
PMATH 333, Exercises for Chapter 2

1: (a) Let xk = 2k+1
k−1 for k ≥ 2. Use the definition of the limit to show that lim

k→∞
xk = 2 in R.

(b) Let x1 = 7
2 and for k ≥ 1 let xk+1 = 6

5−ak
. Find lim

k→∞
xk if it exists in R (with proof).

(c) Let (xk)k≥p and (yk)k≥p be sequences in R with lim
k→∞

xk = c where 0 < c ∈ R, and lim
k→∞

yk = ∞. Use the

definition of the limit to show that lim
k→∞

xk

yk
= 0.

2: (a) Find a divergent sequence (xk)k≥0 in R with
∣∣xk − xk−1∣∣ ≤ 1

k for all k ≥ 1.

(b) Let (xk)k≥0 be a sequence in R with
∣∣xk − xk−1∣∣ ≤ 1

k2 for all k ≥ 1. Show that (xk) converges in R.

3: For a sequence (xk)k≥p in R and for a ∈ R we say a is a limiting value of (xk)k≥p when

∀ ε>0 ∀m∈Z≥p ∃ k∈Z≥p (k≥m and |xk−a|≤ε).
We denote the set of limiting values of (xk)k≥p by Lim

(
(xk)k≥p

)
.

(a) Determine whether, for every sequence (xk)k≥p in R, we have lim
k→∞

xk = a =⇒ Lim
(
(xk)k≥p

)
= {a}.

(b) Determine whether, for every sequence (xk)k≥p in R we have Lim
(
(xk)k≥p

)
= {a} =⇒ lim

k→∞
xk = a.

(c) Determine whether there exists a sequence (xk)k≥p in R with Lim
(
(xk)k≥p

)
= R.

4: In this problem, we explore the rate at which the approximations found using Newton’s Method approach
a square root of a positive real number. Let a ≥ 0. To approximate

√
a, let x1 ≥

√
a and for k ≥ 1 let

xk+1 = 1
2

(
xk + a

xk

)
. For k ≥ 1 let εk = xk −

√
a.

(a) Show that (xk) is decreasing with xk →
√
a.

(b) Show that for all k ≥ 1 we have εk+1 =
εk

2

2xk
and that

εk+1

2
√
a
≤
(

ε1
2
√
a

)2k

.

(c) Show that when a = 3 and x1 = 2 we have ε6 ≤ 4 · 10−32.

5: Solve the following problems using the definition of the limit and the definition of the derivative as a limit.

(a) Let f(x) = 1
x2−1 for x 6= ±1. Show that lim

x→2
f(x) = 1

3 .

(b) Let g(x) =
√

5− x2 for |x| ≤
√

5. Show that g′(2) = −2.

(c) Let h(x) = 1
x for x 6= 0. Show that h′(x) = − 1

x2 for all x 6= 0.

6: Let f(x) =

{
x2 sin 1

x , if x 6= 0 ,

0 , if x = 0 ,
and let g(x) =

{
0 , if x /∈ Q ,
1
b , if x = a

b with a ∈ Z, b ∈ Z+ and gcd(a, b) = 1 .
.

(a) Show that f is differentiable at x = 0.

(b) Determine where g is continuous.

(c) Determine where g is differentiable.

7: (a) Define f : R→ R by f(x) = cos
(
πx2

)
. Show that f is not uniformly continuous in R.

(b) Define g : R→ R by g(x) =

{
e
−1/x2

, if x 6= 0 ,

0 , if x = 0 .
Use induction to show that 0 = g(0) = g′(0) = g′′(0) = · · ·.

(c) Find a function h : R→ R which is differentiable in R with h′(0) = 1 such that for all δ > 0 the function h
is not increasing in the interval (−δ, δ).

8: (a) Let f : [a, b]→ R be differentiable on [a, b]. Let m > 0 and suppose that f ′(x) ≥ m for all x ∈ [a, b]. Show
that f(b) ≥ f(a) +m(b− a).

(b) Let f : [a, b] → R be differentiable on [a, b]. Let m ∈ R and suppose that f ′(a) < m < f ′(b). Show that
there exists c ∈ (a, b) such that f ′(c) = m. (Hint: consider the function g(x) = f(x)−mx).

(c) Let f, g : [a, b] → R be differentiable on [a, b] with f ′(x)g(x) = f(x)g′(x) for all x ∈ [a, b]. Suppose that
f(a) = f(b) = 0, f(x) 6= 0 for all x ∈ (a, b), and g(a) 6= 0. Show that there exists c ∈ (a, b) such that g(c) = 0.



9: In this problem we explore a uniqueness theorem for differential equations.

(a) Let f : [a, b] → R be differentiable on [a, b] with f(a) = 0. Suppose that there exists a constant c > 0 such
that

|f ′(x)| ≤ c|f(x)|

for all x ∈ [a, b]. Show that f(x) = 0 for all x ∈ [a, b].

(b) Let A =
{

(x, y) |x ∈ [a, b] and y ∈ [r, s]
}

and let F : A → R. Suppose there exists a constant c > 0 such
that ∣∣F (x, y1)− F (x, y2)

∣∣ ≤ c|y1 − y2|
for all x ∈ [a, b] and y1, y2 ∈ [r, s]. Show that for each p ∈ [r, s] there exists at most one function f : [a, b]→ [r, s]
with f(a) = p such that f ′(x) = F

(
x, f(x)

)
for all x ∈ [a, b].

(c) Find every function f : [0, 1]→ [0, 1] such that f ′(x) = 2
√
f(x) (there is more than one such function).


