PMATH 333 Real Analysis, Solutions to the Exercises for Chapter 2

1: (a) Let $x_{k}=\frac{2 k+1}{k-1}$ for $k \geq 2$. Use the definition of the limit to show that $\lim _{k \rightarrow \infty} x_{k}=2$ in \mathbb{R}.
Solution: For $k \geq 2$ and $\epsilon>0$, we have

$$
\left|x_{k}-2\right|=\left|\frac{2 k+1}{k-1}-2\right|=\left|\frac{2 k+1-2 k+2}{k-1}\right|=\frac{3}{k-1}
$$

and

$$
\frac{3}{k-1}<\epsilon \Longleftrightarrow \frac{k-1}{3}>\frac{1}{\epsilon} \Longleftrightarrow k-1>\frac{3}{\epsilon} \Longleftrightarrow k>1+\frac{3}{\epsilon} .
$$

Let $\epsilon>0$. Choose $m \in \mathbb{Z}$ with $m>1+\frac{3}{\epsilon}$. For $k \in \mathbb{Z}_{\geq 2}$ with $k \geq m$ we have $k \geq m>1+\frac{3}{\epsilon}$ and hence, as shown above, $\left|x_{k}-2\right|=\frac{3}{k-1}<\epsilon$.
(b) Let $x_{1}=\frac{7}{2}$ and for $k \geq 1$ let $x_{k+1}=\frac{6}{5-a_{k}}$. Find $\lim _{k \rightarrow \infty} x_{k}$ if it exists in \mathbb{R} (with proof).

Solution: Suppose for now that $\left(x_{k}\right)_{k \geq 1}$ does converge, and let $a=\lim _{n \rightarrow \infty} x_{k}$. Then we also have $\lim _{k \rightarrow \infty} x_{k+1}=a$ and so taking the limit on both sides of the recursion formula $x_{k+1}=\frac{6}{5-a_{k}}$ gives

$$
a=\frac{6}{5-a} \Longrightarrow 5 a-a^{2}=6 \Longrightarrow a^{2}-5 a+6=0 \Longrightarrow(a-2)(a-3)=0
$$

and so we must have $a=2$ or $a=3$.
We claim that $x_{n}<x_{n+1}<2$ for all $n \geq 4$. We have $x_{1}=\frac{7}{2}, x_{2}=4, x_{3}=6, x_{4}=-6$ and $x_{5}=\frac{6}{11}$, so the claim is true when $n=4$. Let $k \geq 4$ and suppose the claim is true when $n=k$. Then we have

$$
\begin{aligned}
x_{k}<x_{k+1}<2 & \Longrightarrow-x_{k}>-x_{k+1}>-2 \Longrightarrow 5-x_{k}>5-x_{k+1}>3 \Longrightarrow \frac{1}{5-x_{k}}<\frac{1}{5-x_{k+1}}<\frac{1}{3} \\
& \Longrightarrow \frac{6}{5-x_{k}}<\frac{6}{5-x_{k+1}}<2 \Longrightarrow x_{k+1}<x_{k+2}<2
\end{aligned}
$$

so the claim is true when $n=k+1$. By induction, the claim is true for all $n \geq 4$. Thus $\left(x_{n}\right)_{n \geq 4}$ is increasing and is bounded above by 2, so $\left(x_{n}\right)$ converges by the Monotone Convergence Theorem and $\lim _{n \rightarrow \infty} x_{n} \leq 2$ by the Comparison Theorem. We showed above that the limit must be 2 or 3 , and so we must have $\lim _{n \rightarrow \infty} x_{n}=2$.
(c) Let $\left(x_{k}\right)_{k \geq p}$ and $\left(y_{k}\right)_{k \geq p}$ be sequences in \mathbb{R} with $\lim _{k \rightarrow \infty} x_{k}=c$ where $0<c \in \mathbb{R}$, and $\lim _{k \rightarrow \infty} y_{k}=\infty$. Use the definition of the limit to show that $\lim _{k \rightarrow \infty} \frac{x_{k}}{y_{k}}=0$.
Solution: Let $\epsilon>0$. Since $x_{k} \rightarrow c$ we can choose $m_{1} \in \mathbb{Z}$ so that $k \geq m_{1} \Longrightarrow\left|x_{k}-c\right|<\frac{c}{2} \Longrightarrow \frac{c}{2}<x_{k}<\frac{3 c}{2}$. Since $y_{k} \rightarrow \infty$, we can choose $m_{2} \in \mathbb{Z}$ so that $k \geq m_{2} \Longrightarrow y_{k}>\frac{3 c}{2 \epsilon}$. Let $m=\max \left\{m_{1}, m_{2}\right\}$. Then for $k \geq m$ we have $x_{k}<\frac{3 c}{2}$ and we have $y_{k}>\frac{3 c}{2 \epsilon}$, and so $\frac{x_{k}}{y_{k}}<\frac{3 c}{2} / \frac{3 c}{2 \epsilon}=\epsilon$. Thus $\frac{x_{k}}{y_{k}} \rightarrow 0$, as required.

2: (a) Find a divergent sequence $\left(x_{k}\right)_{k \geq 0}$ in \mathbb{R} with $\left|x_{k}-x_{k-1}\right| \leq \frac{1}{k}$ for all $k \geq 1$.
Solution: Let $x_{0}=0$ and for $k \geq 1$, let $x_{k}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{k}$. Note that $\left|x_{k}-x_{k-1}\right|=x_{k}-x_{k-1}=\frac{1}{k}$ for all $k \geq 1$. Consider the subsequence $\left(x_{2^{k}}\right)_{k \geq 0}=\left(x_{1}, x_{2}, x_{4}, x_{8}, \cdots\right)$. We have $x_{2^{0}}=x_{1}=1$. Let $k \geq 0$ and suppose, inductively, that $x_{2^{k}} \geq 1+\frac{k}{2}$. Then

$$
\begin{aligned}
x_{2^{k+1}} & =\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2^{k}}\right)+\left(\frac{1}{2^{k}+1}+\frac{1}{2^{k}+2}+\cdots+\frac{1}{2^{k+1}}\right) \\
& =x_{2^{k}}+\left(\frac{1}{2^{k+1}}+\frac{1}{2^{k+2}}+\cdots+\frac{1}{2^{k+1}}\right) \geq x_{2^{k}}+\left(\frac{1}{2^{k+1}}+\frac{1}{2^{k+1}}+\cdots+\frac{1}{2^{k+1}}\right) \\
& =x_{2^{k}}+2^{k} \cdot \frac{1}{2^{k+1}}=x_{2^{k}}+\frac{1}{2} \geq 1+\frac{k}{2}+\frac{1}{2}=1+\frac{k+1}{2} .
\end{aligned}
$$

By induction, we have $x_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 0$. Since $\left(x_{k}\right)$ is increasing and $x_{2^{n}} \geq 1+\frac{n}{2}$ for all $n \geq 0$, it follows that $x_{k} \rightarrow \infty$. Indeed, given $r \in \mathbb{R}$ we can choose n so that $1+\frac{n}{2}>r$ and then for $m=2^{n}$ we have $k \geq m \Longrightarrow k \geq 2^{n} \Longrightarrow x_{k} \geq x_{2^{n}} \geq 1+\frac{n}{2}>r$.
(b) Let $\left(x_{k}\right)_{k \geq 0}$ be a sequence in \mathbb{R} with $\left|x_{k}-x_{k-1}\right| \leq \frac{1}{k^{2}}$ for all $k \geq 1$. Show that $\left(x_{k}\right)$ converges in \mathbb{R}.

Solution: Notice that for all $k \geq 2$ we have $\frac{1}{k^{2}} \leq \frac{1}{(k-1) k}=\frac{1}{k-1}-\frac{1}{k}$. It follows that for $1 \leq k<l$ we have

$$
\begin{aligned}
\left|x_{k}-x_{l}\right| & =\left|x_{k}-x_{k+1}+x_{k+1}-x_{k+2}+x_{k+2}-x_{k+3}+\cdots-x_{l-1}+x_{l-1}-x_{l}\right| \\
& \leq\left|x_{k}-x_{k+1}\right|+\left|x_{k+1}-x_{k+2}\right|+\left|x_{k+2}-x_{k+3}\right|+\cdots+\left|x_{l-1}-x_{l}\right| \\
& \leq \frac{1}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}+\frac{1}{(k+3)^{2}}+\cdots+\frac{1}{(l-1)^{2}}+\frac{1}{l^{2}} \\
& \leq \frac{1}{k(k+1)}+\frac{1}{(k+1)(k+2)}+\frac{1}{(k+2)(k+3)}+\cdots+\frac{1}{(l-2)(l-1)}+\frac{1}{(l-1) l} \\
& =\frac{1}{k}-\frac{1}{k+1}+\frac{1}{k+1}-\frac{1}{k+2}+\frac{1}{k+2}-\frac{1}{k+3}+\cdots-\frac{1}{l-1}+\frac{1}{l-1}-\frac{1}{l} \\
& =\frac{1}{k}-\frac{1}{l} \leq \frac{1}{k} .
\end{aligned}
$$

Let $\epsilon>0$. Choose $m \in \mathbb{Z}$ with $m>\frac{1}{\epsilon}$. For $k, l \geq m$ say with $k \leq l$, if $k=l$ then $\left|x_{k}-x_{l}\right|=0$ and if $k<l$ then, as shown above, $\left|x_{k}-x_{l}\right| \leq \frac{1}{k} \leq \frac{1}{m}<\epsilon$. Thus $\left(x_{k}\right)$ is a Cauchy sequence, and so it converges by the Cauchy Criterion.

3: For a sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R} and for $a \in \mathbb{R}$ we say a is a limiting value of $\left(x_{k}\right)_{k \geq p}$ when

$$
\forall \epsilon>0 \quad \forall m \in \mathbb{Z}_{\geq p} \exists k \in \mathbb{Z}_{\geq p}\left(k \geq m \text { and }\left|x_{k}-a\right| \leq \epsilon\right)
$$

We denote the set of limiting values of $\left(x_{k}\right)_{k \geq p}$ by $\operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)$.
(a) Determine whether, for every sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R}, we have $\lim _{k \rightarrow \infty} x_{k}=a \Longrightarrow \operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)=\{a\}$.

Solution: This is true. Let $\left(x_{k}\right)_{k \geq p}$ be a sequence in \mathbb{R} with $x_{k} \rightarrow a$. We claim that $\operatorname{Lim}\left(\left(x_{k}\right)\right)=\{a\}$. First we show that $\{a\} \subseteq \operatorname{Lim}\left(\left(x_{k}\right)\right)$. Let $\epsilon>0$ and let $m \in \mathbb{Z}_{\geq p}$. Since $x_{k} \rightarrow a$ we can choose $m_{0} \in \mathbb{Z}_{\geq p}$ so that $k \geq m_{0} \Longrightarrow\left|x_{k}-a\right|<\epsilon$. Let $k=\max \left\{m, m_{0}\right\}$. Then $k \in \mathbb{Z}_{\geq p}$ with $k \geq m$ and $\left|x_{k}-a\right|<\epsilon$. This proves that $a \in \operatorname{Lim}\left(\left(x_{k}\right)\right)$, so we have $\{a\} \subseteq \operatorname{Lim}\left(\left(x_{k}\right)\right)$.

Conversely, we need to show that $\operatorname{Lim}\left(\left(x_{k}\right)\right) \subseteq\{a\}$. Let $b \in \operatorname{Lim}\left(\left(x_{k}\right)\right)$. Suppose, for a contradiction, that $b \neq a$. Since $x_{k} \rightarrow a$, we can choose $m \in \mathbb{Z}_{\geq p}$ so that $k \geq m \Longrightarrow\left|x_{k}-a\right|<\frac{|b-a|}{2}$. Since $b \in \operatorname{Lim}\left(\left(x_{k}\right)\right)$, we can choose an index k with $k \geq m$ and $\left|x_{k}-b\right| \leq \frac{|b-a|}{2}$. Then we have

$$
|b-a|=\left|b-x_{k}+x_{k}-a\right| \leq\left|b-x_{k}\right|+\left|x_{k}-a\right|<\frac{|b-a|}{2}+\frac{|b-a|}{2}=|b-a|,
$$

which is not possible. Thus we must have $b=a$, and this shows that $\operatorname{Lim}\left(\left(x_{k}\right)\right) \subseteq\{a\}$, as required.
(b) Determine whether, for every sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R} we have $\operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)=\{a\} \Longrightarrow \lim _{k \rightarrow \infty} x_{k}=a$.

Solution: This is false. For example, for the sequence $\left(x_{k}\right)_{k \geq 0}$ given by $x_{k}=a$ when k is even and $x_{k}=k$ when k is odd, we have $\operatorname{Lim}\left(\left(x_{k}\right)\right)=\{a\}$ but $\lim _{k \rightarrow \infty} x_{k} \neq a$, indeed $\left(x_{k}\right)$ diverges.

Here is a proof that $\operatorname{Lim}\left(\left(x_{k}\right)\right)=\{a\}$. Given $\epsilon>0$ and given $m \in \mathbb{N}$ we can choose an even number $k \geq m$ and then we have $\left|x_{k}-a\right|=|a-a|=0 \leq \epsilon$. This shows that $a \in \operatorname{Lim}\left(\left(x_{k}\right)\right)$ so we have $\{a\} \subseteq \operatorname{Lim}\left(\left(x_{k}\right)\right)$. Conversely, let $b \in \operatorname{Lim}\left(\left(x_{k}\right)\right)$. Suppose, for a contradiction, that $b \neq a$. Let $\epsilon=\frac{|b-a|}{2}$ and let $m=|b-a|+|b|$. Then for $k \geq m$, if k is even then $x_{k}=a$ so $\left|x_{k}-b\right|=|a-b|=2 \epsilon>\epsilon$, and if k is odd then $x_{k}=k$ so $\left|x_{k}-b\right|=|k-b| \geq k-|b| \geq m-|b|=|b-a|+|b|-|b|=|b-a|=2 \epsilon>\epsilon$. But this contradicts the fact that $b \in \operatorname{Lim}\left(\left(x_{k}\right)\right)$. Thus we must have $b=a$, and this shows that $\operatorname{Lim}\left(\left(x_{k}\right)\right) \subseteq\{a\}$.

Here is a proof that $\lim _{k \rightarrow \infty} x_{k} \neq a$. Suppose, for a contradiction, that $x_{k} \rightarrow a$. Choose $m \in \mathbb{N}$ so that $k \geq m \Longrightarrow\left|x_{k}-a\right|<1$. Then for all $k \geq m$ we have $a-1<x_{k}<a+1$. But we can choose an odd number $k \in \mathbb{N}$ with $k \geq \max \{m, a+1\}$ to get $k \geq m$ with $x_{k}=k \geq a+1$, giving the desired contradiction.
(c) Determine whether there exists a sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R} with $\operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)=\mathbb{R}$.

Solution: There does exist such a sequence $\left(x_{k}\right)$. For example, choose a surjective map $f: \mathbb{Z}^{+} \rightarrow \mathbb{Q}$ and let $x_{k}=f(k)$ for $k \in \mathbb{Z}^{+}$. We claim that for this sequence $\left(x_{k}\right)_{k \geq 1}$, we have $\operatorname{Lim}\left(\left(x_{k}\right)_{k \geq 1}\right)=\mathbb{R}$. Let $a \in \mathbb{R}$. Let $\epsilon>0$ and let $m \in \mathbb{Z}^{+}$. Since \mathbb{Q} is dense in \mathbb{R}, we can choose distinct rational numbers $q_{1}, q_{2}, q_{3}, \cdots \in \mathbb{Q}$ with $\left|q_{i}-a\right| \leq \epsilon$ for all $i \geq 1$. For each $i \geq 1$, since f is surjective we can choose $k_{i} \in \mathbb{Z}^{+}$with $f\left(k_{i}\right)=q_{i}$. Note that the numbers k_{i} are distinct (since the q_{i} are distinct and f is a function). Since $k_{1}, k_{2}, k_{3}, \cdots$ are distinct, we can choose an index j such that $k_{j} \geq m$. For $k=k_{j}$ we have $k \geq m$ and $\left|x_{k}-a\right|=|f(k)-a|=\left|q_{j}-a\right| \leq \epsilon$. This shows that $a \in \operatorname{Lim}\left(\left(x_{k}\right)\right)$. Since $a \in \mathbb{R}$ was arbitrary, we have $\operatorname{Lim}\left(\left(x_{k}\right)\right)=\mathbb{R}$.

Here is an example of a surjective map $f: \mathbb{Z}^{+} \rightarrow \mathbb{Q}$: Given $n \in \mathbb{Z}^{+}$, write n (uniquely in the form) $n=2^{k}(2 \ell-1)$ where $k \in \mathbb{N}$ and $\ell \in \mathbb{Z}^{+}$. Then define $f(n)=\frac{k / 2}{\ell}$ if k is even, and $f(n)=-\frac{(k+1) / 2}{\ell}$ is k is odd.

4: In this problem, we explore the rate at which the approximations found using Newton's Method approach a square root of a positive real number. Let $a \geq 0$. To approximate \sqrt{a}, let $x_{1} \geq \sqrt{a}$ and for $k \geq 1$ let $x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)$. For $k \geq 1$ let $\epsilon_{k}=x_{k}-\sqrt{a}$.
(a) Show that $\left(x_{k}\right)$ is decreasing with $x_{k} \rightarrow \sqrt{a}$.

Solution: We are given that $x_{1} \geq \sqrt{a}$. Let $k \geq 1$ and suppose, inductively, that $x_{k} \geq \sqrt{a}$. Then

$$
x_{k+1}-\sqrt{a}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)-\sqrt{a}=\frac{1}{2 x_{k}}\left(x_{k}^{2}-2 \sqrt{a} x_{k}+a\right)=\frac{1}{2 x_{k}}\left(x_{k}-\sqrt{a}\right)^{2} \geq 0
$$

and so $x_{k+1} \geq \sqrt{a}$. By induction, it follows that $x_{k} \geq \sqrt{a}$ for all $k \geq 1$. This shows that the sequence $\left(x_{k}\right)$ is bounded below by \sqrt{a}. For all $k \geq 1$, since $x_{k} \geq \sqrt{a}$ so that $x_{k}{ }^{2} \geq a$, we have

$$
x_{k}-x_{k+1}=x_{k}-\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)=\frac{1}{2}\left(x_{k}-\frac{a}{x_{k}}\right)=\frac{1}{2 x_{k}}\left(x_{k}^{2}-a\right) \geq 0
$$

and so $x_{k} \geq x_{k+1}$. This shows that the sequence $\left(x_{k}\right)$ is decreasing. Since $\left(x_{k}\right)$ is decreasing and bounded below by \sqrt{a}, it converges with $\lim _{k \rightarrow \infty} x_{k}=\sup \left\{x_{k}\right\} \geq \sqrt{a}$. Let $u=\lim _{k \rightarrow \infty} x_{k}$. By taking the limit on both sides of the formula $x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)$ we obtain $u=\frac{1}{2}\left(u+\frac{a}{u}\right)$, and

$$
u=\frac{1}{2}\left(u+\frac{a}{u}\right) \Longrightarrow 2 u^{2}=u^{2}+a \Longrightarrow u^{2}=a \Longrightarrow u= \pm \sqrt{a} \Longrightarrow u=\sqrt{a}
$$

since we know $u \geq \sqrt{a}$. Thus $x_{k} \rightarrow \sqrt{a}$.
(b) Show that for all $k \geq 1$ we have $\epsilon_{k+1}=\frac{\epsilon_{k}^{2}}{2 x_{k}}$ and that $\frac{\epsilon_{k+1}}{2 \sqrt{a}} \leq\left(\frac{\epsilon_{1}}{2 \sqrt{a}}\right)^{2^{k}}$.

Solution: For $k \geq 1$ we have

$$
\epsilon_{k+1}=x_{k+1}-\sqrt{a}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)-\sqrt{a}=\frac{x_{k}^{2}-2 x_{k} \sqrt{a}+a}{2 x_{k}}=\frac{\left(x_{k}-\sqrt{a}\right)^{2}}{2 x_{k}}=\frac{\epsilon_{k}^{2}}{2 x_{k}}
$$

Since $x_{k} \geq \sqrt{a}$ this gives $\epsilon_{k+1}=\frac{\epsilon_{k}{ }^{2}}{2 x_{k}} \leq \frac{\epsilon_{k}{ }^{2}}{2 \sqrt{a}}$ so that $\frac{\epsilon_{k+1}}{2 \sqrt{a}} \leq\left(\frac{\epsilon_{k}}{2 \sqrt{a}}\right)^{2}$. Using this formula repeatedly, we obtain

$$
\frac{\epsilon_{k+1}}{2 \sqrt{a}} \leq\left(\frac{\epsilon_{k}}{2 \sqrt{a}}\right)^{2} \leq\left(\frac{\epsilon_{k-1}}{2 \sqrt{a}}\right)^{2^{2}} \leq\left(\frac{\epsilon_{k-2}}{2 \sqrt{a}}\right)^{2^{3}} \leq \cdots \leq\left(\frac{\epsilon_{1}}{2 \sqrt{a}}\right)^{2^{k}}
$$

(c) Show that when $a=3$ and $x_{1}=2$ we have $\epsilon_{6} \leq 4 \cdot 10^{-32}$.

Solution: Let $a=3$ and $x_{1}=2$. Then $\frac{\epsilon_{1}}{2 \sqrt{a}}=\frac{x_{1}-\sqrt{a}}{2 \sqrt{a}}=\frac{2-\sqrt{3}}{2 \sqrt{3}}=\frac{1}{\sqrt{3}}-\frac{1}{2}$ Note that

$$
\frac{1}{\sqrt{3}}-\frac{1}{2} \leq \frac{1}{10} \Longleftrightarrow \frac{1}{\sqrt{3}} \leq \frac{3}{5} \Longleftrightarrow 5 \leq 3 \sqrt{3} \Longleftrightarrow 25 \leq 9 \cdot 3=27
$$

which is true, and so we have $\frac{\epsilon_{1}}{2 \sqrt{a}} \leq \frac{1}{10}$. Using the formula $\frac{\epsilon_{k+1}}{2 \sqrt{a}} \leq\left(\frac{\epsilon_{1}}{2 \sqrt{a}}\right)^{2^{k}}$ with $a=3$ and $k=5$, gives

$$
\frac{\epsilon_{6}}{2 \sqrt{3}} \leq\left(\frac{\epsilon_{1}}{2 \sqrt{3}}\right)^{32} \leq\left(\frac{1}{10}\right)^{32}=10^{-32}
$$

and so $\epsilon_{6} \leq 2 \sqrt{3} \cdot 10^{-32} \leq 4 \cdot 10^{-32}$.

5: Solve the following problems using the definition of the limit and the definition of the derivative as a limit.
(a) Let $f(x)=\frac{1}{x^{2}-1}$ for $x \neq \pm 1$. Show that $\lim _{x \rightarrow 2} f(x)=\frac{1}{3}$.

Solution: First we note that for $x \in \mathbb{R}$ with $x \neq \pm 1$ we have

$$
\left|\frac{1}{x^{2}-1}-\frac{1}{3}\right|=\left|\frac{3-\left(x^{2}-1\right)}{3\left(x^{2}-1\right)}\right|=\left|\frac{4-x^{2}}{3\left(x^{2}-1\right)}\right|=\frac{|x+2|}{3\left|x^{2}-1\right|} \cdot|x-2| .
$$

Next note that when $|x-2|<\frac{1}{2}$ we have $\frac{3}{2}<x<\frac{5}{2}$ so that $\frac{7}{2}<(x+2)<\frac{9}{2}$ and we have $\frac{9}{4}<x^{2}<\frac{25}{4}$ so that $\frac{5}{4}<\left(x^{2}-1\right)<\frac{21}{4}$, and so we have $\frac{|x+2|}{3\left|x^{2}-1\right|}=\frac{x+2}{3\left(x^{2}-1\right)}<\frac{\frac{9}{2}}{3 \cdot \frac{5}{4}}=\frac{6}{5}$.

Let $\epsilon>0$. Choose $\delta=\min \left\{\frac{1}{2}, \frac{5 \epsilon}{6}\right\}$. Let $x \in \mathbb{R}$ with $0<|x-2|<\delta$. As shown above, since $|x-2|<\frac{1}{2}$ we have $\frac{|x+2|}{3\left|x^{2}-1\right|}<\frac{6}{5}$, and since $|x-2|<\frac{5 \epsilon}{6}$ we have

$$
\left|\frac{1}{x^{2}-1}-\frac{1}{3}\right|=\frac{|x+2|}{3\left|x^{2}-1\right|} \cdot|x-2|<\frac{6}{5} \cdot \frac{5 \epsilon}{6}=\epsilon
$$

(b) Let $g(x)=\sqrt{5-x^{2}}$ for $|x| \leq \sqrt{5}$. Show that $g^{\prime}(2)=-2$.

Solution: First we note that for $x \in \mathbb{R}$ with $|x| \leq \sqrt{5}$ and $x \neq 2$ we have

$$
\begin{aligned}
\left|\frac{g(x)-g(2)}{x-2}-(-2)\right| & =\left|\frac{\sqrt{5-x^{2}}-1}{x-2}+2\right|=\left|\frac{\sqrt{5-x^{2}}+2 x-5}{x-2}\right|=\left|\frac{\sqrt{5-x^{2}}+(2 x-5)}{x-2} \cdot \frac{\sqrt{5-x^{2}}-(2 x-5)}{\sqrt{5-x^{2}}-(2 x-5)}\right| \\
& =\left|\frac{\left(5-x^{2}\right)-\left(4 x^{2}-20 x+25\right)}{(x-2)\left(\sqrt{5-x^{2}}-(2 x-5)\right)}\right|=\left|\frac{-5(x-2)^{2}}{(x-2)\left(\sqrt{5-x^{2}}-(2 x-5)\right)}\right|=\frac{5}{\sqrt{5-x^{2}}+(5-2 x)} \cdot|x-2| .
\end{aligned}
$$

Next note that when $|x-2|<\frac{1}{5}$ we have $\frac{9}{5}<x<\frac{11}{5}$ and since $x<\frac{11}{5}$ we have $x^{2}<\frac{121}{25}$ so $5-x^{2}>\frac{4}{25}$ so that $\sqrt{5-x^{2}}>\frac{2}{5}$, and we have $2 x<\frac{22}{5}$ so that $5-2 x>\frac{3}{5}$, and so we have $\frac{5}{\sqrt{5-x^{2}+(5-2 x)}}<\frac{5}{\frac{2}{5}+\frac{3}{5}}=5$.

Let $\epsilon>0$. Choose $\delta=\min \left\{\frac{1}{5}, \frac{\epsilon}{5}\right\}$. Then for $0<|x-2|<\delta$, as shown above, since $|x-2|<\frac{1}{5}$ we have $\frac{5}{\sqrt{5-x^{2}}+(5-2 x)}<5$ and since $|x-2|<\frac{\epsilon}{5}$ we have

$$
\left|\frac{g(x)-g(2)}{x-2}-(-2)\right|=\frac{5}{\sqrt{5-x^{2}}+(5-2 x)} \cdot|x-2|<5 \cdot \frac{\epsilon}{5}=\epsilon .
$$

(c) Let $h(x)=\frac{1}{x}$ for $x \neq 0$. Show that $h^{\prime}(x)=-\frac{1}{x^{2}}$ for all $x \neq 0$.

Solution: First note that for $x \neq 0, u \neq 0$ and $u \neq x$ we have

$$
\left|\frac{h(u)-h(x)}{u-x}-\left(-\frac{1}{x^{2}}\right)\right|=\left|\frac{\frac{1}{u}-\frac{1}{x}}{u-x}+\frac{1}{x^{2}}\right|=\left|\frac{x-u}{u x(u-x)}+\frac{1}{x^{2}}\right|=\left|-\frac{1}{u x}+\frac{1}{x^{2}}\right|=\left|\frac{u-x}{u x^{2}}\right|=\frac{1}{|u||x|^{2}} \cdot|u-x| .
$$

Next note that when $|u-x|<\frac{|x|}{2}$ we have $|x|=|(x-u)+u| \leq|x-u|+|u|<\frac{|x|}{2}+|u|$ so that $|u|>|x|-\frac{|x|}{2}=\frac{|x|}{2}$ and hence $\frac{1}{|u||x|^{2}}<\frac{1}{\frac{|x|}{2} \cdot|x|^{2}}=\frac{2}{|x|^{3}}$.

Let $x \in \mathbb{R}$ with $x \neq 0$. Let $\epsilon>0$. Choose $\delta=\min \left\{\frac{|x|}{2}, \frac{|x|^{3} \epsilon}{2}\right\}$. Then for $u \in \mathbb{R}$ with $|u-x|<\delta$, as shown above, since $|u-x|<\frac{|x|}{2}$ we have $\frac{1}{|u||x|^{2}}<\frac{2}{|x|^{3}}$ and since $|u-x|<\frac{|x|^{3} \epsilon}{2}$ we have

$$
\left|\frac{h(u)-h(x)}{u-x}-\left(-\frac{1}{x^{2}}\right)\right|=\frac{1}{|u||x|^{2}} \cdot|u-x|<\frac{2}{|x|^{3}} \cdot \frac{|x|^{3} \epsilon}{2}=\epsilon .
$$

6: Let $f(x)=\left\{\begin{aligned} x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0, \\ 0 & , \text { if } x=0,\end{aligned} \quad\right.$ and let $g(x)=\left\{\begin{array}{ll}0, & \text { if } x \notin \mathbb{Q}, \\ \frac{1}{b}, & \text { if } x=\frac{a}{b} \text { with } a \in \mathbb{Z}, b \in \mathbb{Z}^{+} \text {and } \operatorname{gcd}(a, b)=1 \text {. } . ~ . ~\end{array}\right.$.
(a) Show that f is differentiable at $x=0$.

Solution: We claim that f is differentiable at 0 with $f^{\prime}(0)=0$. Let $\epsilon>0$. Choose $\delta=\epsilon$. For $x \in \mathbb{R}$ with $0<|x-0|<\delta$ we have $0<|x|<\epsilon$ and so

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|=\left|\frac{x^{2} \sin \frac{1}{x}-0}{x-0}-0\right|=\left|x \sin \frac{1}{x}\right|=|x|\left|\sin \frac{1}{x}\right| \leq|x| \cdot 1<\epsilon
$$

since $|\sin u| \leq 1$ for all $u \in \mathbb{R}$.
(b) Determine where g is continuous.

Solution: We claim that g is continuous at $a \in \mathbb{R}$ if and only if $a \notin \mathbb{Q}$. Suppose first that $a \in \mathbb{Q}$, say $a=\frac{k}{n}$ with $k \in \mathbb{Z}, n \in \mathbb{Z}^{+}$and $\operatorname{gcd}(k, n)=1$ so that $g(a)=\frac{1}{n}$. We claim that g is not continuous at a (we need to show that there exists $\epsilon>0$ such that for all $\delta>0$ there exists $x \in \mathbb{R}$ such that $|x-a|<\delta$ and $|g(x)-g(a)| \geq \epsilon)$. Choose $\epsilon=\frac{1}{n}$. Let $\delta>0$. Choose $x \in \mathbb{R}$ with $x \notin \mathbb{Q}$ and $|x-a|<\delta$ (for example, choose $m \in \mathbb{Z}^{+}$with $m>\frac{\sqrt{2}}{\delta}$ and then let $\left.x=a+\frac{\sqrt{2}}{m}\right)$. Then we have $g(x)=0$ and $g(a)=\frac{1}{n}$ and so $|g(x)-g(a)|=\frac{1}{n}=\epsilon$.

Next suppose that $a \notin \mathbb{Q}$ and note that $g(a)=0$. We claim that $g(x)$ is continuous at a. Let $\epsilon>0$. Choose $n \in \mathbb{Z}^{+}$with $\frac{1}{n}<\epsilon$. Let S be the set of all points $x \in[a-1, a+1]$ of the form $x=\frac{k}{m}$ with $k \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$ with $m \leq n$ (we remark that S is not empty because $\lfloor a\rfloor \in S$). Note that there are only finitely many points in S since for each choice of $m \in \mathbb{Z}^{+}$with $m \leq n$ there are only finitely many $k \in \mathbb{Z}$ with $m(a-1)<k<m(a+1)$. Choose $\delta=\min \{|x-a| \mid x \in S\}$ (we remark that $\delta<1$ because $\lfloor a\rfloor \in S$). Note that $\delta>0$ since $a \notin \mathbb{Q}$ so $a \notin S$ and so $|x-a|>0$ for every $x \in S$. For $0<|x-a|<\delta$, either $x \notin \mathbb{Q}$ in which case $g(x)=0$ so that $|g(x)-g(a)|=0<\epsilon$, or $x \in \mathbb{Q}$ in which case $x \notin S$ (since $|x-a| \geq \delta$ for all $x \in S$) and so when we write $x=\frac{k}{m}$ with $k \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$and $\operatorname{gcd}(k, m)=1$ we must have $m>n$ and so $|g(x)-f(x)|=\frac{1}{m}<\frac{1}{n}<\epsilon$.
(c) Determine where g is differentiable.

Solution: We claim that g is not differentiable at any point $a \in \mathbb{R}$. When $a \in \mathbb{Q}$ we know from Part (b) that g is not continuous at a, and so g is not differentiable at a. Suppose that $a \notin \mathbb{Q}$. Suppose, for a contradiction, that g is differentiable at a. Take $\epsilon=\frac{1}{2}$ in the definition of differentiability and choose $\delta>0$ so that for all $x \in \mathbb{R}$, if $0<|x-a|<\delta$ then $\left|\frac{g(x)-g(a)}{x-a}-g^{\prime}(a)\right|<\frac{1}{2}$, that is

$$
\frac{g(x)-g(a)}{x-a}-\frac{1}{2}<g^{\prime}(a)<\frac{g(x)-g(a)}{x-a}+\frac{1}{2} .
$$

Choose a prime number $p \in \mathbb{Z}^{+}$so that $\frac{2}{p}<\delta$ (we can do this because there are infinitely many prime numbers). Let $k=\lfloor a p\rfloor$ (we remark that $k \neq a p$ since $a \notin \mathbb{Q}$). Then we have $a p-2<k-1<k<a p$ so that $a-\frac{2}{p}<\frac{k-1}{p}<\frac{k}{p}<a$, and we have $a p<k+1<k+2<a p+2$ so that $a<\frac{k+1}{p}<\frac{k+2}{p}<a+\frac{2}{p}$. Pick $k_{1} \in\{k-1, k\}$ with $p \nmid k_{1}$ so that $\operatorname{gcd}\left(k_{1}, p\right)=1$ and let $x_{1}=\frac{k_{1}}{p}$. Pick $k_{2} \in\{k+1, k+2\}$ with $p \nmid k_{2}$ so that $\operatorname{gcd}\left(k_{2}, p\right)=1$ and let $x_{2}=\frac{k_{2}}{p}$. Then we have $a-\delta<a-\frac{1}{2 p}<x_{1}<a<x_{2}<a+\frac{2}{p}<a+\delta$ and $g\left(x_{1}\right)=g\left(x_{2}\right)=\frac{1}{p}$. It follows that

$$
\frac{g\left(x_{1}\right)-g(a)}{x_{1}-a}<-\frac{1 / p}{2 / p}=-\frac{1}{2} \quad \text { and } \quad \frac{g\left(x_{2}\right)-g(a)}{x_{2}, a}>\frac{1 / p}{2 / p}=\frac{1}{2}
$$

and hence that

$$
g^{\prime}(a)<\frac{g\left(x_{1}\right)-g(a)}{x_{1}-a}+\frac{1}{2}<-\frac{1}{2}+\frac{1}{2}=0 \quad \text { and } g^{\prime}(a)>\frac{g\left(x_{2}\right)-g(a)}{x_{2}-a}-\frac{1}{2}>\frac{1}{2}-\frac{1}{2}>0
$$

which gives us the desired contradiction.

7: (a) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\cos \left(\pi x^{2}\right)$. Show that f is not uniformly continuous in \mathbb{R}.
Solution: Note that $f(\sqrt{n})=\cos (\pi n)=(-1)^{n}$ for all $n \in \mathbb{Z}^{+}$. To show that f is not uniformly continuous in \mathbb{R} we need to show that there exists $\epsilon>0$ such that for all $\delta>0$ there exists $a, x \in \mathbb{R}$ such that $|x-a|<\delta$ and $|f(x)-f(a)| \geq \epsilon$. Choose $\epsilon=1$. Let $\delta>0$. Since $\sqrt{n+1}-\sqrt{n}=\frac{1}{\sqrt{n+1}+\sqrt{n}} \rightarrow 0$ as $n \rightarrow \infty$, we can choose $n \in \mathbb{Z}^{+}$so that $\sqrt{n+1}-\sqrt{n}<\delta$. Then for $a=\sqrt{n}$ and $x=\sqrt{n+1}$ we have $|x-a|<\delta$ but $|f(x)-f(a)|=\left|(-1)^{n+1}-(-1)^{n}\right|=2>\epsilon$.
(b) Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\left\{\begin{aligned} e^{-1 / x^{2}} & , \text { if } x \neq 0, \\ 0 & , \text { if } x=0 .\end{aligned} \quad\right.$ Use induction to show that $0=g(0)=g^{\prime}(0)=g^{\prime \prime}(0)=\cdots$.

Solution: When $x \neq 0$ we have $g^{\prime}(x)=\frac{2}{x^{3}} e^{-1 / x^{2}}$ and $g^{\prime \prime}(x)=\left(\frac{4}{x^{6}}-\frac{6}{x^{4}}\right) e^{-1 / x^{2}}$. Let $n \geq 1$ and suppose, inductively, that $g^{(n)}(x)=p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}$ where $p_{n}(t)$ is a polynomial of degree $3 n$. Then

$$
g^{(n+1)}(x)=p_{n}^{\prime}\left(\frac{1}{x}\right) \cdot\left(-\frac{1}{x^{2}}\right) e^{-1 / x^{2}}+p_{n}\left(\frac{1}{x}\right) \cdot\left(\frac{2}{x^{3}}\right) e^{-1 / x^{2}}=p_{n+1}\left(\frac{1}{x}\right) e^{-1 / x^{2}}
$$

where $p_{n+1}(t)=2 t^{3} p_{n}(t)-t^{2} p_{n}{ }^{\prime}(t)$, which is a polynomial of degree $3(n+1)$. By Induction, it follows that for $x \neq 0$ we have $g^{(n)}(x)=p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}$ for all $n \geq 0$, where $p_{n}(t)$ is the polynomial of degree $3 n$ defined recursively by $p_{0}(x)=1$ and $p_{n+1}(t)=2 t^{3} p_{n}(t)-t^{2} p_{n}{ }^{\prime}(t)$ for $n \geq 0$. From the definition of the derivative we have

$$
g^{\prime}(0)=\lim _{x \rightarrow 0} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0} \frac{e^{-1 / x^{2}}-0}{x-0}=\lim _{x \rightarrow 0} \frac{1 / x}{e^{1 / x^{2}}}
$$

As $x \rightarrow 0$ we have $\frac{1}{x^{2}} \rightarrow \infty$ so $e^{1 / x^{2}} \rightarrow \infty$, as $x \rightarrow 0^{+}$we have $\frac{1}{x} \rightarrow+\infty$ and as $x \rightarrow 0^{-}$we have $\frac{1}{x} \rightarrow-\infty$, and so by l'Hôpital's Rule, we have

$$
g^{\prime}(0)=\lim _{x \rightarrow 0} \frac{\frac{1}{x}}{e^{1 / x^{2}}}=\lim _{x \rightarrow 0} \frac{-\frac{1}{x^{2}}}{-\frac{2}{x^{3}} e^{1 / x^{2}}}=\lim _{x \rightarrow 0} \frac{x}{2 e^{1 / x^{2}}}=\frac{0}{\infty}=0
$$

Let $n \geq 0$ and suppose, inductively, that $g^{(n)}(0)=0$. Then we have

$$
g^{(n)}(x)=\left\{\begin{array}{cl}
p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}} & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

From the definition of the derivative, we have

$$
g^{(n+1)}(0)=\lim _{x \rightarrow 0} \frac{g^{(n)}(x)-g^{(n)}(0)}{x-0}=\lim _{x \rightarrow 0} \frac{p_{n}\left(\frac{1}{x}\right) e^{-1 / x^{2}}}{x}=\lim _{x \rightarrow 0} \frac{\frac{1}{x} p_{n}\left(\frac{1}{x}\right)}{e^{1 / x^{2}}}
$$

Note that in order to show that $\lim _{x \rightarrow 0} \frac{\frac{1}{x} p_{n}\left(\frac{1}{x}\right)}{e^{1 / x^{2}}}=0$, it suffices to show that $\lim _{x \rightarrow 0} \frac{1 / x^{k}}{e^{1 / x^{2}}}=0$ for all $k \geq 0$ (because $\frac{\frac{1}{x} p_{n}\left(\frac{1}{x}\right)}{e^{1 / x^{2}}}$ is equal to a sum of terms of the form $\left.\frac{1 / x^{k}}{e^{1 / x^{2}}}\right)$. We already know that this is true when $k=0$ and when $k=1$ (we shall need two base cases). Let $k \geq 0$ and suppose, inductively, that $\lim _{x \rightarrow 0} \frac{1 / x^{k}}{e^{1 / x^{2}}}=0$. Then by l'Hôpital's Rule yet again we have

$$
\lim _{x \rightarrow 0} \frac{\frac{1}{x^{k+2}}}{e^{1 / x^{2}}}=\lim _{x \rightarrow 0} \frac{-\frac{k+2}{x^{k+3}}}{-\frac{2}{x^{3}} e^{1 / x^{2}}}=\lim _{x \rightarrow 0} \frac{k+2}{2} \cdot \frac{\frac{1}{x^{k}}}{e^{1 / x^{2}}}=0 .
$$

By the Strong Induction Principle, it follows that $\lim _{x \rightarrow 0} \frac{1 / x^{k}}{e^{1 / x^{2}}}=0$ for all $n \geq 0$, and so $\lim _{x \rightarrow 0} \frac{\frac{1}{x} p_{n}\left(\frac{1}{x}\right)}{e^{1 / x^{2}}}=0$ for all $n \geq 0$, hence $g^{(n)}(0)=\lim _{x \rightarrow 0} \frac{\frac{1}{x} p_{n}\left(\frac{1}{x}\right)}{e^{1 / x^{2}}}=0$ for all $n \geq 0$, as required.
(c) Find a function $h: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable in \mathbb{R} with $h^{\prime}(0)=1$ such that for all $\delta>0$ the function h is not increasing in the interval $(-\delta, \delta)$.

Solution: Let $h(x)=x+2 f(x)$ where $f(x)$ is the function from Problem 2. By Part (a) of Problem 2 we have $h^{\prime}(0)=1+0=1$, and for $x \neq 0$ we have $h(x)=x+2 x^{2} \sin \frac{1}{x}$ so that $h^{\prime}(x)=1+4 x \sin \frac{1}{x}-2 \cos \frac{1}{x}$. Note that $h^{\prime}(x)$ is continuous for all $x \neq 0$. Let $\delta>0$. We claim that $h(x)$ is not increasing in the interval $(-\delta, \delta)$. Choose $k \in \mathbb{Z}^{+}$so that $\frac{1}{\pi k}<\delta$ and let $a=\frac{1}{2 \pi k}$. Since $\sin 2 \pi k=0$ and $\cos 2 \pi k=1$ we have $h^{\prime}(a)=1+0-2=-1$. Since $h^{\prime}(x)$ is continuous for $x>0$ we can choose δ_{1} with $0<\delta_{1}<\frac{1}{2 \pi k}$ so that for all $x>0$ with $|x-a|<\delta_{1}$ we have $\left|h^{\prime}(x)-h^{\prime}(a)\right|<\frac{1}{2}$ and hence $h^{\prime}(x)<h^{\prime}(a)+\frac{1}{2}=-1+\frac{1}{2}=-\frac{1}{2}$. Since $h^{\prime}(x)<-\frac{1}{2}<0$ for all $x \in\left(a-\delta_{1}, a+\delta_{1}\right)$, it follows that $h(x)$ is decreasing in the interval $\left(a-\delta_{1}, a+\delta_{1}\right)$. Since $\left(a-\delta_{1}, a+\delta_{1}\right) \subseteq\left(0, \frac{1}{\pi k}\right) \subseteq(-\delta, \delta)$, it follows that $h(x)$ is not increasing in the interval $(-\delta, \delta)$.

8: (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$. Let $m>0$ and suppose that $f^{\prime}(x) \geq m$ for all $x \in[a, b]$. Show that $f(b) \geq f(a)+m(b-a)$.
Solution: By the Mean Value Theorem, we can choose $x \in[a, b]$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(x)$ and then, since $f^{\prime}(x) \geq m$, we have $\frac{f(b)-f(a)}{b-a} \geq m$ so that $f(b)-f(a) \geq m(b-a)$ and hence $f(b) \geq f(a)+m(b-a)$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$. Let $m \in \mathbb{R}$ and suppose that $f^{\prime}(a)<m<f^{\prime}(b)$. Show that there exists $c \in(a, b)$ such that $f^{\prime}(c)=m$. (Hint: consider the function $\left.g(x)=f(x)-m x\right)$.
Solution: Let $g(x)=f(x)-m x$. Since f is differentiable on $[a, b]$, so is g and we have $g^{\prime}(x)=f^{\prime}(x)-m$. Since g is differentiable on $[a, b]$, it follows that g is also continuous on $[a, b]$, and so by the Extreme Value Theorem, g attains its minimum value on $[a, b]$. Choose $c \in[a, b]$ so that $g(c) \leq g(x)$ for all $x \in[a, b]$. Since $f^{\prime}(a)<m$ we have $g^{\prime}(a)=f^{\prime}(a)-m<0$ and so g does not attain its minimum value at a (indeed we can choose $\delta>0$ such that for all x with $a<x<a+\delta$ we have $\left|\frac{g(x)-g(a)}{x-a}-g^{\prime}(a)\right|<\frac{\left|g^{\prime}(a)\right|}{2}$ so that $\frac{g(x)-g(a)}{x-a}<g^{\prime}(a)+\frac{\left|g^{\prime}(a)\right|}{2}=g^{\prime}(a)-\frac{g^{\prime}(a)}{2}=\frac{g^{\prime}(a)}{2}<0$ which implies that $g(x)=g(a)<0$ so that $\left.g(x)<g(a)\right)$. Since $f^{\prime}(b)>m$ we have $g^{\prime}(b)=f^{\prime}(b)-m>0$ and so g does not attain its minimum value at b. Since g does not attain its minimum value at a or b we must have $c \in(a, b)$. Since g has a minimum value at $c \in(a, b)$, it follows from Fermat's Theorem that $g^{\prime}(c)=0$, and hence $f^{\prime}(c)=g^{\prime}(c)+m=m$.
(c) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ with $f^{\prime}(x) g(x)=f(x) g^{\prime}(x)$ for all $x \in[a, b]$. Suppose that $f(a)=f(b)=0, f(x) \neq 0$ for all $x \in(a, b)$, and $g(a) \neq 0$. Show that there exists $c \in(a, b)$ such that $g(c)=0$.
Solution: Suppose, for a contradiction, that $g^{\prime}(x) \neq 0$ for all $x \in(a, b)$. Since $g(a) \neq 0$ we have $g(x) \neq 0$ for all $x \in[a, b)$. Since f and g are differentiable with $g(x) \neq 0$ for all $x \in[a, b)$ it follows that the function $h(x)=\frac{f(x)}{g(x)}$ is differentiable with $h^{\prime}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g(x)^{2}}$ for all $x \in[a, b)$. Since $f^{\prime}(x) g(x)=f(x) g^{\prime}(x)$ for all $x \in[a, b]$ it follows that $h^{\prime}(x)=0$ for all $x \in[a, b)$. Since $h^{\prime}(x)=0$ for all $x \in[a, b)$ it follows that h is constant in $[a, b)$. Since h is constant in $[a, b)$ with $h(a)=\frac{f(a)}{g(a)}=\frac{0}{g(a)}=0$, it follows that $h(x)=0$ for all $x \in[a, b)$. This gives the desired contradiction because for all $x \in(a, b)$ we have $f(x) \neq 0$ and $g(x) \neq 0$ so that $h(x)=\frac{f(x)}{g(x)} \neq 0$.

9: In this problem we explore a uniqueness theorem for differential equations.
(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ with $f(a)=0$. Suppose that there exists a constant $c>0$ such that

$$
\left|f^{\prime}(x)\right| \leq c|f(x)|
$$

for all $x \in[a, b]$. Show that $f(x)=0$ for all $x \in[a, b]$.
Solution: We wish to show that $f(x)=0$ for all $x \in[a, b]$. We have $f(a)=0$. Let $k \in \mathbb{N}$ and suppose, inductively, that $f(x)=0$ for all $x \in[a, b]$ with $a \leq x \leq a+\frac{k}{2 c}$. We need to show that $f(x)=0$ for all $x \in[a, b]$ with $a+\frac{k}{2 c}<x \leq a+\frac{k+1}{2 c}$. If $a+\frac{k}{c} \geq b$ then we have $f(x)=0$ for all $x \in[a, b]$ so there is nothing to prove. Suppose that $a+\frac{k}{2 c}<b$. To simplify our notation, write $d=a+\frac{k}{2 c}<b$. Then we have $f(x)=0$ for all $x \in[a, d]$ and we need to show that $f(x)=0$ for all $x \in[a, b]$ with $d<x \leq d+\frac{1}{2 c}$.

Let $x \in[a, b]$ with $d<x \leq d+\frac{1}{2 c}$. Let $\ell=\sup \{\mid f(t) \| d \leq t \leq x\}$ and let $m=\sup \left\{\left|f^{\prime}(t)\right| \mid d \leq t \leq x\right\}$.
We claim that $m \leq c l$. Suppose, for a contradiction, that $m>c l$. Let $\epsilon=m-c l$. By the Approximation Property, we can choose $t \in[d, x]$ so that $m-\epsilon<\left|f^{\prime}(t)\right| \leq m$. Then we have $m-\epsilon<\left|f^{\prime}(t)\right| \leq c|f(t)| \leq c l$. But then $\epsilon>m-c \ell=\epsilon$ giving the desired contradiction. Thus $m \leq c \ell$, as claimed.

Next, we claim that $|f(t)| \leq \frac{\ell}{2}$ for all $t \in[d, x]$. We know that $f(d)=0$, so suppose that $t \in(d, x]$. By the Mean Value Theorem, we can choose $s \in(d, x)$ such that $f^{\prime}(s)=\frac{f(t)-f(d)}{t-d}=\frac{f(t)}{t-d}$. and then $f(t)=f^{\prime}(s)(t-d)$. It follows that $|f(t)|=\left|f^{\prime}(s)\right|(t-d) \leq m(t-d) \leq m(x-d) \leq c \ell(x-d) \leq c \ell \cdot \frac{1}{2 c}=\frac{\ell}{2}$, as claimed.

We claim that $\ell=0$. Note that since $\ell=\sup \{|f(t)| t \in[d, x]\}$ we have $\ell \geq|f(d)|=0$. Suppose, for a contradiction, that $\ell>0$. By the Approximation Property, we can choose $t \in[d, x]$ such that $\frac{\ell}{2}<|f(t)| \leq \ell$. But this contradicts the fact that $|f(t)| \leq \frac{\ell}{2}$ for all $t \in[d, x]$ (as we just proved) and so $\ell=0$, as claimed.

Finally note that since $\ell=\sup \{|f(t)| \mid t \in[d, x]\}=0$ it follows that $|f(t)|=0$ for all $t \in[d, x]$, so in particular $f(x)=0$. Since x was arbitrary, this proves that $f(x)=0$ for every $x \in[a, b]$ with $d<x \leq d+\frac{1}{2 c}$, as required.
(b) Let $A=\{(x, y) \mid x \in[a, b]$ and $y \in[r, s]\}$ and let $F: A \rightarrow \mathbb{R}$. Suppose there exists a constant $c>0$ such that

$$
\left|F\left(x, y_{1}\right)-F\left(x, y_{2}\right)\right| \leq c\left|y_{1}-y_{2}\right|
$$

for all $x \in[a, b]$ and $y_{1}, y_{2} \in[r, s]$. Show that for each $p \in[r, s]$ there exists at most one function $f:[a, b] \rightarrow[r, s]$ with $f(a)=p$ such that $f^{\prime}(x)=F(x, f(x))$ for all $x \in[a, b]$.
Solution: Suppose that $f_{1}, f_{2}:[a, b] \rightarrow[r, s]$ with $f_{1}(a)=f_{2}(a)=p, f_{1}^{\prime}(t)=F\left(x, f_{1}(x)\right)$ and $f_{2}^{\prime}(x)=$ $F\left(x, f_{2}(x)\right)$. We must show that $f_{1}(x)=f_{2}(x)$ for all $x \in[0,1]$. Let $f(x)=f_{1}(x)=f_{2}(x)$. Then for all $x \in[0,1]$ we have

$$
\left|f^{\prime}(x)\right|=\left|f_{1}^{\prime}(x)-f_{2}^{\prime}(x)\right|=\left|F\left(x, f_{1}(x)\right)-F\left(x, f_{2}(x)\right)\right| \leq c\left|f_{1}(x)-f_{2}(x)\right|=c|f(x)| .
$$

By Part (1) it follows that $f^{\prime}(x)=0$ for all $x \in[0,1]$. Since $f^{\prime}(x)=0$ for all $x \in[0,1]$ it follows that $f(x)$ is constant. Since $f(0)=f_{1}(0)-f_{2}(0)=p-p=0$ and $f(x)$ is constant, it follows that $f(x)=0$ for all $x \in[0,1]$. Thus for all $x \in[0,1]$ we have $0=f(x)=f_{1}(x)-f_{2}(x)$ so that $f_{1}(x)=f_{2}(x)$, as required.
(c) Find every function $f:[0,1] \rightarrow[0,1]$ such that $f^{\prime}(x)=2 \sqrt{f(x)}$ (there is more than one such function).

Solution: Will will show that the required functions are given by

$$
f(x)=\left\{\begin{array}{cc}
0 & \text { if } 0 \leq x \leq c \\
(x-c)^{2} & \text { if } c \leq x \leq 1
\end{array}\right.
$$

where c is a constant with $0 \leq c \leq 1$. Note that f is increasing with $f(0)=0$ and $f(1)=(1-c)^{2} \leq 1$.
First let us show that for the above functions f we do indeed have $f^{\prime}(x)=2 \sqrt{f(x)}$ for all $x \in[0,1]$. When $0 \leq x \leq c$ we have $\sqrt{f(x)}=\sqrt{0}=0$ and when $c \leq x \leq 1$ we have $\sqrt{f(x)}=\sqrt{(x-c)^{2}}=|x-c|=x-c$. On the other hand, when $0 \leq x<c$ we have $f(x)=0$ so that $f^{\prime}(x)=0$, and when $c<x \leq 1$ we have $f(x)=(x-c)^{2}$ so that $f^{\prime}(x)=2(x-c)$, and we have

$$
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{-}} \frac{0-0}{x-c}=0 \text { and } \lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c}=\lim _{x \rightarrow c^{+}} \frac{(x-c)^{2}-0}{x-c}=\lim _{x \rightarrow c^{+}}(x-c)=0
$$

so that $f^{\prime}(c)=0$, and so in all cases we have $f^{\prime}(x)=2 \sqrt{f(x)}$, as required. It remains to show that we have found all of the solutions.

Let f be any function $f:[0,1] \rightarrow[0,1]$ with $f^{\prime}(x)=2 \sqrt{f(x)}$ for all $x \in[0,1]$. We remark that f is differentiable because $f^{\prime}(x)$ exists. We also remark that f must be increasing on $[0,1]$ because $f^{\prime}(x)=\sqrt{f(x)} \geq 0$ for all $x \in[0,1]$.

First we claim that for any nonempty interval $I \subseteq[0,1]$, if $f(x)>0$ for all $x \in I$ then there exists $b \in \mathbb{R}$ such that $f(x)=(x-b)^{2}$ for all $x \in I$. Let I be any nonempty interval with $I \subseteq[0,1]$ and suppose that $f(x)>0$ for all $x \in I$. Let $g(x)=2 \sqrt{f(x)}-2 x$ for all $x \in I$. Then g is differentiable in I (since f is differentiable and the function \sqrt{u} is differentiable for $u>0$) with $g^{\prime}(x)=\frac{f^{\prime}(x)}{\sqrt{f(x)}}-2=\frac{2 \sqrt{f(x)}}{\sqrt{f(x)}}-2=0$. Since $g^{\prime}(x)=0$ for all $x \in I$ it follows that g is constant in I. Choose $a \in I$. Then for all $x \in I$ we have $2 \sqrt{f(x)}-2 x=g(x)=g(a)=2 \sqrt{f(a)}-2 a$ and so $f(x)=(x+\sqrt{f(a)}-a)^{2}$. Thus we have $f(x)=(x-b)^{2}$ for all $x \in I$, where $b=a-\sqrt{f(a)}$.

Next we claim that $f(0)=0$. Suppose, for a contradiction, that $f(0)=p>0$. Since f is increasing on $[0,1]$ with $f(0)=p>0$, we have $f(x) \geq f(0)=p>0$ for all $x \in[0,1]$. By the previous paragraph, we can choose $b \in \mathbb{R}$ so that $f(x)=(x-b)^{2}$ for all $x \in I$. Since $f^{\prime}(x)=2 \sqrt{f(x)}$ we have $f^{\prime}(0)=2 \sqrt{p}$ and since $f(x)=(x-b)^{2}$ we have $f^{\prime}(x)=2(x-b)$ and so $f^{\prime}(0)=-2 b$. It follows that $-2 b=2 \sqrt{p}$ so that $b=-\sqrt{p}$. Thus we must have $f(x)=(x+\sqrt{p})^{2}$ for all $x \in[0,1]$. In particular, we must have $f(1)=(1+\sqrt{p})^{2}>1$ which is not possible since $f:[0,1] \rightarrow[0,1]$. Thus $f(0)=0$, as claimed.

We claim that there exists $c \in[0,1]$ such that $f(x)=0$ for $0 \leq x \leq c$ and $f(x)>0$ for $c<x<1$. Let $S=\{x \in[0,1] \mid f(x)=0\}$. Note that $S \neq \emptyset$ because $0 \in S$ and S is bounded above by 1 . Let $c=\sup S$. Since $0 \in S$ we have $c \geq 0$ and since 1 is an upper bound for S we have $c \leq 1$ and so $c \in[0,1]$. Since c is an upper bound for S it follows that $f(x)>0$ for all $x>c$ (when $x>c$ we must have $x \notin S$ and so $f(x)>0$). It remains to show that $f(x)=0$ for all $x \in[0, c]$. In the case that $c=0$ there is nothing to prove, so suppose that $c>0$. Suppose first that $x \in[0, c)$. By the Approximation Property we can choose $t \in S$ with $x<t \leq c$. Since $t \in S$ we have $f(t)=0$. Since f is increasing and $x<t$ we have $f(x) \leq f(t)=0$ and so $f(x)=0$. This shows that $f(x)=0$ for all $x \in[0, c)$. Since f is continuous at c, it follows that $f(c)=\lim _{x \rightarrow c^{-}} f(x)=0$. Thus $f(x)=0$ for all $x \in[0, c]$, as required.

Let $c \in[0,1]$ be as above so that $f(x)=0$ for all $x \in[0, c]$ and $f(x)>0$ for all $x \in(c, 1]$. When $c=1$ we have $f(x)=0$ for all $x \in[0,1]$. Suppose that $c<1$ and note that the interval $(c, 1]$ is nonempty. As shown above, since $f(x)>0$ for all $x \in(c, 1]$ we can choose $b \in \mathbb{R}$ so that $f(x)=(x-b)^{2}$ for all $x \in(c, 1]$. Since $f(c)=0$ and f is continuous at c we have $0=f(c)=\lim _{x \rightarrow c^{+}} f(x)=\lim _{x \rightarrow c^{+}}(x-b)^{2}=(c-b)^{2}$ and hence we must have $b=c$. Thus $f(x)=0$ for $0 \leq x \leq c$ and $f(x)=(x-c)^{2}$ for $c \leq x \leq 1$, as required.

