PMATH 333, Exercises for Chapter 2

- 1: (a) Let $x_k = \frac{2k+1}{k-1}$ for $k \ge 2$. Use the definition of the limit to show that $\lim_{k \to \infty} x_k = 2$ in \mathbb{R} . (b) Let $x_1 = \frac{7}{2}$ and for $k \ge 1$ let $x_{k+1} = \frac{6}{5-a_k}$. Find $\lim_{k \to \infty} x_k$ if it exists in \mathbb{R} (with proof).

 - (c) Let $(x_k)_{k \ge p}$ and $(y_k)_{k \ge p}$ be sequences in \mathbb{R} with $\lim_{k \to \infty} x_k = c$ where $0 < c \in \mathbb{R}$, and $\lim_{k \to \infty} y_k = \infty$. Use the definition of the limit to show that $\lim_{k \to \infty} \frac{x_k}{y_k} = 0.$
- **2:** (a) Find a divergent sequence $(x_k)_{k>0}$ in \mathbb{R} with $|x_k x_{k-1}| \leq \frac{1}{k}$ for all $k \geq 1$.
 - (b) Let $(x_k)_{k\geq 0}$ be a sequence in \mathbb{R} with $|x_k x_{k-1}| \leq \frac{1}{k^2}$ for all $k \geq 1$. Show that (x_k) converges in \mathbb{R} .
- **3:** For a sequence $(x_k)_{k\geq p}$ in \mathbb{R} and for $a \in \mathbb{R}$ we say a is a **limiting value** of $(x_k)_{k\geq p}$ when
 - $\forall \epsilon > 0 \ \forall m \in \mathbb{Z}_{>p} \ \exists k \in \mathbb{Z}_{>p} \ (k \ge m \text{ and } |x_k a| \le \epsilon).$
 - We denote the set of limiting values of $(x_k)_{k>p}$ by $\operatorname{Lim}((x_k)_{k>p})$.
 - (a) Determine whether, for every sequence $(x_k)_{k \ge p}$ in \mathbb{R} , we have $\lim_{k \to \infty} x_k = a \Longrightarrow \operatorname{Lim}((x_k)_{k \ge p}) = \{a\}$.
 - (b) Determine whether, for every sequence $(x_k)_{k\geq p}$ in \mathbb{R} we have $\operatorname{Lim}((x_k)_{k\geq p}) = \{a\} \Longrightarrow \lim_{k \to \infty} x_k = a$.
 - (c) Determine whether there exists a sequence $(x_k)_{k\geq p}$ in \mathbb{R} with $\operatorname{Lim}((x_k)_{k\geq p}) = \mathbb{R}$.
- 4: In this problem, we explore the rate at which the approximations found using Newton's Method approach a square root of a positive real number. Let $a \ge 0$. To approximate \sqrt{a} , let $x_1 \ge \sqrt{a}$ and for $k \ge 1$ let $x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right)$. For $k \ge 1$ let $\epsilon_k = x_k - \sqrt{a}$.
 - (a) Show that (x_k) is decreasing with $x_k \to \sqrt{a}$.
 - (b) Show that for all $k \ge 1$ we have $\epsilon_{k+1} = \frac{\epsilon_k^2}{2x_k}$ and that $\frac{\epsilon_{k+1}}{2\sqrt{a}} \le \left(\frac{\epsilon_1}{2\sqrt{a}}\right)^{2^k}$.
 - (c) Show that when a = 3 and $x_1 = 2$ we have $\epsilon_6 \leq 4 \cdot 10^{-32}$
- 5: Solve the following problems using the definition of the limit and the definition of the derivative as a limit. (a) Let $f(x) = \frac{1}{x^2 - 1}$ for $x \neq \pm 1$. Show that $\lim_{x \to 1^2} f(x) = \frac{1}{3}$.
 - (b) Let $g(x) = \sqrt{5 x^2}$ for $|x| \le \sqrt{5}$. Show that g'(2) = -2.
 - (c) Let $h(x) = \frac{1}{x}$ for $x \neq 0$. Show that $h'(x) = -\frac{1}{x^2}$ for all $x \neq 0$.
- **6:** Let $f(x) = \begin{cases} x^2 \sin \frac{1}{x} \text{, if } x \neq 0, \\ 0 \text{, if } x = 0, \end{cases}$ and let $g(x) = \begin{cases} 0 \text{, if } x \notin \mathbb{Q}, \\ \frac{1}{b} \text{, if } x = \frac{a}{b} \text{ with } a \in \mathbb{Z}, b \in \mathbb{Z}^+ \text{ and } \gcd(a, b) = 1. \end{cases}$
 - (a) Show that f is differentiable at x = 0.
 - (b) Determine where q is continuous.
 - (c) Determine where g is differentiable.
- 7: (a) Define $f : \mathbb{R} \to \mathbb{R}$ by $f(x) = \cos(\pi x^2)$. Show that f is not uniformly continuous in \mathbb{R} .

(b) Define $g : \mathbb{R} \to \mathbb{R}$ by $g(x) = \begin{cases} e^{-1/x^2}, \text{ if } x \neq 0, \\ 0, \text{ if } x = 0. \end{cases}$ Use induction to show that $0 = g(0) = g'(0) = g''(0) = \cdots$.

(c) Find a function $h: \mathbb{R} \to \mathbb{R}$ which is differentiable in \mathbb{R} with h'(0) = 1 such that for all $\delta > 0$ the function h is not increasing in the interval $(-\delta, \delta)$.

8: (a) Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b]. Let m > 0 and suppose that $f'(x) \ge m$ for all $x \in [a,b]$. Show that $f(b) \ge f(a) + m(b-a)$.

(b) Let $f: [a,b] \to \mathbb{R}$ be differentiable on [a,b]. Let $m \in \mathbb{R}$ and suppose that f'(a) < m < f'(b). Show that there exists $c \in (a, b)$ such that f'(c) = m. (Hint: consider the function g(x) = f(x) - mx).

(c) Let $f, g: [a, b] \to \mathbb{R}$ be differentiable on [a, b] with f'(x)g(x) = f(x)g'(x) for all $x \in [a, b]$. Suppose that f(a) = f(b) = 0, $f(x) \neq 0$ for all $x \in (a, b)$, and $g(a) \neq 0$. Show that there exists $c \in (a, b)$ such that g(c) = 0.

9: In this problem we explore a uniqueness theorem for differential equations.

(a) Let $f:[a,b] \to \mathbb{R}$ be differentiable on [a,b] with f(a) = 0. Suppose that there exists a constant c > 0 such that

$$|f'(x)| \le c|f(x)|$$

for all $x \in [a, b]$. Show that f(x) = 0 for all $x \in [a, b]$. (b) Let $A = \{(x, y) | x \in [a, b] \text{ and } y \in [r, s]\}$ and let $F : A \to \mathbb{R}$. Suppose there exists a constant c > 0 such that

$$|F(x, y_1) - F(x, y_2)| \le c|y_1 - y_2|$$

for all $x \in [a, b]$ and $y_1, y_2 \in [r, s]$. Show that for each $p \in [r, s]$ there exists at most one function $f : [a, b] \to [r, s]$ with f(a) = p such that f'(x) = F(x, f(x)) for all $x \in [a, b]$.

(c) Find every function $f:[0,1] \to [0,1]$ such that $f'(x) = 2\sqrt{f(x)}$ (there is more than one such function).