PMATH 333, Solutions to the Exercises for Chapter 1

1: Let R be a ring and let F be a field.
(a) Using only the rules R1-R9 which define a field, prove that for all $a \in F$ if $a \cdot a=a$ then ($a=0$ or $a=1$).

Solution: Let $a \in F$. Suppose that $a \cdot a=a$. Suppose that $a \neq 0$. Using R9, since $a \neq 0$ we can choose $b \in F$ so that $a \cdot b=b \cdot a=1$. Then we have

$$
\begin{aligned}
a & =1 \cdot a, \text { by R } 6 \\
& =(b \cdot a) \cdot a, \text { since } b \cdot a=1 \\
& =b \cdot(a \cdot a), \text { by R } 5 \\
& =b \cdot a, \text { since } a \cdot a=a \\
& =1, \text { since } b \cdot a=1 .
\end{aligned}
$$

This proves that if $a \neq 0$ then $a=1$ or, equivalently, that either $a=0$ or $a=1$.
(b) Using only the rules R1-R9, prove that for all $a \in F$ if $a \cdot a=1$ then ($a=1$ or $a+1=0$).

Solution: Let $a \in F$. Suppose that $a \cdot a=1$. Suppose that $a+1 \neq 0$. Using $R 9$, choose $b \in F$ so that $(a+1) \cdot b=b \cdot(a+1)=1$. Then

$$
\begin{aligned}
a & =a \cdot 1, \text { by R6 } \\
& =a \cdot((a+1) \cdot b), \text { since }(a+1) \cdot b=1 \\
& =(a \cdot(a+1)) \cdot b, \text { by R5 } \\
& =(a \cdot a+a \cdot 1) \cdot b, \text { by R7 } \\
& =(1+a \cdot 1) \cdot b, \text { since } a \cdot a=a \\
& =(1+a) \cdot b, \text { by R } 6 \\
& =(a+1) \cdot b, \text { by R2 } \\
& =1, \text { since }(a+1) \cdot b=1 .
\end{aligned}
$$

This proves that if $a+1 \neq 0$ then $a=1$ or, equivalently, that either $a=1$ or $a+1=0$.
(c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all $a \in R$ we have $(a \cdot 0=0$ and $0 \cdot a=0)$, prove that for all $a, b, c, d \in R$, if $a+c=0$ and $b+d=0$ then $a b=c d$.

Solution: Let $a, b, c, d \in R$. Suppose that $a+c=0$ and $b+d=0$. Then

$$
\begin{aligned}
a b & =a b+0, \text { by R} 3 \\
& =a b+c 0, \text { by R0 } \\
& =a b+c(b+d), \text { since } b+d=0 \\
& =a b+(c b+c d), \text { by R7 } \\
& =(a b+c b)+c d, \text { by R1 } \\
& =(a+c) b+c d, \text { by R7 } \\
& =0 b+c d, \text { since } a+c=0 \\
& =0+c d, \text { by R0 } \\
& =c d+0, \text { by R2 } \\
& =c d, \text { by R3. }
\end{aligned}
$$

2: Let S be an ordered set and let F be an ordered field.
(a) Using only the rules O1-O3, and the rule O0 which defines the strict order $<$ by stating that for all $a, b \in S$ we have $a<b \Longleftrightarrow(a \leq b$ and $a \neq b)$, prove that for all $a, b, c \in S$, if $a \leq b$ and $b<c$ then $a<c$.
Solution: Let $a, b, c \in S$. Suppose that $a \leq b$ and $b<c$. Since $b<c$ we have $b \leq c$ and $b \neq c$ by O0. Since $a \leq b$ and $b \leq c$ we have $a \leq c$ by O3. Suppose, for a contradiction, that $a=c$. Since $a \leq b$ and $a=c$ we have $c \leq b$ (by substitution). Since $b \leq c$ and $c \leq b$ we have $b=c$ by O2. But $b \neq c$, so we have obtained the desired contradiction, and so $a \neq c$. Since $a \leq c$ and $a \neq c$ we have $a<c$ by O0.
(b) Using only the rules R1-R9 and O1-O5, prove that for all $a, b \in F$ if $0 \leq a$ and $a \leq b$ then $a \cdot a \leq b \cdot b$.

Solution: Let $a, b \in F$. Suppose that $0 \leq a$ and $a \leq b$. Since $0 \leq a$ and $a \leq b$ we have $0 \leq b$ by O3. Using R 4 , choose $c \in F$ so that $a+c=0$. Since $a \leq b$ we have $a+c \leq b+c$ by O4, and hence $0 \leq b+c$ since $a+c=0$. Since $0 \leq a$ and $0 \leq b+c$ we have $0 \leq a(b+c)$ by O5. Also, since $0 \leq b+c$ and $0 \leq b$ we have $0 \leq(b+c) b$. Thus

$$
\begin{aligned}
& 0 \leq a(b+c) \\
& 0+a a \leq a(b+c)+a a, \text { by } \mathrm{O} 4 \\
& a a+0 \leq a(b+c)+a a \text {, by R2 } \\
& a a \leq a(b+c)+a a \text {, by R } 3 \\
& a a \leq(a b+a c)+a a, \text { by R7 } \\
& \text { and } \\
& a a \leq a b+(a c+a a), \text { by R1 } \\
& a a \leq a b+a(c+a), \text { by R7 } \\
& a a \leq a b+a(a+c), \text { by R2 } \\
& a a \leq a b+a 0 \text {, since } a+c=0 \\
& a a \leq a(b+0), \text { by R7 } \\
& \begin{aligned}
0 & \leq(b+c) b \\
0+a b & \leq(b+c) b+a b, \text { by } \mathrm{O} 4
\end{aligned} \\
& a b+0 \leq(b+c) b+a b, \text { by R2 } \\
& a b \leq(b+c) b+a b, \text { by R3 } \\
& a b \leq(b b+c b)+a b, \text { by R7 } \\
& a b \leq b b+(c b+a b), \text { by R1 } \\
& a b \leq b b+(c+a) b, \text { by R7 } \\
& a b \leq b b+(a+c) b, \text { by R2 } \\
& a b \leq b b+0 b, \text { since } a+c=0 \\
& a b \leq(b+0) b, \text { by R7 } \\
& a a \leq a b, \text { by R } 3 \\
& a b \leq b b \text {, by R } 3
\end{aligned}
$$

Since $a a \leq a b$ and $a b \leq b b$ we have $a a \leq b b$ by O3.
(c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1(c), prove that $0 \leq 1$.

Solution: Choose $u \in R$ so that $1+u=0$ (we can do this by R4). Then

$$
\begin{aligned}
u \cdot u & =u \cdot u+0, \text { by R} 3, \\
& =u \cdot u+0 \cdot 1, \text { by R } 6, \\
& =u \cdot u+(1+u) \cdot 1, \text { since } 1+u=0, \\
& =u \cdot u+(1 \cdot 1+u \cdot 1), \text { by R} 7 . \\
& =(1 \cdot 1+u \cdot 1)+u \cdot u, \text { by R} 2 . \\
& =1 \cdot 1+(u \cdot 1+u \cdot u), \text { by R} 1, \\
& =1 \cdot 1+u \cdot(1+u), \text { by R } 7, \\
& =1 \cdot 1+u \cdot 0, \text { since } 1+u=0, \\
& =1 \cdot 1+0, \text { by R} 0, \\
& =1 \cdot 1, \text { by R} 3, \\
& =1, \text { by R } 6 .
\end{aligned}
$$

By O1 we know that either $0 \leq 1$ or $1 \leq 0$. Suppose, for a contradiction, that $1 \leq 0$. Then

$$
\begin{aligned}
1+u & \leq 0+u, \text { by } \mathrm{O} 4 \\
0 & \leq 0+u, \text { since } 1+u=0 \\
0 & \leq u+0, \text { by } \mathrm{R} 2 \\
0 & \leq u, \text { by } \mathrm{R} 3 \\
0 & \leq u \cdot u, \text { by } \mathrm{O} 5 \\
0 & \leq 1, \text { since } u \cdot u=1, \text { as shown above. }
\end{aligned}
$$

Since $0 \leq 1$ and $1 \leq 0$ we have $0=1$ by O2. This gives the desired contradiction because $0 \neq 1$, from the definition of a ring.

3: In this problem, you may use any of the algebraic properties and order properties of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} described in Chapter 1 of the Lecture Notes.
(a) Let $A=\left\{\left.(-1)^{n}+\frac{1}{n} \right\rvert\, n \in \mathbb{Z}^{+}\right\}$. Find (with proof) $\sup A$ and $\inf A$.

Solution: We claim that $\sup A=\frac{3}{2}$. Let $x \in A$, say $x=(-1)^{n}+\frac{1}{n}$ where $1 \leq n \in \mathbb{Z}$. If n is even then $(-1)^{n}=1$ and $n \geq 2$ so that $\frac{1}{n} \leq \frac{1}{2}$, and so we have $x=(-1)^{n}+\frac{1}{n}=1+\frac{1}{n} \leq 1+\frac{1}{2}=\frac{3}{2}$. If n is odd then $(-1)^{n}=-1$ and $n \geq 1$ so that $\frac{1}{n} \leq 1$, and so we have $x=(-1)^{n}+\frac{1}{n}=-1+\frac{1}{n} \leq-1+1=0 \leq \frac{3}{2}$. In either case, we have $x \leq \frac{3}{2}$. Thus $x \leq \frac{3}{2}$ for all $x \in A$, and so $\frac{3}{2}$ is an upper bound for A in \mathbb{R}. If $c \in \mathbb{R}$ is any upper bound for A then $c \leq x$ for all $x \in A$, and in particular $c \leq(-1)^{2}+\frac{1}{2}=\frac{3}{2}$. Thus $\frac{3}{2}=\sup A$.

We claim that $\inf A=-1$. Let $x \in A$, say $x=(-1)^{n}+\frac{1}{n}$ with $1 \leq n \in \mathbb{Z}$. Since $(-1)^{n} \geq-1$ and $\frac{1}{n}>0$ we have $x=(-1)^{n}+\frac{1}{n}>-1+0=-1$. Since $x>-1$ for all $x \in A$ we see that -1 is a lower bound for A in \mathbb{R}. Let $c \in \mathbb{R}$ be any lower bound for A. Suppose, for a contradiction, that $c>-1$. Then $c+1>0$ hence $\frac{1}{c+1}>0$. Choose an odd integer $n \in \mathbb{Z}$ with $n>\frac{1}{c+1}>0$ (we are using the Archimedean Property here) and note that $\frac{1}{n}<c+1$. Let $x=(-1)^{n}+\frac{1}{n}$. Then $x \in A$ with $x=(-1)^{n}+\frac{1}{n}=-1+\frac{1}{n}<-1+(c+1)=c$, which contradicts the fact that c is a lower bound for A. Thus we must have $c \leq-1$. Since -1 is a lower bound for A and since every lower bound c for A satisfies $c \leq-1$, it follows that $-1=\inf A$, as claimed.
(b) Prove that for every $0 \leq y \in \mathbb{R}$ there exists a unique $0 \leq x \in \mathbb{R}$ such that $x^{2}=y$ (this number x is called the square root of y and is denoted by $x=\sqrt{y}=y^{1 / 2}$). In other words, prove that the function $f:[0, \infty) \rightarrow[0, \infty)$ given by $f(x)=x^{2}$ is bijective.
Solution: First we prove uniqueness. Suppose that $x_{1} \geq 0$ and $x_{2} \geq 0$ and $x_{1}{ }^{2}=x_{2}{ }^{2}=y$. Since $x_{1}{ }^{2}=x_{2}{ }^{2}$ we have $\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)=x_{1}^{2}-x_{2}^{2}=0$ and hence either $x_{1}-x_{2}=0$ or $x_{1}+x_{2}=0$ (since a field has no zero divisors). In the case that $x_{1}+x_{2}=0$, since $x_{1} \geq 0$ and $x_{2} \geq 0$ we must have $x_{1}=x_{2}=0$ (indeed if we had $x_{2}>0$ then we would have $x_{1}=-x_{2}<0$, so we must have $x_{2}=0$, and hence $x_{1}=-x_{2}=-0=0$). In the case that $x_{1}-x_{2}=0$ we have $x_{1}=x_{2}$. In either case, we have $x_{1}=x_{2}$. This proves uniqueness.

Next we prove existence. Let $0 \leq y \in \mathbb{R}$. Let $A=\left\{0 \leq t \in \mathbb{R} \mid t^{2} \leq y\right\}$. Note that $A \neq \emptyset$ since $0 \in A$. We claim that A is bounded above. If $0 \leq y \leq 1$ then A is bounded above by 1 because $t>1 \Longrightarrow t^{2}>1 \Longrightarrow$ $t^{2}>y \Longrightarrow t \notin A$. If $y \geq 1$ then A is bounded above by y because $t>y \geq 1 \Longrightarrow t^{2}>y^{2}>y \Longrightarrow t \notin A$. In either case, A is bounded above. Since $A \neq \emptyset$ and A is bounded above, we know that A has a supremum in \mathbb{R} by the Completeness Property of \mathbb{R}. Let $x=\sup A$. We claim that $x^{2}=y$. Suppose, for a contradiction, that $x^{2}<y$. Note that for $0<\epsilon \leq 1$ we have $(x+\epsilon)^{2}=x^{2}+2 x \epsilon+\epsilon^{2} \leq x^{2}+2 x \epsilon+\epsilon=x^{2}+(2 x+1) \epsilon$ and we have $x^{2}+(2 x+1) \epsilon \leq y \Longleftrightarrow \epsilon \leq \frac{y-x^{2}}{2 x+1}$. Choose $\epsilon=\min \left\{1, \frac{y-x^{2}}{2 x+1}\right\}$. Then $(x+\epsilon)^{2} \leq x^{2}+(2 x+1) \epsilon \leq y$ so that $x+\epsilon \in A$, which contradicts the fact that $x=\sup A$. Thus we must have $x^{2} \geq y$. Now suppose, for a contradiction, that $x^{2}>y$. Note that for $0<\epsilon \leq x$ we have $(x-\epsilon)^{2}=x^{2}-2 x \epsilon+\epsilon^{2}>x^{2}-2 x \epsilon$ and we have $x^{2}-2 x \epsilon \geq y \Longleftrightarrow \epsilon \leq \frac{x^{2}-y}{2 x}$. Choose $\epsilon=\min \left\{x, \frac{x^{2}-y}{2 x}\right\}$. Then $(x-\epsilon)^{2}>x^{2}-2 x \epsilon \geq y$. Since $x=\sup A$, by the Approximation Property we should be able to choose $t \in A$ with $(x-\epsilon)<t \leq x$, but when $t>x-\epsilon$ we have $t^{2}>(x-\epsilon)^{2}>y$ so that $t \notin A$, and so we have the desired contradiction. Thus we must have $x^{2} \leq y$. Since $x^{2} \geq y$ and $x^{2} \leq y$ we must have $x=y$.

4: In this problem, and in the following problem, you may use any known properties of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R}.
(a) Let X and Y be nonempty sets and let $f: X \rightarrow Y$. Prove that f is injective if and only if we have $f(A \cap B)=f(A) \cap f(B)$ for all subsets $A, B \subseteq X$.
Solution: Suppose that f is injective. Let $A, B \subseteq X$. Let $y \in f(A \cap B)$. Choose $x \in A \cap B$ with $f(x)=y$. Since $x \in A$ and $y=f(x)$ we have $y \in f(A)$. Since $x \in B$ and $y=f(x)$ we have $y \in f(B)$. Thus $y \in f(A) \cap f(B)$, showing that that $f(A \cap B) \subseteq f(A) \cap f(B)$ (we did not use the fact that f was injective). Now let $y \in f(A) \cap f(B)$. Since $y \in f(A)$ we can choose $x_{1} \in A$ with $f\left(x_{1}\right)=y$. Since $y \in f(B)$ we can choose $x_{2} \in B$ with $f\left(x_{2}\right)=y$. Since $f\left(x_{1}\right)=y=f\left(x_{2}\right)$ and f is injective, we must have $x_{1}=x_{2}$, say $x_{1}=x_{2}=x$. Since $x=x_{1} \in A$ and $x=x_{2} \in B$ we have $x \in A \cap B$. Since $x \in A \cap B$ and $y=f\left(x_{1}\right)=f\left(x_{2}\right)=f(x)$ we have $y \in f(A \cap B)$, hence $f(A) \cap f(B) \subseteq f(A \cap B)$. Thus $f(A \cap B)=f(A) \cap f(B)$ for all $A, B \subseteq X$.

Suppose that f is not injective. Choose $x_{1}, x_{2} \in X$ with $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$, and let $y=f\left(x_{1}\right)=f\left(x_{2}\right)$. Let $A=\left\{x_{1}\right\}$ and $B=\left\{x_{2}\right\}$. Then $f(A) \cap f(B)=\{y\} \cap\{y\}=\{y\}$ but $A \cap B=\left\{x_{1}\right\} \cap\left\{x_{2}\right\}=\emptyset$ so $f(A \cap B)=f(\emptyset)=\emptyset$. For these sets A, B, we do not have $f(A \cap B)=f(A) \cap f(B)$.
(b) Show that $|\mathbb{R}|=|[0,1)|$ without using the Cantor-Schröder-Bernstein Theorem.

Solution: The map $f:[0, \infty) \rightarrow[0,1)$ given by $f(x)=\frac{x}{x+1}$ is bijective with inverse given by $f^{-1}(y)=\frac{y}{1-y}$ because for all $x \in[0, \infty)$ and all $y \in[0,1)$ we have

$$
y=\frac{x}{x+1} \Longleftrightarrow x y+y=x \Longleftrightarrow x(1-y)=y \Longleftrightarrow x=\frac{y}{1-y} .
$$

The map $g: \mathbb{N} \times[0,1) \rightarrow[0, \infty)$ given by $g(n, t)=n+t$ is bijective with inverse $g^{-1}(x)=(\lfloor x\rfloor, x-\lfloor x\rfloor)$ because for all $(n, t) \in \mathbb{N} \times[0,1)$ and all $x \in[0, \infty)$ we have

$$
x=n+t \Longleftrightarrow(n=\lfloor x\rfloor \text { and } t=x-\lfloor x\rfloor) \Longleftrightarrow(n, t)=(\lfloor x\rfloor, x-\lfloor x\rfloor) .
$$

We claim that the map $h: \mathbb{Z} \times[0,1) \rightarrow \mathbb{N} \times[0,1)$ given by

$$
h(n, t)=\left\{\begin{array}{cc}
(2 n, t) & \text { if } n \geq 0 \\
(-2 n-1, t) & \text { if } n<0
\end{array}\right.
$$

is bijective with inverse $\ell: \mathbb{N} \times[0,1) \rightarrow \mathbb{Z} \times[0,1)$ given by $\ell(2 j, t)=(j, t)$ and $\ell(2 j+1, t)=(-j-1, t)$ for $j \in \mathbb{N}$. For $n \in \mathbb{Z}$ and $t \in[0,1)$, when $n \geq 0$ we have $\ell(h(n, t))=\ell(2 n, t)=(n, t)$ and when n is odd we have $\ell(h(t))=\ell(-2 n-1, t)=\ell(2(-n-1)+1, t)=(-(-n-1), t)=(n, t)$. Thus $\ell(h(n, t)=(n, t)$ for all $n \in \mathbb{Z}$ and all $t \in[0,1)$, and so ℓ is a left inverse for h. For $m \in \mathbb{N}$ and $t \in[0,1)$, we can write $m=2 j$ or $m=2 j+1$ with $j \in \mathbb{N}$, and then we have $h(\ell(2 j, t))=h(j, t)=(2 j, t)$ and we have $h(\ell((2 j+1, t))=h(-j-1, t)=(-2(-j-1)-1, t)=(2 j+1, t)$. Thus $h(\ell(m, t))=(m, t)$ for all $m \in \mathbb{N}$ and all $t \in[0,1)$ and so ℓ is a right inverse for h. Since ℓ is both a left inverse and a right inverse for h, it is the (two-sided) inverse of h, as claimed. Finally, the map $k: \mathbb{R} \rightarrow \mathbb{Z} \times[0,1)$ given by $k(x)=(\lfloor x\rfloor, x-\lfloor x\rfloor)$ is bijective with inverse given by $k^{-1}(n, t)=n+t$ by the same calculation which showed that g was bijective. The composite map $f \circ g \circ h \circ k$ is a bijective map from \mathbb{R} to $[0,1)$ so we have $|\mathbb{R}|=|[0,1)|$, as required.

5: (a) Show that the cardinality of the set of all finite subsets of \mathbb{N} is equal to \aleph_{0}.
Solution: Let A be the set of finite subsets of \mathbb{N}. We define a bijective map $F: \mathbb{N} \rightarrow A$ as follows. Given $n \in \mathbb{N}$ we can write n (uniquely) in its binary representation as $n=a_{m} a_{m-1} \cdots a_{1} a_{0}$, so we have $n=\sum_{i=0}^{m} a_{i} 2^{i}$ where each $a_{i} \in\{0,1\}$ with $a_{m}=1$ (unless $n=0$ in which case $m=a_{m}=0$). We then define

$$
F(n)=F\left(\sum_{k=0}^{m} a_{k} 2^{k}\right)=\left\{k \in \mathbb{N} \mid a_{k}=1\right\} .
$$

(for example, when $n=19$, in binary notation $n=10011$ and so $F(n)=\{0,1,4\}$). The inverse map $G: A \rightarrow \mathbb{N}$ is given by

$$
G(S)=\sum_{k=0}^{\infty} a_{k} 2^{k} \text { where } a_{k}=\left\{\begin{array}{l}
1 \text { if } k \in S, \\
0 \text { if } k \notin S .
\end{array}\right.
$$

In the above equation, S is a finite subset of \mathbb{N}, and the sum $\sum_{k=0}^{\infty} a_{k} 2^{k}$ finite because S is finite so that $a_{k}=1$ for only finitely many values of $k \in \mathbb{N}$.
(b) Show that the cardinality of the set of all functions from \mathbb{N} to \mathbb{N} is equal to $2^{\aleph_{0}}$.

Solution: Recall that $2^{\mathbb{N}}$ denotes the set of functions from \mathbb{N} to $\{0,1\}$, and $\mathbb{N}^{\mathbb{N}}$ denotes the set of functions from \mathbb{N} to \mathbb{N}. Note that $2^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}$ (since every function from \mathbb{N} to $\{0,1\}$ is also a function from \mathbb{N} to \mathbb{N}) and so we have $\left|2^{\mathbb{N}}\right| \leq\left|\mathbb{N}^{\mathbb{N}}\right|$. Recall that each element $n \in \mathbb{N}$ can be written uniquely in the form $n=2^{k}(2 l+1)-1$ with $k, l \in \mathbb{N}$. Define $F: \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by

$$
F(f)\left(2^{k}(2 l+1)-1\right)=\left\{\begin{array}{l}
1 \text { if } k=f(l), \\
0 \text { if } k \neq f(l) .
\end{array}\right.
$$

(In the above equation, $f: \mathbb{N} \rightarrow \mathbb{N}$ and $F(f): \mathbb{N} \rightarrow\{0,1\}$). We claim that F is injective. Let $f, g: \mathbb{N} \rightarrow \mathbb{N}$. Suppose that $F(f)=F(g)$. Then $F(f)(n)=F(g)(n)$ for all $n \in \mathbb{N}$. Given $k, l \in \mathbb{N}$, let $n=2^{k}(2 l-1)-1$. Then we have $k=f(l) \Longleftrightarrow F(f)(n)=1 \Longleftrightarrow F(g)(n)=1 \Longleftrightarrow k=g(l)$. Thus $f(l)=g(l)$ for all $l \in \mathbb{N}$, and so $f=g$. Thus F is injective, as claimed, and so we have $\left|\mathbb{N}^{\mathbb{N}}\right| \leq\left|2^{\mathbb{N}}\right|$. By the Cantor-Schroeder-Bernstein Theorem, it follows that $\left|\mathbb{N}^{\mathbb{N}}\right|=\left|2^{\mathbb{N}}\right|$.

