. We claim that g(x) is continuous at a. Let $\epsilon > 0$. Choose

Next suppose that $a \notin \mathbb{Q}$ and note that g(a) = 0. We claim that g(x) is continuous at a. Let $\epsilon > 0$. Choose $n \in \mathbb{Z}^+$ with $\frac{1}{n} < \epsilon$. Let S be the set of all points $x \in [a - 1, a + 1]$ of the form $x = \frac{k}{m}$ with $k \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$ with $m \leq n$ (we remark that S is not empty because $\lfloor a \rfloor \in S$). Note that there are only finitely many points in S since for each choice of $m \in \mathbb{Z}^+$ with $m \leq n$ there are only finitely many $k \in \mathbb{Z}$ with m(a-1) < k < m(a+1). Choose $\delta = \min\{|x-a| \mid x \in S\}$ (we remark that $\delta < 1$ because $\lfloor a \rfloor \in S$). Note that $\delta > 0$ since $a \notin \mathbb{Q}$ so $a \notin S$ and so |x-a| > 0 for every $x \in S$. For $0 < |x-a| < \delta$, either $x \notin \mathbb{Q}$ in which case g(x) = 0 so that $|g(x) - g(a)| = 0 < \epsilon$, or $x \in \mathbb{Q}$ in which case $x \notin S$ (since $|x-a| \ge \delta$ for all $x \in S$) and so when we write $x = \frac{k}{m}$ with $k \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$ and gcd(k, m) = 1 we must have m > n and so $|g(x) - f(x)| = \frac{1}{m} < \frac{1}{n} < \epsilon$.

(c) Determine where g is differentiable.

Solution: We claim that g is not differentiable at any point $a \in \mathbb{R}$. When $a \in \mathbb{Q}$ we know from Part (b) that g is not continuous at a, and so g is not differentiable at a. Suppose that $a \notin \mathbb{Q}$. Suppose, for a contradiction, that g is differentiable at a. Take $\epsilon = \frac{1}{2}$ in the definition of differentiability and choose $\delta > 0$ so that for all $x \in \mathbb{R}$, if $0 < |x - a| < \delta$ then $\left| \frac{g(x) - g(a)}{x - a} - g'(a) \right| < \frac{1}{2}$, that is

$$\frac{g(x) - g(a)}{x - a} - \frac{1}{2} < g'(a) < \frac{g(x) - g(a)}{x - a} + \frac{1}{2}.$$

Choose a prime number $p \in \mathbb{Z}^+$ so that $\frac{2}{p} < \delta$ (we can do this because there are infinitely many prime numbers). Let $k = \lfloor ap \rfloor$ (we remark that $k \neq ap$ since $a \notin \mathbb{Q}$). Then we have ap - 2 < k - 1 < k < ap so that $a - \frac{2}{p} < \frac{k-1}{p} < \frac{k}{p} < a$, and we have ap < k + 1 < k + 2 < ap + 2 so that $a < \frac{k+1}{p} < \frac{k+2}{p} < a + \frac{2}{p}$. Pick $k_1 \in \{k - 1, k\}$ with $p \nmid k_1$ so that $\gcd(k_1, p) = 1$ and let $x_1 = \frac{k_1}{p}$. Pick $k_2 \in \{k + 1, k + 2\}$ with $p \nmid k_2$ so that $\gcd(k_2, p) = 1$ and let $x_2 = \frac{k_2}{p}$. Then we have $a - \delta < a - \frac{1}{2p} < x_1 < a < x_2 < a + \frac{2}{p} < a + \delta$ and $g(x_1) = g(x_2) = \frac{1}{p}$. It follows that

$$\frac{g(x_1)-g(a)}{x_1-a} < -\frac{1/p}{2/p} = -\frac{1}{2}$$
 and $\frac{g(x_2)-g(a)}{x_2,a} > \frac{1/p}{2/p} = \frac{1}{2}$

and hence that

$$g'(a) < \frac{g(x_1) - g(a)}{x_1 - a} + \frac{1}{2} < -\frac{1}{2} + \frac{1}{2} = 0$$
 and $g'(a) > \frac{g(x_2) - g(a)}{x_2 - a} - \frac{1}{2} > \frac{1}{2} - \frac{1}{2} > 0$

which gives us the desired contradiction.

7: (a) Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \cos(\pi x^2)$. Show that f is not uniformly continuous in \mathbb{R} .

Solution: Note that $f(\sqrt{n}) = \cos(\pi n) = (-1)^n$ for all $n \in \mathbb{Z}^+$. To show that f is not uniformly continuous in \mathbb{R} we need to show that there exists $\epsilon > 0$ such that for all $\delta > 0$ there exists $a, x \in \mathbb{R}$ such that $|x - a| < \delta$ and $|f(x) - f(a)| \ge \epsilon$. Choose $\epsilon = 1$. Let $\delta > 0$. Since $\sqrt{n+1} - \sqrt{n} = \frac{1}{\sqrt{n+1} + \sqrt{n}} \to 0$ as $n \to \infty$, we can choose $n \in \mathbb{Z}^+$ so that $\sqrt{n+1} - \sqrt{n} < \delta$. Then for $a = \sqrt{n}$ and $x = \sqrt{n+1}$ we have $|x - a| < \delta$ but $|f(x) - f(a)| = |(-1)^{n+1} - (-1)^n| = 2 > \epsilon$.

(b) Define
$$g : \mathbb{R} \to \mathbb{R}$$
 by $g(x) = \begin{cases} e^{-1/x^2}, \text{ if } x \neq 0, \\ 0, \text{ if } x = 0. \end{cases}$ Use induction to show that $0 = g(0) = g'(0) = g''(0) = \cdots$.

Solution: When $x \neq 0$ we have $g'(x) = \frac{2}{x^3} e^{-1/x^2}$ and $g''(x) = \left(\frac{4}{x^6} - \frac{6}{x^4}\right) e^{-1/x^2}$. Let $n \geq 1$ and suppose, inductively, that $g^{(n)}(x) = p_n\left(\frac{1}{x}\right) e^{-1/x^2}$ where $p_n(t)$ is a polynomial of degree 3n. Then

$$g^{(n+1)}(x) = p_n'\left(\frac{1}{x}\right) \cdot \left(-\frac{1}{x^2}\right) e^{-1/x^2} + p_n\left(\frac{1}{x}\right) \cdot \left(\frac{2}{x^3}\right) e^{-1/x^2} = p_{n+1}\left(\frac{1}{x}\right) e^{-1/x^2}$$

where $p_{n+1}(t) = 2t^3 p_n(t) - t^2 p_n'(t)$, which is a polynomial of degree 3(n+1). By Induction, it follows that for $x \neq 0$ we have $g^{(n)}(x) = p_n(\frac{1}{x}) e^{-1/x^2}$ for all $n \geq 0$, where $p_n(t)$ is the polynomial of degree 3n defined recursively by $p_0(x) = 1$ and $p_{n+1}(t) = 2t^3 p_n(t) - t^2 p_n'(t)$ for $n \geq 0$. From the definition of the derivative we have $q(x) - q(0) = e^{-1/x^2} - 0 = 1/x$

$$g'(0) = \lim_{x \to 0} \frac{g(x) - g(0)}{x - 0} = \lim_{x \to 0} \frac{e^{-1/x} - 0}{x - 0} = \lim_{x \to 0} \frac{1/x}{e^{1/x^2}}.$$

As $x \to 0$ we have $\frac{1}{x^2} \to \infty$ so $e^{1/x^2} \to \infty$, as $x \to 0^+$ we have $\frac{1}{x} \to +\infty$ and as $x \to 0^-$ we have $\frac{1}{x} \to -\infty$, and so by l'Hôpital's Rule, we have

$$g'(0) = \lim_{x \to 0} \frac{\frac{1}{x}}{e^{1/x^2}} = \lim_{x \to 0} \frac{-\frac{1}{x^2}}{-\frac{2}{x^3}e^{1/x^2}} = \lim_{x \to 0} \frac{x}{2e^{1/x^2}} = \frac{0}{\infty} = 0$$

Let $n \ge 0$ and suppose, inductively, that $g^{(n)}(0) = 0$. Then we have

$$g^{(n)}(x) = \begin{cases} p_n(\frac{1}{x}) e^{-1/x^2} & \text{if } x \neq 0, \\ 0 & \text{if } x = 0. \end{cases}$$

From the definition of the derivative, we have

$$g^{(n+1)}(0) = \lim_{x \to 0} \frac{g^{(n)}(x) - g^{(n)}(0)}{x - 0} = \lim_{x \to 0} \frac{p_n\left(\frac{1}{x}\right) e^{-1/x^2}}{x} = \lim_{x \to 0} \frac{\frac{1}{x} p_n\left(\frac{1}{x}\right)}{e^{1/x^2}}.$$

Note that in order to show that $\lim_{x\to 0} \frac{\frac{1}{x} p_n(\frac{1}{x})}{e^{1/x^2}} = 0$, it suffices to show that $\lim_{x\to 0} \frac{1/x^k}{e^{1/x^2}} = 0$ for all $k \ge 0$ (because $\frac{\frac{1}{x} p_n(\frac{1}{x})}{e^{1/x^2}}$ is equal to a sum of terms of the form $\frac{1/x^k}{e^{1/x^2}}$). We already know that this is true when k = 0 and when k = 1 (we shall need two base cases). Let $k \ge 0$ and suppose, inductively, that $\lim_{x\to 0} \frac{1/x^k}{e^{1/x^2}} = 0$. Then by l'Hôpital's Rule yet again we have

$$\lim_{x \to 0} \frac{\frac{1}{x^{k+2}}}{e^{1/x^2}} = \lim_{x \to 0} \frac{-\frac{k+2}{x^{k+3}}}{-\frac{2}{x^3}e^{1/x^2}} = \lim_{x \to 0} \frac{k+2}{2} \cdot \frac{\frac{1}{x^k}}{e^{1/x^2}} = 0.$$

By the Strong Induction Principle, it follows that $\lim_{x\to 0} \frac{1/x^k}{e^{1/x^2}} = 0$ for all $n \ge 0$, and so $\lim_{x\to 0} \frac{\frac{1}{x} p_n(\frac{1}{x})}{e^{1/x^2}} = 0$ for all $n \ge 0$, hence $g^{(n)}(0) = \lim_{x\to 0} \frac{\frac{1}{x} p_n(\frac{1}{x})}{e^{1/x^2}} = 0$ for all $n \ge 0$, as required.

(c) Find a function $h : \mathbb{R} \to \mathbb{R}$ which is differentiable in \mathbb{R} with h'(0) = 1 such that for all $\delta > 0$ the function h is not increasing in the interval $(-\delta, \delta)$.

Solution: Let h(x) = x + 2f(x) where f(x) is the function from Problem 2. By Part (a) of Problem 2 we have h'(0) = 1 + 0 = 1, and for $x \neq 0$ we have $h(x) = x + 2x^2 \sin \frac{1}{x}$ so that $h'(x) = 1 + 4x \sin \frac{1}{x} - 2 \cos \frac{1}{x}$. Note that h'(x) is continuous for all $x \neq 0$. Let $\delta > 0$. We claim that h(x) is not increasing in the interval $(-\delta, \delta)$. Choose $k \in \mathbb{Z}^+$ so that $\frac{1}{\pi k} < \delta$ and let $a = \frac{1}{2\pi k}$. Since $\sin 2\pi k = 0$ and $\cos 2\pi k = 1$ we have h'(a) = 1 + 0 - 2 = -1. Since h'(x) is continuous for x > 0 we can choose δ_1 with $0 < \delta_1 < \frac{1}{2\pi k}$ so that for all x > 0 with $|x - a| < \delta_1$ we have $|h'(x) - h'(a)| < \frac{1}{2}$ and hence $h'(x) < h'(a) + \frac{1}{2} = -1 + \frac{1}{2} = -\frac{1}{2}$. Since $h'(x) < -\frac{1}{2} < 0$ for all $x \in (a - \delta_1, a + \delta_1)$, it follows that h(x) is not increasing in the interval $(a - \delta_1, a + \delta_1)$. Since $(a - \delta_1, a + \delta_1) \subseteq (0, \frac{1}{\pi k}) \subseteq (-\delta, \delta)$, it follows that h(x) is not increasing in the interval $(-\delta, \delta)$.

8: (a) Let $f : [a, b] \to \mathbb{R}$ be differentiable on [a, b]. Let m > 0 and suppose that $f'(x) \ge m$ for all $x \in [a, b]$. Show that $f(b) \ge f(a) + m(b - a)$.

Solution: By the Mean Value Theorem, we can choose $x \in [a, b]$ such that $\frac{f(b)-f(a)}{b-a} = f'(x)$ and then, since $f'(x) \ge m$, we have $\frac{f(b)-f(a)}{b-a} \ge m$ so that $f(b) - f(a) \ge m(b-a)$ and hence $f(b) \ge f(a) + m(b-a)$.

(b) Let $f : [a, b] \to \mathbb{R}$ be differentiable on [a, b]. Let $m \in \mathbb{R}$ and suppose that f'(a) < m < f'(b). Show that there exists $c \in (a, b)$ such that f'(c) = m. (Hint: consider the function g(x) = f(x) - mx).

Solution: Let g(x) = f(x) - mx. Since f is differentiable on [a, b], so is g and we have g'(x) = f'(x) - m. Since g is differentiable on [a, b], it follows that g is also continuous on [a, b], and so by the Extreme Value Theorem, g attains its minimum value on [a, b]. Choose $c \in [a, b]$ so that $g(c) \leq g(x)$ for all $x \in [a, b]$. Since f'(a) < m we have g'(a) = f'(a) - m < 0 and so g does not attain its minimum value at a (indeed we can choose $\delta > 0$ such that for all x with $a < x < a + \delta$ we have $\left|\frac{g(x) - g(a)}{x - a} - g'(a)\right| < \frac{|g'(a)|}{2}$ so that $\frac{g(x) - g(a)}{x - a} < g'(a) + \frac{|g'(a)|}{2} = g'(a) - \frac{g'(a)}{2} = \frac{g'(a)}{2} < 0$ which implies that g(x) = g(a) < 0 so that g(x) < g(a)). Since f'(b) > m we have g'(b) = f'(b) - m > 0 and so g does not attain its minimum value at b. Since g does not attain its minimum value at a or b we must have $c \in (a, b)$. Since g has a minimum value at $c \in (a, b)$, it follows from Fermat's Theorem that g'(c) = 0, and hence f'(c) = g'(c) + m = m.

(c) Let $f, g: [a, b] \to \mathbb{R}$ be differentiable on [a, b] with f'(x)g(x) = f(x)g'(x) for all $x \in [a, b]$. Suppose that f(a) = f(b) = 0, $f(x) \neq 0$ for all $x \in (a, b)$, and $g(a) \neq 0$. Show that there exists $c \in (a, b)$ such that g(c) = 0.

Solution: Suppose, for a contradiction, that $g'(x) \neq 0$ for all $x \in (a, b)$. Since $g(a) \neq 0$ we have $g(x) \neq 0$ for all $x \in [a, b)$. Since f and g are differentiable with $g(x) \neq 0$ for all $x \in [a, b)$ it follows that the function $h(x) = \frac{f(x)}{g(x)}$ is differentiable with $h'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$ for all $x \in [a, b)$. Since f'(x)g(x) = f(x)g'(x) for all $x \in [a, b]$ it follows that h'(x) = 0 for all $x \in [a, b]$. Since h'(x) = 0 for all $x \in [a, b]$ it follows that h is constant in [a, b]. Since h(x) = 0 for all $x \in [a, b]$ it follows that h is constant in [a, b]. Since h(x) = 0 for all $x \in [a, b]$. This gives the desired contradiction because for all $x \in (a, b)$ we have $f(x) \neq 0$ and $g(x) \neq 0$ so that $h(x) = \frac{f(x)}{g(x)} \neq 0$.

9: In this problem we explore a uniqueness theorem for differential equations.

(a) Let $f : [a, b] \to \mathbb{R}$ be differentiable on [a, b] with f(a) = 0. Suppose that there exists a constant c > 0 such that

$$|f'(x)| \le c|f(x)|$$

for all $x \in [a, b]$. Show that f(x) = 0 for all $x \in [a, b]$.

Solution: We wish to show that f(x) = 0 for all $x \in [a, b]$. We have f(a) = 0. Let $k \in \mathbb{N}$ and suppose, inductively, that f(x) = 0 for all $x \in [a, b]$ with $a \le x \le a + \frac{k}{2c}$. We need to show that f(x) = 0 for all $x \in [a, b]$ with $a + \frac{k}{2c} < x \le a + \frac{k+1}{2c}$. If $a + \frac{k}{c} \ge b$ then we have f(x) = 0 for all $x \in [a, b]$ so there is nothing to prove. Suppose that $a + \frac{k}{2c} < b$. To simplify our notation, write $d = a + \frac{k}{2c} < b$. Then we have f(x) = 0 for all $x \in [a, d]$ and we need to show that f(x) = 0 for all $x \in [a, b]$ with $d < x \le d + \frac{1}{2c}$.

Let $x \in [a, b]$ with $d < x \le d + \frac{1}{2c}$. Let $\ell = \sup\{|f(t)| | d \le t \le x\}$ and let $m = \sup\{|f'(t)| | d \le t \le x\}$.

We claim that $m \leq c\ell$. Suppose, for a contradiction, that $m > c\ell$. Let $\epsilon = m - c\ell$. By the Approximation Property, we can choose $t \in [d, x]$ so that $m - \epsilon < |f'(t)| \leq m$. Then we have $m - \epsilon < |f'(t)| \leq c|f(t)| \leq c\ell$. But then $\epsilon > m - c\ell = \epsilon$ giving the desired contradiction. Thus $m \leq c\ell$, as claimed.

Next, we claim that $|f(t)| \leq \frac{\ell}{2}$ for all $t \in [d, x]$. We know that f(d) = 0, so suppose that $t \in (d, x]$. By the Mean Value Theorem, we can choose $s \in (d, x)$ such that $f'(s) = \frac{f(t) - f(d)}{t - d} = \frac{f(t)}{t - d}$. and then f(t) = f'(s)(t - d). It follows that $|f(t)| = |f'(s)|(t - d) \leq m(t - d) \leq m(x - d) \leq c\ell(x - d) \leq c\ell \cdot \frac{1}{2c} = \frac{\ell}{2}$, as claimed. We claim that $\ell = 0$. Note that since $\ell = \sup\{|f(t)| t \in [d, x]\}$ we have $\ell \geq |f(d)| = 0$. Suppose, for a

We claim that $\ell = 0$. Note that since $\ell = \sup \{|f(t)|t \in [d, x]\}$ we have $\ell \ge |f(d)| = 0$. Suppose, for a contradiction, that $\ell > 0$. By the Approximation Property, we can choose $t \in [d, x]$ such that $\frac{\ell}{2} < |f(t)| \le \ell$. But this contradicts the fact that $|f(t)| \le \frac{\ell}{2}$ for all $t \in [d, x]$ (as we just proved) and so $\ell = 0$, as claimed.

Finally note that since $\ell = \sup \{ |f(t)| | t \in [d, x] \} = 0$ it follows that |f(t)| = 0 for all $t \in [d, x]$, so in particular f(x) = 0. Since x was arbitrary, this proves that f(x) = 0 for every $x \in [a, b]$ with $d < x \le d + \frac{1}{2c}$, as required.

(b) Let $A = \{(x, y) | x \in [a, b] \text{ and } y \in [r, s]\}$ and let $F : A \to \mathbb{R}$. Suppose there exists a constant c > 0 such that

$$|F(x, y_1) - F(x, y_2)| \le c|y_1 - y_2|$$

for all $x \in [a, b]$ and $y_1, y_2 \in [r, s]$. Show that for each $p \in [r, s]$ there exists at most one function $f : [a, b] \to [r, s]$ with f(a) = p such that f'(x) = F(x, f(x)) for all $x \in [a, b]$.

Solution: Suppose that $f_1, f_2 : [a, b] \to [r, s]$ with $f_1(a) = f_2(a) = p$, $f'_1(t) = F(x, f_1(x))$ and $f'_2(x) = F(x, f_2(x))$. We must show that $f_1(x) = f_2(x)$ for all $x \in [0, 1]$. Let $f(x) = f_1(x) = f_2(x)$. Then for all $x \in [0, 1]$ we have

$$|f'(x)| = |f'_1(x) - f'_2(x)| = |F(x, f_1(x)) - F(x, f_2(x))| \le c|f_1(x) - f_2(x)| = c|f(x)|.$$

By Part (1) it follows that f'(x) = 0 for all $x \in [0,1]$. Since f'(x) = 0 for all $x \in [0,1]$ it follows that f(x) is constant. Since $f(0) = f_1(0) - f_2(0) = p - p = 0$ and f(x) is constant, it follows that f(x) = 0 for all $x \in [0,1]$. Thus for all $x \in [0,1]$ we have $0 = f(x) = f_1(x) - f_2(x)$ so that $f_1(x) = f_2(x)$, as required.

(c) Find every function $f: [0,1] \to [0,1]$ such that $f'(x) = 2\sqrt{f(x)}$ (there is more than one such function). Solution: Will will show that the required functions are given by

$$f(x) = \begin{cases} 0 & \text{if } 0 \le x \le c, \\ (x-c)^2 & \text{if } c \le x \le 1. \end{cases}$$

where c is a constant with $0 \le c \le 1$. Note that f is increasing with f(0) = 0 and $f(1) = (1 - c)^2 \le 1$.

First let us show that for the above functions f we do indeed have $f'(x) = 2\sqrt{f(x)}$ for all $x \in [0, 1]$. When $0 \le x \le c$ we have $\sqrt{f(x)} = \sqrt{0} = 0$ and when $c \le x \le 1$ we have $\sqrt{f(x)} = \sqrt{(x-c)^2} = |x-c| = x-c$. On the other hand, when $0 \le x < c$ we have f(x) = 0 so that f'(x) = 0, and when $c < x \le 1$ we have $f(x) = (x-c)^2$ so that f'(x) = 2(x-c), and we have

$$\lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c^{-}} \frac{0 - 0}{x - c} = 0 \text{ and } \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c^{+}} \frac{(x - c)^2 - 0}{x - c} = \lim_{x \to c^{+}} (x - c) = 0$$

so that f'(c) = 0, and so in all cases we have $f'(x) = 2\sqrt{f(x)}$, as required. It remains to show that we have found all of the solutions.

Let f be any function $f : [0,1] \to [0,1]$ with $f'(x) = 2\sqrt{f(x)}$ for all $x \in [0,1]$. We remark that f is differentiable because f'(x) exists. We also remark that f must be increasing on [0,1] because $f'(x) = \sqrt{f(x)} \ge 0$ for all $x \in [0,1]$.

First we claim that for any nonempty interval $I \subseteq [0,1]$, if f(x) > 0 for all $x \in I$ then there exists $b \in \mathbb{R}$ such that $f(x) = (x - b)^2$ for all $x \in I$. Let I be any nonempty interval with $I \subseteq [0,1]$ and suppose that f(x) > 0 for all $x \in I$. Let $g(x) = 2\sqrt{f(x)} - 2x$ for all $x \in I$. Then g is differentiable in I (since f is differentiable and the function \sqrt{u} is differentiable for u > 0) with $g'(x) = \frac{f'(x)}{\sqrt{f(x)}} - 2 = \frac{2\sqrt{f(x)}}{\sqrt{f(x)}} - 2 = 0$. Since g'(x) = 0 for all $x \in I$ it follows that g is constant in I. Choose $a \in I$. Then for all $x \in I$ we have $2\sqrt{f(x)} - 2x = g(x) = g(a) = 2\sqrt{f(a)} - 2a$ and so $f(x) = (x + \sqrt{f(a)} - a)^2$. Thus we have $f(x) = (x - b)^2$ for all $x \in I$, where $b = a - \sqrt{f(a)}$.

Next we claim that f(0) = 0. Suppose, for a contradiction, that f(0) = p > 0. Since f is increasing on [0,1] with f(0) = p > 0, we have $f(x) \ge f(0) = p > 0$ for all $x \in [0,1]$. By the previous paragraph, we can choose $b \in \mathbb{R}$ so that $f(x) = (x - b)^2$ for all $x \in I$. Since $f'(x) = 2\sqrt{f(x)}$ we have $f'(0) = 2\sqrt{p}$ and since $f(x) = (x - b)^2$ we have f'(x) = 2(x - b) and so f'(0) = -2b. It follows that $-2b = 2\sqrt{p}$ so that $b = -\sqrt{p}$. Thus we must have $f(x) = (x + \sqrt{p})^2$ for all $x \in [0, 1]$. In particular, we must have $f(1) = (1 + \sqrt{p})^2 > 1$ which is not possible since $f : [0, 1] \to [0, 1]$. Thus f(0) = 0, as claimed.

We claim that there exists $c \in [0, 1]$ such that f(x) = 0 for $0 \le x \le c$ and f(x) > 0 for c < x < 1. Let $S = \{x \in [0, 1] | f(x) = 0\}$. Note that $S \ne \emptyset$ because $0 \in S$ and S is bounded above by 1. Let $c = \sup S$. Since $0 \in S$ we have $c \ge 0$ and since 1 is an upper bound for S we have $c \le 1$ and so $c \in [0, 1]$. Since c is an upper bound for S it follows that f(x) > 0 for all x > c (when x > c we must have $x \notin S$ and so f(x) > 0). It remains to show that f(x) = 0 for all $x \in [0, c]$. In the case that c = 0 there is nothing to prove, so suppose that c > 0. Suppose first that $x \in [0, c)$. By the Approximation Property we can choose $t \in S$ with $x < t \le c$. Since $t \in S$ we have f(t) = 0. Since f is increasing and x < t we have $f(x) \le f(t) = 0$ and so f(x) = 0. This shows that f(x) = 0 for all $x \in [0, c)$. Since f is continuous at c, it follows that $f(c) = \lim_{x \to c^-} f(x) = 0$. Thus f(x) = 0 for all $x \in [0, c]$.

Let $c \in [0, 1]$ be as above so that f(x) = 0 for all $x \in [0, c]$ and f(x) > 0 for all $x \in (c, 1]$. When c = 1 we have f(x) = 0 for all $x \in [0, 1]$. Suppose that c < 1 and note that the interval (c, 1] is nonempty. As shown above, since f(x) > 0 for all $x \in (c, 1]$ we can choose $b \in \mathbb{R}$ so that $f(x) = (x - b)^2$ for all $x \in (c, 1]$. Since f(c) = 0 and f is continuous at c we have $0 = f(c) = \lim_{x \to c^+} f(x) = \lim_{x \to c^+} (x - b)^2 = (c - b)^2$ and hence we must have b = c. Thus f(x) = 0 for $0 \le x \le c$ and $f(x) = (x - c)^2$ for $c \le x \le 1$, as required.