PMATH 333, Exercises for Chapter 2

1: (a) Let $x_{k}=\frac{2 k+1}{k-1}$ for $k \geq 2$. Use the definition of the limit to show that $\lim _{k \rightarrow \infty} x_{k}=2$ in \mathbb{R}.
(b) Let $x_{1}=\frac{7}{2}$ and for $k \geq 1$ let $x_{k+1}=\frac{6}{5-a_{k}}$. Find $\lim _{k \rightarrow \infty} x_{k}$ if it exists in \mathbb{R} (with proof).
(c) Let $\left(x_{k}\right)_{k \geq p}$ and $\left(y_{k}\right)_{k \geq p}$ be sequences in \mathbb{R} with $\lim _{k \rightarrow \infty} x_{k}=c$ where $0<c \in \mathbb{R}$, and $\lim _{k \rightarrow \infty} y_{k}=\infty$. Use the definition of the limit to show that $\lim _{k \rightarrow \infty} \frac{x_{k}}{y_{k}}=0$.

2: (a) Find a divergent sequence $\left(x_{k}\right)_{k \geq 0}$ in \mathbb{R} with $\left|x_{k}-x_{k-1}\right| \leq \frac{1}{k}$ for all $k \geq 1$.
(b) Let $\left(x_{k}\right)_{k \geq 0}$ be a sequence in \mathbb{R} with $\left|x_{k}-x_{k-1}\right| \leq \frac{1}{k^{2}}$ for all $k \geq 1$. Show that $\left(x_{k}\right)$ converges in \mathbb{R}.

3: For a sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R} and for $a \in \mathbb{R}$ we say a is a limiting value of $\left(x_{k}\right)_{k \geq p}$ when

$$
\forall \epsilon>0 \quad \forall m \in \mathbb{Z}_{\geq p} \exists k \in \mathbb{Z}_{\geq p}\left(k \geq m \text { and }\left|x_{k}-a\right| \leq \epsilon\right)
$$

We denote the set of limiting values of $\left(x_{k}\right)_{k \geq p}$ by $\operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)$.
(a) Determine whether, for every sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R}, we have $\lim _{k \rightarrow \infty} x_{k}=a \Longrightarrow \operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)=\{a\}$.
(b) Determine whether, for every sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R} we have $\operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)=\{a\} \Longrightarrow \lim _{k \rightarrow \infty} x_{k}=a$.
(c) Determine whether there exists a sequence $\left(x_{k}\right)_{k \geq p}$ in \mathbb{R} with $\operatorname{Lim}\left(\left(x_{k}\right)_{k \geq p}\right)=\mathbb{R}$.

4: In this problem, we explore the rate at which the approximations found using Newton's Method approach a square root of a positive real number. Let $a \geq 0$. To approximate \sqrt{a}, let $x_{1} \geq \sqrt{a}$ and for $k \geq 1$ let $x_{k+1}=\frac{1}{2}\left(x_{k}+\frac{a}{x_{k}}\right)$. For $k \geq 1$ let $\epsilon_{k}=x_{k}-\sqrt{a}$.
(a) Show that $\left(x_{k}\right)$ is decreasing with $x_{k} \rightarrow \sqrt{a}$.
(b) Show that for all $k \geq 1$ we have $\epsilon_{k+1}=\frac{\epsilon_{k}^{2}}{2 x_{k}}$ and that $\frac{\epsilon_{k+1}}{2 \sqrt{a}} \leq\left(\frac{\epsilon_{1}}{2 \sqrt{a}}\right)^{2^{k}}$.
(c) Show that when $a=3$ and $x_{1}=2$ we have $\epsilon_{6} \leq 4 \cdot 10^{-32}$.

5: Solve the following problems using the definition of the limit and the definition of the derivative as a limit.
(a) Let $f(x)=\frac{1}{x^{2}-1}$ for $x \neq \pm 1$. Show that $\lim _{x \rightarrow 2} f(x)=\frac{1}{3}$.
(b) Let $g(x)=\sqrt{5-x^{2}}$ for $|x| \leq \sqrt{5}$. Show that $g^{\prime}(2)=-2$.
(c) Let $h(x)=\frac{1}{x}$ for $x \neq 0$. Show that $h^{\prime}(x)=-\frac{1}{x^{2}}$ for all $x \neq 0$.

(a) Show that f is differentiable at $x=0$.
(b) Determine where g is continuous.
(c) Determine where g is differentiable.

7: (a) Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by $f(x)=\cos \left(\pi x^{2}\right)$. Show that f is not uniformly continuous in \mathbb{R}.
(b) Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by $g(x)=\left\{\begin{aligned} e^{-1 / x^{2}} & , \text { if } x \neq 0, \\ 0 & , \text { if } x=0 .\end{aligned} \quad\right.$ Use induction to show that $0=g(0)=g^{\prime}(0)=g^{\prime \prime}(0)=\cdots$.
(c) Find a function $h: \mathbb{R} \rightarrow \mathbb{R}$ which is differentiable in \mathbb{R} with $h^{\prime}(0)=1$ such that for all $\delta>0$ the function h is not increasing in the interval $(-\delta, \delta)$.

8: (a) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$. Let $m>0$ and suppose that $f^{\prime}(x) \geq m$ for all $x \in[a, b]$. Show that $f(b) \geq f(a)+m(b-a)$.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$. Let $m \in \mathbb{R}$ and suppose that $f^{\prime}(a)<m<f^{\prime}(b)$. Show that there exists $c \in(a, b)$ such that $f^{\prime}(c)=m$. (Hint: consider the function $\left.g(x)=f(x)-m x\right)$.
(c) Let $f, g:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ with $f^{\prime}(x) g(x)=f(x) g^{\prime}(x)$ for all $x \in[a, b]$. Suppose that $f(a)=f(b)=0, f(x) \neq 0$ for all $x \in(a, b)$, and $g(a) \neq 0$. Show that there exists $c \in(a, b)$ such that $g(c)=0$.

9: In this problem we explore a uniqueness theorem for differential equations.
(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be differentiable on $[a, b]$ with $f(a)=0$. Suppose that there exists a constant $c>0$ such that

$$
\left|f^{\prime}(x)\right| \leq c|f(x)|
$$

for all $x \in[a, b]$. Show that $f(x)=0$ for all $x \in[a, b]$.
(b) Let $A=\{(x, y) \mid x \in[a, b]$ and $y \in[r, s]\}$ and let $F: A \rightarrow \mathbb{R}$. Suppose there exists a constant $c>0$ such that

$$
\left|F\left(x, y_{1}\right)-F\left(x, y_{2}\right)\right| \leq c\left|y_{1}-y_{2}\right|
$$

for all $x \in[a, b]$ and $y_{1}, y_{2} \in[r, s]$. Show that for each $p \in[r, s]$ there exists at most one function $f:[a, b] \rightarrow[r, s]$ with $f(a)=p$ such that $f^{\prime}(x)=F(x, f(x))$ for all $x \in[a, b]$.
(c) Find every function $f:[0,1] \rightarrow[0,1]$ such that $f^{\prime}(x)=2 \sqrt{f(x)}$ (there is more than one such function).

