
PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 2

1: (a) Let xk = 2k+1
k−1 for k ≥ 2. Use the definition of the limit to show that lim

k→∞
xk = 2 in R.

Solution: For k ≥ 2 and ε > 0, we have

|xk − 2| =
∣∣ 2k+1
k−1 − 2

∣∣ =
∣∣ 2k+1−2k+2

k−1
∣∣ = 3

k−1

and
3

k−1 < ε ⇐⇒ k−1
3 > 1

ε ⇐⇒ k − 1 > 3
ε ⇐⇒ k > 1 + 3

ε .

Let ε > 0. Choose m ∈ Z with m > 1 + 3
ε . For k ∈ Z≥2 with k ≥ m we have k ≥ m > 1 + 3

ε and hence, as
shown above, |xk − 2| = 3

k−1 < ε.

(b) Let x1 = 7
2 and for k ≥ 1 let xk+1 = 6

5−ak . Find lim
k→∞

xk if it exists in R (with proof).

Solution: Suppose for now that (xk)k≥1 does converge, and let a = lim
n→∞

xk. Then we also have lim
k→∞

xk+1 = a

and so taking the limit on both sides of the recursion formula xk+1 = 6
5−ak gives

a = 6
5−a =⇒ 5a− a2 = 6 =⇒ a2 − 5a+ 6 = 0 =⇒ (a− 2)(a− 3) = 0,

and so we must have a = 2 or a = 3.
We claim that xn < xn+1 < 2 for all n ≥ 4. We have x1 = 7

2 , x2 = 4, x3 = 6, x4 = −6 and x5 = 6
11 , so the

claim is true when n = 4. Let k ≥ 4 and suppose the claim is true when n = k. Then we have

xk < xk+1 < 2 =⇒ − xk > −xk+1 > −2 =⇒ 5− xk > 5− xk+1 > 3 =⇒ 1
5−xk

< 1
5−xk+1

< 1
3

=⇒ 6
5−xk

< 6
5−xk+1

< 2 =⇒ xk+1 < xk+2 < 2,

so the claim is true when n = k + 1. By induction, the claim is true for all n ≥ 4. Thus (xn)n≥4 is increasing
and is bounded above by 2, so (xn) converges by the Monotone Convergence Theorem and lim

n→∞
xn ≤ 2 by the

Comparison Theorem. We showed above that the limit must be 2 or 3, and so we must have lim
n→∞

xn = 2.

(c) Let (xk)k≥p and (yk)k≥p be sequences in R with lim
k→∞

xk = c where 0 < c ∈ R, and lim
k→∞

yk = ∞. Use the

definition of the limit to show that lim
k→∞

xk

yk
= 0.

Solution: Let ε > 0. Since xk → c we can choose m1 ∈ Z so that k ≥ m1 =⇒ |xk − c| < c
2 =⇒ c

2 < xk <
3c
2 .

Since yk → ∞, we can choose m2 ∈ Z so that k ≥ m2 =⇒ yk >
3c
2ε . Let m = max{m1,m2}. Then for k ≥ m

we have xk <
3c
2 and we have yk >

3c
2ε , and so xk

yk
< 3c

2

/
3c
2ε = ε. Thus xk

yk
→ 0, as required.



2: (a) Find a divergent sequence (xk)k≥0 in R with
∣∣xk − xk−1∣∣ ≤ 1

k for all k ≥ 1.

Solution: Let x0 = 0 and for k ≥ 1, let xk = 1
1 + 1

2 + 1
3 + · · · + 1

k . Note that |xk − xk−1| = xk − xk−1 = 1
k

for all k ≥ 1. Consider the subsequence
(
x
2k

)
k≥0 = (x1, x2, x4, x8, · · ·). We have x20 = x1 = 1. Let k ≥ 0 and

suppose, inductively, that x2k ≥ 1 + k
2 . Then

x
2k+1 =

(
1
1 + 1

2 + 1
3 + · · ·+ 1

2k

)
+
(

1
2k+1

+ 1
2k+2

+ · · ·+ 1
2k+1

)
= x

2k
+
(

1
2k+1

+ 1
2k+2

+ · · ·+ 1
2k+1

)
≥ x

2k
+
(

1
2k+1 + 1

2k+1 + · · ·+ 1
2k+1

)
= x2k + 2k · 1

2k+1 = x2k + 1
2 ≥ 1 + k

2 + 1
2 = 1 + k+1

2 .

By induction, we have x
2n
≥ 1 + n

2 for all n ≥ 0. Since (xk) is increasing and x
2n
≥ 1 + n

2 for all n ≥ 0, it
follows that xk → ∞. Indeed, given r ∈ R we can choose n so that 1 + n

2 > r and then for m = 2n we have
k ≥ m =⇒ k ≥ 2n =⇒ xk ≥ x2n ≥ 1 + n

2 > r.

(b) Let (xk)k≥0 be a sequence in R with
∣∣xk − xk−1∣∣ ≤ 1

k2 for all k ≥ 1. Show that (xk) converges in R.

Solution: Notice that for all k ≥ 2 we have 1
k2 ≤

1
(k−1) k = 1

k−1 −
1
k . It follows that for 1 ≤ k < l we have

|xk − xl| =
∣∣xk − xk+1 + xk+1 − xk+2 + xk+2 − xk+3 + · · · − xl−1 + xl−1 − xl

∣∣
≤ |xk − xk+1|+ |xk+1 − xk+2|+ |xk+2 − xk+3|+ · · ·+ |xl−1 − xl|
≤ 1

(k+1)2 + 1
(k+2)2 + 1

(k+3)2 + · · ·+ 1
(l−1)2 + 1

l2

≤ 1
k(k+1) + 1

(k+1)(k+2) + 1
(k+2)(k+3) + · · ·+ 1

(l−2)(l−1) + 1
(l−1) l

= 1
k −

1
k+1 + 1

k+1 −
1
k+2 + 1

k+2 −
1
k+3 + · · · − 1

l−1 + 1
l−1 −

1
l

= 1
k −

1
l ≤

1
k .

Let ε > 0. Choose m ∈ Z with m > 1
ε . For k, l ≥ m say with k ≤ l, if k = l then |xk − xl| = 0 and if k < l then,

as shown above, |xk − xl| ≤ 1
k ≤

1
m < ε. Thus (xk) is a Cauchy sequence, and so it converges by the Cauchy

Criterion.



3: For a sequence (xk)k≥p in R and for a ∈ R we say a is a limiting value of (xk)k≥p when

∀ ε>0 ∀m∈Z≥p ∃ k∈Z≥p (k≥m and |xk−a|≤ε).
We denote the set of limiting values of (xk)k≥p by Lim

(
(xk)k≥p

)
.

(a) Determine whether, for every sequence (xk)k≥p in R, we have lim
k→∞

xk = a =⇒ Lim
(
(xk)k≥p

)
= {a}.

Solution: This is true. Let (xk)k≥p be a sequence in R with xk → a. We claim that Lim
(
(xk)

)
= {a}. First

we show that {a} ⊆ Lim
(
(xk)

)
. Let ε > 0 and let m ∈ Z≥p. Since xk → a we can choose m0 ∈ Z≥p so that

k ≥ m0 =⇒ |xk − a| < ε. Let k = max{m,m0}. Then k ∈ Z≥p with k ≥ m and |xk − a| < ε. This proves that
a ∈ Lim

(
(xk)

)
, so we have {a} ⊆ Lim

(
(xk)

)
.

Conversely, we need to show that Lim
(
(xk)

)
⊆ {a}. Let b ∈ Lim

(
(xk)

)
. Suppose, for a contradiction, that

b 6= a. Since xk → a, we can choose m ∈ Z≥p so that k ≥ m =⇒ |xk − a| < |b−a|
2 . Since b ∈ Lim

(
(xk)

)
, we can

choose an index k with k ≥ m and |xk − b| ≤ |b−a|2 . Then we have

|b− a| = |b− xk + xk − a| ≤ |b− xk|+ |xk − a| < |b−a|
2 + |b−a|

2 = |b− a|,
which is not possible. Thus we must have b = a, and this shows that Lim

(
(xk)

)
⊆ {a}, as required.

(b) Determine whether, for every sequence (xk)k≥p in R we have Lim
(
(xk)k≥p

)
= {a} =⇒ lim

k→∞
xk = a.

Solution: This is false. For example, for the sequence (xk)k≥0 given by xk = a when k is even and xk = k when
k is odd, we have Lim

(
(xk)

)
= {a} but lim

k→∞
xk 6= a, indeed (xk) diverges.

Here is a proof that Lim
(
(xk)

)
= {a}. Given ε > 0 and given m ∈ N we can choose an even number k ≥ m

and then we have |xk − a| = |a − a| = 0 ≤ ε. This shows that a ∈ Lim
(
(xk)

)
so we have {a} ⊆ Lim

(
(xk)

)
.

Conversely, let b ∈ Lim
(
(xk)

)
. Suppose, for a contradiction, that b 6= a. Let ε = |b−a|

2 and let m = |b− a|+ |b|.
Then for k ≥ m, if k is even then xk = a so |xk − b| = |a − b| = 2ε > ε, and if k is odd then xk = k so
|xk − b| = |k − b| ≥ k − |b| ≥ m− |b| = |b− a|+ |b| − |b| = |b− a| = 2ε > ε. But this contradicts the fact that
b ∈ Lim

(
(xk)

)
. Thus we must have b = a, and this shows that Lim

(
(xk)

)
⊆ {a}.

Here is a proof that lim
k→∞

xk 6= a. Suppose, for a contradiction, that xk → a. Choose m ∈ N so that

k ≥ m =⇒ |xk − a| < 1. Then for all k ≥ m we have a − 1 < xk < a + 1. But we can choose an odd number
k ∈ N with k ≥ max{m, a+ 1} to get k ≥ m with xk = k ≥ a+ 1, giving the desired contradiction.

(c) Determine whether there exists a sequence (xk)k≥p in R with Lim
(
(xk)k≥p

)
= R.

Solution: There does exist such a sequence (xk). For example, choose a surjective map f : Z+ → Q and let
xk = f(k) for k ∈ Z+. We claim that for this sequence (xk)k≥1, we have Lim

(
(xk)k≥1

)
= R. Let a ∈ R. Let

ε > 0 and let m ∈ Z+. Since Q is dense in R, we can choose distinct rational numbers q1, q2, q3, · · · ∈ Q with
|qi − a| ≤ ε for all i ≥ 1. For each i ≥ 1, since f is surjective we can choose ki ∈ Z+ with f(ki) = qi. Note that
the numbers ki are distinct (since the qi are distinct and f is a function). Since k1, k2, k3, · · · are distinct, we
can choose an index j such that kj ≥ m. For k = kj we have k ≥ m and |xk − a| = |f(k) − a| = |qj − a| ≤ ε.
This shows that a ∈ Lim

(
(xk)

)
. Since a ∈ R was arbitrary, we have Lim

(
(xk)

)
= R.

Here is an example of a surjective map f : Z+ → Q: Given n ∈ Z+, write n (uniquely in the form)

n = 2k(2`− 1) where k ∈ N and ` ∈ Z+. Then define f(n) = k/2
` if k is even, and f(n) = − (k+1)/2

` is k is odd.



4: In this problem, we explore the rate at which the approximations found using Newton’s Method approach
a square root of a positive real number. Let a ≥ 0. To approximate

√
a, let x1 ≥

√
a and for k ≥ 1 let

xk+1 = 1
2

(
xk + a

xk

)
. For k ≥ 1 let εk = xk −

√
a.

(a) Show that (xk) is decreasing with xk →
√
a.

Solution: We are given that x1 ≥
√
a. Let k ≥ 1 and suppose, inductively, that xk ≥

√
a. Then

xk+1 −
√
a = 1

2

(
xk + a

xk

)
−
√
a = 1

2 xk

(
xk

2 − 2
√
a xk + a

)
= 1

2 xk
(xk −

√
a)2 ≥ 0

and so xk+1 ≥
√
a. By induction, it follows that xk ≥

√
a for all k ≥ 1. This shows that the sequence (xk) is

bounded below by
√
a. For all k ≥ 1, since xk ≥

√
a so that xk

2 ≥ a, we have

xk − xk+1 = xk − 1
2

(
xk + a

xk

)
= 1

2

(
xk − a

xk

)
= 1

2 xk

(
xk

2 − a) ≥ 0

and so xk ≥ xk+1. This shows that the sequence (xk) is decreasing. Since (xk) is decreasing and bounded below
by
√
a, it converges with lim

k→∞
xk = sup{xk} ≥

√
a. Let u = lim

k→∞
xk. By taking the limit on both sides of the

formula xk+1 = 1
2

(
xk + a

xk

)
we obtain u = 1

2

(
u+ a

u

)
, and

u = 1
2

(
u+ a

u

)
=⇒ 2u2 = u2 + a =⇒ u2 = a =⇒ u = ±

√
a =⇒ u =

√
a

since we know u ≥
√
a. Thus xk →

√
a.

(b) Show that for all k ≥ 1 we have εk+1 =
εk

2

2xk
and that

εk+1

2
√
a
≤
(

ε1
2
√
a

)2k

.

Solution: For k ≥ 1 we have

εk+1 = xk+1 −
√
a = 1

2

(
xk + a

xk

)
−
√
a =

xk
2 − 2xk

√
a+ a

2xk
=

(xk −
√
a)2

2xk
=

εk
2

2xk
.

Since xk ≥
√
a this gives εk+1 =

εk
2

2xk
≤ εk

2

2
√
a

so that
εk+1

2
√
a
≤
( εk

2
√
a

)2
. Using this formula repeatedly, we

obtain
εk+1

2
√
a
≤
( εk

2
√
a

)2
≤
(εk−1

2
√
a

)22
≤
(εk−2

2
√
a

)23
≤ · · · ≤

( ε1
2
√
a

)2k
.

(c) Show that when a = 3 and x1 = 2 we have ε6 ≤ 4 · 10−32.

Solution: Let a = 3 and x1 = 2. Then
ε1

2
√
a

=
x1 −

√
a

2
√
a

=
2−
√
3

2
√
3

= 1√
3
− 1

2 Note that

1√
3
− 1

2 ≤
1
10 ⇐⇒

1√
3
≤ 3

5 ⇐⇒ 5 ≤ 3
√

3 ⇐⇒ 25 ≤ 9 · 3 = 27,

which is true, and so we have
ε1

2
√
a
≤ 1

10 . Using the formula
εk+1

2
√
a
≤
( ε1

2
√
a

)2k
with a = 3 and k = 5, gives

ε6

2
√

3
≤
( ε1

2
√

3

)32
≤
(

1
10

)32
= 10−32

and so ε6 ≤ 2
√

3 · 10−32 ≤ 4 · 10−32.



5: Solve the following problems using the definition of the limit and the definition of the derivative as a limit.

(a) Let f(x) = 1
x2−1 for x 6= ±1. Show that lim

x→2
f(x) = 1

3 .

Solution: First we note that for x ∈ R with x 6= ±1 we have∣∣∣ 1
x2−1 −

1
3

∣∣∣ =
∣∣∣ 3−(x2−1)

3(x2−1)

∣∣∣ =
∣∣∣ 4−x2

3(x2−1)

∣∣∣ = |x+2|
3|x2−1| · |x− 2|.

Next note that when |x− 2| < 1
2 we have 3

2 < x < 5
2 so that 7

2 < (x+ 2) < 9
2 and we have 9

4 < x2 < 25
4 so that

5
4 < (x2 − 1) < 21

4 , and so we have |x+2|
3|x2−1| = x+2

3(x2−1) <
9
2

3· 54
= 6

5 .

Let ε > 0. Choose δ = min
{

1
2 ,

5ε
6

}
. Let x ∈ R with 0 < |x− 2| < δ. As shown above, since |x− 2| < 1

2 we

have |x+2|
3|x2−1| <

6
5 , and since |x− 2| < 5ε

6 we have∣∣∣ 1
x2−1 −

1
3

∣∣∣ = |x+2|
3|x2−1| · |x− 2| < 6

5 ·
5ε
6 = ε.

(b) Let g(x) =
√

5− x2 for |x| ≤
√

5. Show that g′(2) = −2.

Solution: First we note that for x ∈ R with |x| ≤
√

5 and x 6= 2 we have∣∣∣ g(x)−g(2)x−2 − (−2)
∣∣∣ =

∣∣∣√5−x2−1
x−2 + 2

∣∣∣ =
∣∣∣√5−x2+2x−5

x−2

∣∣∣ =
∣∣∣√5−x2+(2x−5)

x−2 ·
√
5−x2−(2x−5)√
5−x2−(2x−5)

∣∣∣
=
∣∣∣ (5−x2)−(4x2−20x+25)

(x−2)(
√
5−x2−(2x−5))

∣∣∣ =
∣∣∣ −5(x−2)2

(x−2)(
√
5−x2−(2x−5))

∣∣∣ = 5√
5−x2+(5−2x) · |x− 2|.

Next note that when |x− 2| < 1
5 we have 9

5 < x < 11
5 and since x < 11

5 we have x2 < 121
25 so 5− x2 > 4

25 so that√
5− x2 > 2

5 , and we have 2x < 22
5 so that 5− 2x > 3

5 , and so we have 5√
5−x2+(5−2x) <

5
2
5+

3
5

= 5.

Let ε > 0. Choose δ = min
{

1
5 ,

ε
5

}
. Then for 0 < |x − 2| < δ, as shown above, since |x − 2| < 1

5 we have
5√

5−x2+(5−2x) < 5 and since |x− 2| < ε
5 we have∣∣∣ g(x)−g(2)x−2 − (−2)

∣∣∣ = 5√
5−x2+(5−2x) · |x− 2| < 5 · ε5 = ε.

(c) Let h(x) = 1
x for x 6= 0. Show that h′(x) = − 1

x2 for all x 6= 0.

Solution: First note that for x 6= 0, u 6= 0 and u 6= x we have∣∣∣h(u)−h(x)u−x −
(
− 1

x2

)∣∣∣ =
∣∣∣ 1

u−
1
x

u−x + 1
x2

∣∣∣ =
∣∣∣ x−u
ux(u−x) + 1

x2

∣∣∣ =
∣∣∣− 1

ux + 1
x2

∣∣∣ =
∣∣∣u−xux2

∣∣∣ = 1
|u| |x|2 · |u− x|.

Next note that when |u−x| < |x|
2 we have |x| = |(x−u)+u| ≤ |x−u|+ |u| < |x|

2 + |u| so that |u| > |x|− |x|2 = |x|
2

and hence 1
|u| |x|2 <

1
|x|
2 ·|x|2

= 2
|x|3 .

Let x ∈ R with x 6= 0. Let ε > 0. Choose δ = min
{ |x|

2 ,
|x|3ε
2

}
. Then for u ∈ R with |u− x| < δ, as shown

above, since |u− x| < |x|
2 we have 1

|u| |x|2 <
2
|x|3 and since |u− x| < |x|3ε

2 we have∣∣∣h(u)−h(x)u−x −
(
− 1

x2

)∣∣∣ = 1
|u| |x|2 · |u− x| <

2
|x|3 ·

|x|3ε
2 = ε.



6: Let f(x) =

{
x2 sin 1

x , if x 6= 0 ,

0 , if x = 0 ,
and let g(x) =

{
0 , if x /∈ Q ,
1
b , if x = a

b with a ∈ Z, b ∈ Z+ and gcd(a, b) = 1 .
.

(a) Show that f is differentiable at x = 0.

Solution: We claim that f is differentiable at 0 with f ′(0) = 0. Let ε > 0. Choose δ = ε. For x ∈ R with
0 < |x− 0| < δ we have 0 < |x| < ε and so∣∣∣ f(x)−f(0)x−0 − 0

∣∣∣ =
∣∣∣x2 sin 1

x−0
x−0 − 0

∣∣∣ =
∣∣x sin 1

x

∣∣∣ = |x|
∣∣ sin 1

x

∣∣ ≤ |x| · 1 < ε

since | sinu| ≤ 1 for all u ∈ R.

(b) Determine where g is continuous.

Solution: We claim that g is continuous at a ∈ R if and only if a /∈ Q. Suppose first that a ∈ Q, say a = k
n with

k ∈ Z, n ∈ Z+ and gcd(k, n) = 1 so that g(a) = 1
n . We claim that g is not continuous at a

(
we need to show

that there exists ε > 0 such that for all δ > 0 there exists x ∈ R such that |x − a| < δ and |g(x) − g(a)| ≥ ε
)
.

Choose ε = 1
n . Let δ > 0. Choose x ∈ R with x /∈ Q and |x− a| < δ

(
for example, choose m ∈ Z+ with m >

√
2
δ

and then let x = a+
√
2
m

)
. Then we have g(x) = 0 and g(a) = 1

n and so |g(x)− g(a)| = 1
n = ε.

Next suppose that a /∈ Q and note that g(a) = 0. We claim that g(x) is continuous at a. Let ε > 0. Choose
n ∈ Z+ with 1

n < ε. Let S be the set of all points x ∈ [a− 1, a+ 1] of the form x = k
m with k ∈ Z and m ∈ Z+

with m ≤ n (we remark that S is not empty because bac ∈ S). Note that there are only finitely many points in
S since for each choice of m ∈ Z+ with m ≤ n there are only finitely many k ∈ Z with m(a−1) < k < m(a+ 1).
Choose δ = min

{
|x − a|

∣∣x ∈ S} (we remark that δ < 1 because bac ∈ S). Note that δ > 0 since a /∈ Q so
a /∈ S and so |x − a| > 0 for every x ∈ S. For 0 < |x − a| < δ, either x /∈ Q in which case g(x) = 0 so that
|g(x)− g(a)| = 0 < ε, or x ∈ Q in which case x /∈ S (since |x−a| ≥ δ for all x ∈ S) and so when we write x = k

m
with k ∈ Z and m ∈ Z+ and gcd(k,m) = 1 we must have m > n and so |g(x)− f(x)| = 1

m < 1
n < ε.

(c) Determine where g is differentiable.

Solution: We claim that g is not differentiable at any point a ∈ R. When a ∈ Q we know from Part (b) that g
is not continuous at a, and so g is not differentiable at a. Suppose that a /∈ Q. Suppose, for a contradiction,
that g is differentiable at a. Take ε = 1

2 in the definition of differentiability and choose δ > 0 so that for all

x ∈ R, if 0 < |x− a| < δ then
∣∣∣ g(x)−g(a)x−a − g′(a)

∣∣∣ < 1
2 , that is

g(x)−g(a)
x−a − 1

2 < g′(a) < g(x)−g(a)
x−a + 1

2 .

Choose a prime number p ∈ Z+ so that 2
p < δ (we can do this because there are infinitely many prime

numbers). Let k = bapc (we remark that k 6= ap since a /∈ Q). Then we have ap − 2 < k − 1 < k < ap so
that a − 2

p < k−1
p < k

p < a, and we have ap < k + 1 < k + 2 < ap + 2 so that a < k+1
p < k+2

p < a + 2
p .

Pick k1 ∈ {k − 1, k} with p 6
∣∣ k1 so that gcd(k1, p) = 1 and let x1 = k1

p . Pick k2 ∈ {k + 1, k + 2} with p6
∣∣ k2

so that gcd(k2, p) = 1 and let x2 = k2
p . Then we have a − δ < a − 1

2p < x1 < a < x2 < a + 2
p < a + δ and

g(x1) = g(x2) = 1
p . It follows that

g(x1)−g(a)
x1−a < − 1/p

2/p = − 1
2 and g(x2)−g(a)

x2,a
> 1/p

2/p = 1
2

and hence that

g′(a) < g(x1)−g(a)
x1−a + 1

2 < −
1
2 + 1

2 = 0 and g′(a) > g(x2)−g(a)
x2−a − 1

2 >
1
2 −

1
2 > 0

which gives us the desired contradiction.



7: (a) Define f : R→ R by f(x) = cos
(
πx2

)
. Show that f is not uniformly continuous in R.

Solution: Note that f(
√
n) = cos(πn) = (−1)n for all n ∈ Z+. To show that f is not uniformly continuous in R

we need to show that there exists ε > 0 such that for all δ > 0 there exists a, x ∈ R such that |x − a| < δ
and |f(x) − f(a)| ≥ ε. Choose ε = 1. Let δ > 0. Since

√
n+ 1 −

√
n = 1√

n+1+
√
n
→ 0 as n → ∞, we

can choose n ∈ Z+ so that
√
n+ 1 −

√
n < δ. Then for a =

√
n and x =

√
n+ 1 we have |x − a| < δ but

|f(x)− f(a)| =
∣∣(−1)n+1 − (−1)n

∣∣ = 2 > ε.

(b) Define g : R→ R by g(x) =

{
e
−1/x2

, if x 6= 0 ,

0 , if x = 0 .
Use induction to show that 0 = g(0) = g′(0) = g′′(0) = · · ·.

Solution: When x 6= 0 we have g′(x) = 2
x3 e

−1/x2

and g′′(x) =
(

4
x6 − 6

x4

)
e−1/x

2

. Let n ≥ 1 and suppose,

inductively, that g(n)(x) = pn
(
1
x

)
e−1/x

2

where pn(t) is a polynomial of degree 3n. Then

g(n+1)(x) = pn
′( 1
x

)
·
(
− 1

x2

)
e−1/x

2

+ pn
(
1
x

)
·
(

2
x3

)
e−1/x

2

= pn+1

(
1
x

)
e−1/x

2

where pn+1(t) = 2t3pn(t) − t2pn′(t), which is a polynomial of degree 3(n + 1). By Induction, it follows that

for x 6= 0 we have g(n)(x) = pn
(
1
x

)
e−1/x

2

for all n ≥ 0, where pn(t) is the polynomial of degree 3n defined
recursively by p0(x) = 1 and pn+1(t) = 2t3pn(t) − t2pn′(t) for n ≥ 0. From the definition of the derivative we
have

g′(0) = lim
x→0

g(x)− g(0)

x− 0
= lim
x→0

e−1/x
2 − 0

x− 0
= lim
x→0

1/x

e1/x2 .

As x→ 0 we have 1
x2 →∞ so e1/x

2 →∞, as x→ 0+ we have 1
x → +∞ and as x→ 0− we have 1

x → −∞, and
so by l’Hôpital’s Rule, we have

g′(0) = lim
x→0

1
x

e1/x2 = lim
x→0

− 1
x2

− 2
x3 e1/x

2 = lim
x→0

x

2 e1/x2 = 0
∞ = 0.

Let n ≥ 0 and suppose, inductively, that g(n)(0) = 0. Then we have

g(n)(x) =

{
pn
(
1
x

)
e−1/x

2

if x 6= 0,

0 if x = 0.

From the definition of the derivative, we have

g(n+1)(0) = lim
x→0

g(n)(x)− g(n)(0)

x− 0
= lim
x→0

pn
(
1
x

)
e−1/x

2

x
= lim
x→0

1
x pn

(
1
x

)
e1/x2 .

Note that in order to show that lim
x→0

1
x pn

(
1
x

)
e1/x2 = 0, it suffices to show that lim

x→0

1/xk

e1/x2 = 0 for all k ≥ 0
(
because

1
x pn(

1
x )

e1/x2 is equal to a sum of terms of the form 1/xk

e1/x2

)
. We already know that this is true when k = 0

and when k = 1 (we shall need two base cases). Let k ≥ 0 and suppose, inductively, that lim
x→0

1/xk

e1/x2 = 0. Then

by l’Hôpital’s Rule yet again we have

lim
x→0

1
xk+2

e1/x2 = lim
x→0

− k+2
xk+3

− 2
x3 e1/x

2 = lim
x→0

k + 2

2
·

1
xk

e1/x2 = 0.

By the Strong Induction Principle, it follows that lim
x→0

1/xk

e1/x2 = 0 for all n ≥ 0, and so lim
x→0

1
x pn

(
1
x

)
e1/x2 = 0 for all

n ≥ 0, hence g(n)(0) = lim
x→0

1
x pn

(
1
x

)
e1/x2 = 0 for all n ≥ 0, as required.

(c) Find a function h : R→ R which is differentiable in R with h′(0) = 1 such that for all δ > 0 the function h
is not increasing in the interval (−δ, δ).
Solution: Let h(x) = x+ 2f(x) where f(x) is the function from Problem 2. By Part (a) of Problem 2 we have
h′(0) = 1 + 0 = 1, and for x 6= 0 we have h(x) = x+ 2x2 sin 1

x so that h′(x) = 1 + 4x sin 1
x − 2 cos 1

x . Note that
h′(x) is continuous for all x 6= 0. Let δ > 0. We claim that h(x) is not increasing in the interval (−δ, δ). Choose
k ∈ Z+ so that 1

πk < δ and let a = 1
2πk . Since sin 2πk = 0 and cos 2πk = 1 we have h′(a) = 1+0−2 = −1. Since

h′(x) is continuous for x > 0 we can choose δ1 with 0 < δ1 <
1

2πk so that for all x > 0 with |x− a| < δ1 we have
|h′(x)−h′(a)| < 1

2 and hence h′(x) < h′(a)+ 1
2 = −1+ 1

2 = − 1
2 . Since h′(x) < − 1

2 < 0 for all x ∈ (a−δ1, a+δ1),
it follows that h(x) is decreasing in the interval (a − δ1, a + δ1). Since (a − δ1, a + δ1) ⊆

(
0, 1

πk

)
⊆ (−δ, δ), it

follows that h(x) is not increasing in the interval (−δ, δ).



8: (a) Let f : [a, b]→ R be differentiable on [a, b]. Let m > 0 and suppose that f ′(x) ≥ m for all x ∈ [a, b]. Show
that f(b) ≥ f(a) +m(b− a).

Solution: By the Mean Value Theorem, we can choose x ∈ [a, b] such that f(b)−f(a)
b−a = f ′(x) and then, since

f ′(x) ≥ m, we have f(b)−f(a)
b−a ≥ m so that f(b)− f(a) ≥ m(b− a) and hence f(b) ≥ f(a) +m(b− a).

(b) Let f : [a, b] → R be differentiable on [a, b]. Let m ∈ R and suppose that f ′(a) < m < f ′(b). Show that
there exists c ∈ (a, b) such that f ′(c) = m. (Hint: consider the function g(x) = f(x)−mx).

Solution: Let g(x) = f(x) − mx. Since f is differentiable on [a, b], so is g and we have g′(x) = f ′(x) − m.
Since g is differentiable on [a, b], it follows that g is also continuous on [a, b], and so by the Extreme Value
Theorem, g attains its minimum value on [a, b]. Choose c ∈ [a, b] so that g(c) ≤ g(x) for all x ∈ [a, b].
Since f ′(a) < m we have g′(a) = f ′(a) − m < 0 and so g does not attain its minimum value at a

(
indeed

we can choose δ > 0 such that for all x with a < x < a + δ we have
∣∣∣ g(x)−g(a)x−a − g′(a)

∣∣∣ < |g′(a)|
2 so that

g(x)−g(a)
x−a < g′(a) + |g′(a)|

2 = g′(a) − g′(a)
2 = g′(a)

2 < 0 which implies that g(x) = g(a) < 0 so that g(x) < g(a)
)
.

Since f ′(b) > m we have g′(b) = f ′(b)−m > 0 and so g does not attain its minimum value at b. Since g does
not attain its minimum value at a or b we must have c ∈ (a, b). Since g has a minimum value at c ∈ (a, b), it
follows from Fermat’s Theorem that g′(c) = 0, and hence f ′(c) = g′(c) +m = m.

(c) Let f, g : [a, b] → R be differentiable on [a, b] with f ′(x)g(x) = f(x)g′(x) for all x ∈ [a, b]. Suppose that
f(a) = f(b) = 0, f(x) 6= 0 for all x ∈ (a, b), and g(a) 6= 0. Show that there exists c ∈ (a, b) such that g(c) = 0.

Solution: Suppose, for a contradiction, that g′(x) 6= 0 for all x ∈ (a, b). Since g(a) 6= 0 we have g(x) 6= 0 for all

x ∈ [a, b). Since f and g are differentiable with g(x) 6= 0 for all x ∈ [a, b) it follows that the function h(x) = f(x)
g(x)

is differentiable with h′(x) = f ′(x)g(x)−f(x)g′(x)
g(x)2 for all x ∈ [a, b). Since f ′(x)g(x) = f(x)g′(x) for all x ∈ [a, b] it

follows that h′(x) = 0 for all x ∈ [a, b). Since h′(x) = 0 for all x ∈ [a, b) it follows that h is constant in [a, b).

Since h is constant in [a, b) with h(a) = f(a)
g(a) = 0

g(a) = 0, it follows that h(x) = 0 for all x ∈ [a, b). This gives

the desired contradiction because for all x ∈ (a, b) we have f(x) 6= 0 and g(x) 6= 0 so that h(x) = f(x)
g(x) 6= 0.



9: In this problem we explore a uniqueness theorem for differential equations.

(a) Let f : [a, b] → R be differentiable on [a, b] with f(a) = 0. Suppose that there exists a constant c > 0 such
that

|f ′(x)| ≤ c|f(x)|

for all x ∈ [a, b]. Show that f(x) = 0 for all x ∈ [a, b].

Solution: We wish to show that f(x) = 0 for all x ∈ [a, b]. We have f(a) = 0. Let k ∈ N and suppose,
inductively, that f(x) = 0 for all x ∈ [a, b] with a ≤ x ≤ a+ k

2c . We need to show that f(x) = 0 for all x ∈ [a, b]

with a + k
2c < x ≤ a + k+1

2c . If a + k
c ≥ b then we have f(x) = 0 for all x ∈ [a, b] so there is nothing to prove.

Suppose that a+ k
2c < b. To simplify our notation, write d = a+ k

2c < b. Then we have f(x) = 0 for all x ∈ [a, d]
and we need to show that f(x) = 0 for all x ∈ [a, b] with d < x ≤ d+ 1

2c .
Let x ∈ [a, b] with d < x ≤ d+ 1

2c . Let ` = sup
{
|f(t)|

∣∣d ≤ t ≤ x} and let m = sup
{
|f ′(t)|

∣∣d ≤ t ≤ x}.
We claim that m ≤ c`. Suppose, for a contradiction, that m > c`. Let ε = m− c`. By the Approximation

Property, we can choose t ∈ [d, x] so that m − ε < |f ′(t)| ≤ m. Then we have m − ε < |f ′(t)| ≤ c|f(t)| ≤ c`.
But then ε > m− c` = ε giving the desired contradiction. Thus m ≤ c`, as claimed.

Next, we claim that |f(t)| ≤ `
2 for all t ∈ [d, x]. We know that f(d) = 0, so suppose that t ∈ (d, x]. By the

Mean Value Theorem, we can choose s ∈ (d, x) such that f ′(s) = f(t)−f(d)
t−d = f(t)

t−d . and then f(t) = f ′(s)(t− d).

It follows that |f(t)| = |f ′(s)|(t− d) ≤ m(t− d) ≤ m(x− d) ≤ c`(x− d) ≤ c` · 1
2c = `

2 , as claimed.
We claim that ` = 0. Note that since ` = sup

{
|f(t)

∣∣t ∈ [d, x]
}

we have ` ≥ |f(d)| = 0. Suppose, for a

contradiction, that ` > 0. By the Approximation Property, we can choose t ∈ [d, x] such that `
2 < |f(t)| ≤ `.

But this contradicts the fact that |f(t)| ≤ `
2 for all t ∈ [d, x] (as we just proved)and so ` = 0, as claimed.

Finally note that since ` = sup
{
|f(t)|

∣∣t ∈ [d, x]
}

= 0 it follows that |f(t)| = 0 for all t ∈ [d, x], so in
particular f(x) = 0. Since x was arbitrary, this proves that f(x) = 0 for every x ∈ [a, b] with d < x ≤ d + 1

2c ,
as required.

(b) Let A =
{

(x, y) |x ∈ [a, b] and y ∈ [r, s]
}

and let F : A → R. Suppose there exists a constant c > 0 such
that ∣∣F (x, y1)− F (x, y2)

∣∣ ≤ c|y1 − y2|
for all x ∈ [a, b] and y1, y2 ∈ [r, s]. Show that for each p ∈ [r, s] there exists at most one function f : [a, b]→ [r, s]
with f(a) = p such that f ′(x) = F

(
x, f(x)

)
for all x ∈ [a, b].

Solution: Suppose that f1, f2 : [a, b] → [r, s] with f1(a) = f2(a) = p, f ′1(t) = F
(
x, f1(x)

)
and f ′2(x) =

F
(
x, f2(x)

)
. We must show that f1(x) = f2(x) for all x ∈ [0, 1]. Let f(x) = f1(x) = f2(x). Then for all

x ∈ [0, 1] we have

|f ′(x)| =
∣∣f ′1(x)− f ′2(x)

∣∣ =
∣∣∣F (x, f1(x)

)
− F

(
x, f2(x)

)∣∣∣ ≤ c∣∣f1(x)− f2(x)
∣∣ = c|f(x)|.

By Part (1) it follows that f ′(x) = 0 for all x ∈ [0, 1]. Since f ′(x) = 0 for all x ∈ [0, 1] it follows that f(x) is
constant. Since f(0) = f1(0)− f2(0) = p− p = 0 and f(x) is constant, it follows that f(x) = 0 for all x ∈ [0, 1].
Thus for all x ∈ [0, 1] we have 0 = f(x) = f1(x)− f2(x) so that f1(x) = f2(x), as required.



(c) Find every function f : [0, 1]→ [0, 1] such that f ′(x) = 2
√
f(x) (there is more than one such function).

Solution: Will will show that the required functions are given by

f(x) =

{
0 if 0 ≤ x ≤ c,

(x− c)2 if c ≤ x ≤ 1.

where c is a constant with 0 ≤ c ≤ 1. Note that f is increasing with f(0) = 0 and f(1) = (1− c)2 ≤ 1.

First let us show that for the above functions f we do indeed have f ′(x) = 2
√
f(x) for all x ∈ [0, 1]. When

0 ≤ x ≤ c we have
√
f(x) =

√
0 = 0 and when c ≤ x ≤ 1 we have

√
f(x) =

√
(x− c)2 = |x− c| = x− c. On the

other hand, when 0 ≤ x < c we have f(x) = 0 so that f ′(x) = 0, and when c < x ≤ 1 we have f(x) = (x− c)2
so that f ′(x) = 2(x− c), and we have

lim
x→c−

f(x)− f(c)

x− c
= lim
x→c−

0− 0

x− c
= 0 and lim

x→c+
f(x)− f(c)

x− c
= lim
x→c+

(x− c)2 − 0

x− c
= lim
x→c+

(x− c) = 0

so that f ′(c) = 0, and so in all cases we have f ′(x) = 2
√
f(x), as required. It remains to show that we have

found all of the solutions.

Let f be any function f : [0, 1] → [0, 1] with f ′(x) = 2
√
f(x) for all x ∈ [0, 1]. We remark that f is

differentiable because f ′(x) exists. We also remark that f must be increasing on [0, 1] because f ′(x) =
√
f(x) ≥ 0

for all x ∈ [0, 1].
First we claim that for any nonempty interval I ⊆ [0, 1], if f(x) > 0 for all x ∈ I then there exists b ∈ R

such that f(x) = (x − b)2 for all x ∈ I. Let I be any nonempty interval with I ⊆ [0, 1] and suppose that
f(x) > 0 for all x ∈ I. Let g(x) = 2

√
f(x) − 2x for all x ∈ I. Then g is differentiable in I (since f is

differentiable and the function
√
u is differentiable for u > 0) with g′(x) = f ′(x)√

f(x)
− 2 =

2
√
f(x)√
f(x)

− 2 = 0.

Since g′(x) = 0 for all x ∈ I it follows that g is constant in I. Choose a ∈ I. Then for all x ∈ I we have

2
√
f(x)− 2x = g(x) = g(a) = 2

√
f(a)− 2a and so f(x) =

(
x+

√
f(a)− a

)2
. Thus we have f(x) = (x− b)2 for

all x ∈ I, where b = a−
√
f(a).

Next we claim that f(0) = 0. Suppose, for a contradiction, that f(0) = p > 0. Since f is increasing on
[0, 1] with f(0) = p > 0, we have f(x) ≥ f(0) = p > 0 for all x ∈ [0, 1]. By the previous paragraph, we can
choose b ∈ R so that f(x) = (x − b)2 for all x ∈ I. Since f ′(x) = 2

√
f(x) we have f ′(0) = 2

√
p and since

f(x) = (x − b)2 we have f ′(x) = 2(x − b) and so f ′(0) = −2b. It follows that −2b = 2
√
p so that b = −√p.

Thus we must have f(x) = (x+
√
p)2 for all x ∈ [0, 1]. In particular, we must have f(1) = (1 +

√
p)2 > 1 which

is not possible since f : [0, 1]→ [0, 1]. Thus f(0) = 0, as claimed.
We claim that there exists c ∈ [0, 1] such that f(x) = 0 for 0 ≤ x ≤ c and f(x) > 0 for c < x < 1. Let

S =
{
x ∈ [0, 1]

∣∣f(x) = 0
}

. Note that S 6= ∅ because 0 ∈ S and S is bounded above by 1. Let c = supS. Since
0 ∈ S we have c ≥ 0 and since 1 is an upper bound for S we have c ≤ 1 and so c ∈ [0, 1]. Since c is an upper
bound for S it follows that f(x) > 0 for all x > c (when x > c we must have x /∈ S and so f(x) > 0). It remains
to show that f(x) = 0 for all x ∈ [0, c]. In the case that c = 0 there is nothing to prove, so suppose that c > 0.
Suppose first that x ∈ [0, c). By the Approximation Property we can choose t ∈ S with x < t ≤ c. Since t ∈ S
we have f(t) = 0. Since f is increasing and x < t we have f(x) ≤ f(t) = 0 and so f(x) = 0. This shows that
f(x) = 0 for all x ∈ [0, c). Since f is continuous at c, it follows that f(c) = lim

x→c−
f(x) = 0. Thus f(x) = 0 for

all x ∈ [0, c], as required.
Let c ∈ [0, 1] be as above so that f(x) = 0 for all x ∈ [0, c] and f(x) > 0 for all x ∈ (c, 1]. When c = 1 we

have f(x) = 0 for all x ∈ [0, 1]. Suppose that c < 1 and note that the interval (c, 1] is nonempty. As shown
above, since f(x) > 0 for all x ∈ (c, 1] we can choose b ∈ R so that f(x) = (x − b)2 for all x ∈ (c, 1]. Since
f(c) = 0 and f is continuous at c we have 0 = f(c) = lim

x→c+
f(x) = lim

x→c+
(x− b)2 = (c− b)2 and hence we must

have b = c. Thus f(x) = 0 for 0 ≤ x ≤ c and f(x) = (x− c)2 for c ≤ x ≤ 1, as required.


