1: Let R be a ring and let F be a field.

(a) Using only the rules R1-R9 which define a field, prove that for all $a \in F$ if $a \cdot a = a$ then (a = 0 or a = 1). Solution: Let $a \in F$. Suppose that $a \cdot a = a$. Suppose that $a \neq 0$. Using R9, since $a \neq 0$ we can choose $b \in F$ so that $a \cdot b = b \cdot a = 1$. Then we have

$$a = 1 \cdot a , \text{ by R6}$$

= $(b \cdot a) \cdot a , \text{ since } b \cdot a = 1$
= $b \cdot (a \cdot a) , \text{ by R5}$
= $b \cdot a , \text{ since } a \cdot a = a$
= 1 , since $b \cdot a = 1$.

This proves that if $a \neq 0$ then a = 1 or, equivalently, that either a = 0 or a = 1.

(b) Using only the rules R1-R9, prove that for all $a \in F$ if $a \cdot a = 1$ then (a = 1 or a + 1 = 0).

Solution: Let $a \in F$. Suppose that $a \cdot a = 1$. Suppose that $a + 1 \neq 0$. Using R9, choose $b \in F$ so that $(a + 1) \cdot b = b \cdot (a + 1) = 1$. Then

$$\begin{aligned} a &= a \cdot 1 , \text{ by R6} \\ &= a \cdot ((a+1) \cdot b) , \text{ since } (a+1) \cdot b = 1 \\ &= (a \cdot (a+1)) \cdot b , \text{ by R5} \\ &= (a \cdot a + a \cdot 1) \cdot b , \text{ by R7} \\ &= (1+a \cdot 1) \cdot b , \text{ since } a \cdot a = a \\ &= (1+a) \cdot b , \text{ by R6} \\ &= (a+1) \cdot b , \text{ by R2} \\ &= 1 , \text{ since } (a+1) \cdot b = 1. \end{aligned}$$

This proves that if $a + 1 \neq 0$ then a = 1 or, equivalently, that either a = 1 or a + 1 = 0.

(c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all $a \in R$ we have $(a \cdot 0 = 0 \text{ and } 0 \cdot a = 0)$, prove that for all $a, b, c, d \in R$, if a + c = 0 and b + d = 0 then ab = cd. Solution: Let $a, b, c, d \in R$. Suppose that a + c = 0 and b + d = 0. Then

$$\begin{aligned} ab &= ab + 0 , \text{ by R3} \\ &= ab + c0 , \text{ by R0} \\ &= ab + c(b + d) , \text{ since } b + d = 0 \\ &= ab + (cb + cd) , \text{ by R7} \\ &= (ab + cb) + cd , \text{ by R1} \\ &= (a + c)b + cd , \text{ by R1} \\ &= (a + c)b + cd , \text{ by R7} \\ &= 0b + cd , \text{ since } a + c = 0 \\ &= 0 + cd , \text{ by R0} \\ &= cd + 0 , \text{ by R2} \\ &= cd , \text{ by R3.} \end{aligned}$$

2: Let S be an ordered set and let F be an ordered field.

(a) Using only the rules O1-O3, and the rule O0 which defines the strict order < by stating that for all $a, b \in S$ we have $a < b \iff (a \le b \text{ and } a \ne b)$, prove that for all $a, b, c \in S$, if $a \le b$ and b < c then a < c.

Solution: Let $a, b, c \in S$. Suppose that $a \leq b$ and b < c. Since b < c we have $b \leq c$ and $b \neq c$ by O0. Since $a \leq b$ and $b \leq c$ we have $a \leq c$ by O3. Suppose, for a contradiction, that a = c. Since $a \leq b$ and a = c we have $c \leq b$ (by substitution). Since $b \leq c$ and $c \leq b$ we have b = c by O2. But $b \neq c$, so we have obtained the desired contradiction, and so $a \neq c$. Since $a \leq c$ and $a \neq c$ we have a < c by O0.

(b) Using only the rules R1-R9 and O1-O5, prove that for all $a, b \in F$ if $0 \le a$ and $a \le b$ then $a \cdot a \le b \cdot b$.

Solution: Let $a, b \in F$. Suppose that $0 \le a$ and $a \le b$. Since $0 \le a$ and $a \le b$ we have $0 \le b$ by O3. Using R4, choose $c \in F$ so that a + c = 0. Since $a \le b$ we have $a + c \le b + c$ by O4, and hence $0 \le b + c$ since a + c = 0. Since $0 \le a$ and $0 \le b + c$ we have $0 \le a(b + c)$ by O5. Also, since $0 \le b + c$ and $0 \le b$ we have $0 \le (b + c)b$. Thus

$0 \le a(b+c)$		0 < (b+c)b
$0 + aa \le a(b+c) + aa$, by O4	and	0 = (b+c)b $0 + ab \le (b+c)b + ab$, by O4
$aa+0 \leq a(b+c)+aa$, by R2		$ab + 0 \le (b + c)b + ab$, by R2
$aa \leq a(b+c) + aa$, by R3		$ab \leq (b+c)b+ab$, by R3
$aa \leq (ab + ac) + aa$, by R7		$ab \leq (bb + cb) + ab$, by R7
$aa \leq ab + (ac + aa)$, by R1		$ab \leq bb + (cb + ab)$, by R1
$aa \leq ab + a(c+a)$, by R7		$ab \leq bb + (c+a)b$, by R7
$aa \leq ab + a(a+c)$, by R2		$ab \leq bb + (a+c)b$, by R2
$aa \leq ab + a0$, since $a + c = 0$		$ab \leq bb + 0b$, since $a + c = 0$
$aa \leq a(b+0)$, by R7		$ab \leq (b+0)b$, by R7
$aa \leq ab$, by R3		$ab \leq bb$, by R3

Since $aa \leq ab$ and $ab \leq bb$ we have $aa \leq bb$ by O3.

(c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1(c), prove that $0 \le 1$. Solution: Choose $u \in R$ so that 1 + u = 0 (we can do this by R4). Then

$$\begin{split} u \cdot u &= u \cdot u + 0 \text{, by R3,} \\ &= u \cdot u + 0 \cdot 1 \text{, by R6,} \\ &= u \cdot u + (1 + u) \cdot 1 \text{, since } 1 + u = 0, \\ &= u \cdot u + (1 \cdot 1 + u \cdot 1) \text{, by R7.} \\ &= (1 \cdot 1 + u \cdot 1) + u \cdot u \text{, by R2.} \\ &= 1 \cdot 1 + (u \cdot 1 + u \cdot u) \text{, by R1,} \\ &= 1 \cdot 1 + u \cdot (1 + u) \text{, by R7,} \\ &= 1 \cdot 1 + u \cdot 0 \text{, since } 1 + u = 0, \\ &= 1 \cdot 1 + 0 \text{, by R0,} \\ &= 1 \cdot 1 \text{, by R3,} \\ &= 1 \text{, by R6.} \end{split}$$

By O1 we know that either $0 \le 1$ or $1 \le 0$. Suppose, for a contradiction, that $1 \le 0$. Then

$$\begin{array}{l} 1+u \leq 0+u \ , \, \mbox{by O4}, \\ 0 \leq 0+u \ , \, \mbox{since } 1+u=0, \\ 0 \leq u+0 \ , \, \mbox{by R2}, \\ 0 \leq u \ , \, \mbox{by R3}, \\ 0 \leq u \cdot u \ , \, \mbox{by O5}, \\ 0 \leq 1 \ , \, \mbox{since } u \cdot u=1, \, \mbox{as shown above.} \end{array}$$

Since $0 \le 1$ and $1 \le 0$ we have 0 = 1 by O2. This gives the desired contradiction because $0 \ne 1$, from the definition of a ring.

- **3:** In this problem, you may use any of the algebraic properties and order properties of N, Z, Q and R described in Chapter 1 of the Lecture Notes.
 - (a) Let $A = \{(-1)^n + \frac{1}{n} \mid n \in \mathbb{Z}^+\}$. Find (with proof) sup A and inf A.

Solution: We claim that $\sup A = \frac{3}{2}$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ where $1 \le n \in \mathbb{Z}$. If n is even then $(-1)^n = 1$ and $n \ge 2$ so that $\frac{1}{n} \le \frac{1}{2}$, and so we have $x = (-1)^n + \frac{1}{n} = 1 + \frac{1}{n} \le 1 + \frac{1}{2} = \frac{3}{2}$. If n is odd then $(-1)^n = -1$ and $n \ge 1$ so that $\frac{1}{n} \le 1$, and so we have $x = (-1)^n + \frac{1}{n} = -1 + \frac{1}{n} \le -1 + 1 = 0 \le \frac{3}{2}$. In either case, we have $x \le \frac{3}{2}$. Thus $x \le \frac{3}{2}$ for all $x \in A$, and so $\frac{3}{2}$ is an upper bound for A in \mathbb{R} . If $c \in \mathbb{R}$ is any upper bound for A then $c \le x$ for all $x \in A$, and in particular $c \le (-1)^2 + \frac{1}{2} = \frac{3}{2}$. Thus $\frac{3}{2} = \sup A$. We claim that $\inf A = -1$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ with $1 \le n \in \mathbb{Z}$. Since $(-1)^n \ge -1$ and $\frac{1}{n} > 0$ we have $x = (-1)^n + \frac{1}{n} > -1 + 0 = -1$. Since x > -1 for all $x \in A$ we see that -1 is a lower bound for A in \mathbb{R} . Let $c \in \mathbb{R}$ be any lower bound for A. Suppose, for a contradiction, that $c \ge -1$. Then $c + 1 \ge 0$ hence

We claim that $\inf A = -1$. Let $x \in A$, say $x = (-1)^n + \frac{1}{n}$ with $1 \le n \in \mathbb{Z}$. Since $(-1)^n \ge -1$ and $\frac{1}{n} > 0$ we have $x = (-1)^n + \frac{1}{n} > -1 + 0 = -1$. Since x > -1 for all $x \in A$ we see that -1 is a lower bound for Ain \mathbb{R} . Let $c \in \mathbb{R}$ be any lower bound for A. Suppose, for a contradiction, that c > -1. Then c+1 > 0 hence $\frac{1}{c+1} > 0$. Choose an odd integer $n \in \mathbb{Z}$ with $n > \frac{1}{c+1} > 0$ (we are using the Archimedean Property here) and note that $\frac{1}{n} < c+1$. Let $x = (-1)^n + \frac{1}{n}$. Then $x \in A$ with $x = (-1)^n + \frac{1}{n} = -1 + \frac{1}{n} < -1 + (c+1) = c$, which contradicts the fact that c is a lower bound for A. Thus we must have $c \le -1$. Since -1 is a lower bound for A and since every lower bound c for A satisfies $c \le -1$, it follows that $-1 = \inf A$, as claimed.

(b) Prove that for every $0 \le y \in \mathbb{R}$ there exists a unique $0 \le x \in \mathbb{R}$ such that $x^2 = y$ (this number x is called the square root of y and is denoted by $x = \sqrt{y} = y^{1/2}$). In other words, prove that the function $f: [0, \infty) \to [0, \infty)$ given by $f(x) = x^2$ is bijective.

Solution: First we prove uniqueness. Suppose that $x_1 \ge 0$ and $x_2 \ge 0$ and $x_1^2 = x_2^2 = y$. Since $x_1^2 = x_2^2$ we have $(x_1 - x_2)(x_1 + x_2) = x_1^2 - x_2^2 = 0$ and hence either $x_1 - x_2 = 0$ or $x_1 + x_2 = 0$ (since a field has no zero divisors). In the case that $x_1 + x_2 = 0$, since $x_1 \ge 0$ and $x_2 \ge 0$ we must have $x_1 = x_2 = 0$ (indeed if we had $x_2 > 0$ then we would have $x_1 = -x_2 < 0$, so we must have $x_2 = 0$, and hence $x_1 = -x_2 = -0 = 0$). In the case that $x_1 - x_2 = 0$ we have $x_1 = x_2$. In either case, we have $x_1 = x_2$. This proves uniqueness.

Next we prove existence. Let $0 \le y \in \mathbb{R}$. Let $A = \{0 \le t \in \mathbb{R} | t^2 \le y\}$. Note that $A \ne \emptyset$ since $0 \in A$. We claim that A is bounded above. If $0 \le y \le 1$ then A is bounded above by 1 because $t > 1 \implies t^2 > 1 \implies t^2 > y \implies t \notin A$. If $y \ge 1$ then A is bounded above by y because $t > y \ge 1 \implies t^2 > y^2 > y \implies t \notin A$. In either case, A is bounded above. Since $A \ne \emptyset$ and A is bounded above, we know that A has a supremum in \mathbb{R} by the Completeness Property of \mathbb{R} . Let $x = \sup A$. We claim that $x^2 = y$. Suppose, for a contradiction, that $x^2 < y$. Note that for $0 < \epsilon \le 1$ we have $(x + \epsilon)^2 = x^2 + 2x\epsilon + \epsilon^2 \le x^2 + 2x\epsilon + \epsilon = x^2 + (2x + 1)\epsilon$ and we have $x^2 + (2x + 1)\epsilon \le y \iff \epsilon \le \frac{y - x^2}{2x + 1}$. Choose $\epsilon = \min\{1, \frac{y - x^2}{2x + 1}\}$. Then $(x + \epsilon)^2 \le x^2 + (2x + 1)\epsilon \le y$ so that $x + \epsilon \in A$, which contradicts the fact that $x = \sup A$. Thus we must have $x^2 \ge y$. Now suppose, for a contradiction, that $x^2 > y$. Note that for $0 < \epsilon \le x$ we have $(x - \epsilon)^2 = x^2 - 2x\epsilon + \epsilon^2 > x^2 - 2x\epsilon$ and we have $x^2 - 2x\epsilon \ge y \iff \epsilon \le \frac{x^2 - y}{2x}$. Choose $\epsilon = \min\{x, \frac{x^2 - y}{2x}\}$. Then $(x - \epsilon)^2 > x^2 - 2x\epsilon \ge y$. Since $x = \sup A$, by the Approximation Property we should be able to choose $t \in A$ with $(x - \epsilon) < t \le x$, but when $t > x - \epsilon$ we have $t^2 > (x - \epsilon)^2 > y$ so that $t \notin A$, and so we have the desired contradiction. Thus we must have $x^2 \le y$. Since $x^2 \le y$ and $x^2 \le y$ we must have x = y.

4: In this problem, and in the following problem, you may use any known properties of \mathbb{N} , \mathbb{Z} , \mathbb{Q} and \mathbb{R} .

(a) Let X and Y be nonempty sets and let $f : X \to Y$. Prove that f is injective if and only if we have $f(A \cap B) = f(A) \cap f(B)$ for all subsets $A, B \subseteq X$.

Solution: Suppose that f is injective. Let $A, B \subseteq X$. Let $y \in f(A \cap B)$. Choose $x \in A \cap B$ with f(x) = y. Since $x \in A$ and y = f(x) we have $y \in f(A)$. Since $x \in B$ and y = f(x) we have $y \in f(B)$. Thus $y \in f(A) \cap f(B)$, showing that that $f(A \cap B) \subseteq f(A) \cap f(B)$ (we did not use the fact that f was injective). Now let $y \in f(A) \cap f(B)$. Since $y \in f(A)$ we can choose $x_1 \in A$ with $f(x_1) = y$. Since $y \in f(B)$ we can choose $x_2 \in B$ with $f(x_2) = y$. Since $f(x_1) = y = f(x_2)$ and f is injective, we must have $x_1 = x_2$, say $x_1 = x_2 = x$. Since $x = x_1 \in A$ and $x = x_2 \in B$ we have $x \in A \cap B$. Since $x \in A \cap B$ and $y = f(x_1) = f(x_2) = f(x)$ we have $y \in f(A \cap B)$, hence $f(A) \cap f(B) \subseteq f(A \cap B)$. Thus $f(A \cap B) = f(A) \cap f(B)$ for all $A, B \subseteq X$.

Suppose that f is not injective. Choose $x_1, x_2 \in X$ with $x_1 \neq x_2$ such that $f(x_1) = f(x_2)$, and let $y = f(x_1) = f(x_2)$. Let $A = \{x_1\}$ and $B = \{x_2\}$. Then $f(A) \cap f(B) = \{y\} \cap \{y\} = \{y\}$ but $A \cap B = \{x_1\} \cap \{x_2\} = \emptyset$ so $f(A \cap B) = f(\emptyset) = \emptyset$. For these sets A, B, we do not have $f(A \cap B) = f(A) \cap f(B)$.

(b) Show that $|\mathbb{R}| = |[0,1)|$ without using the Cantor-Schröder-Bernstein Theorem.

Solution: The map $f:[0,\infty) \to [0,1)$ given by $f(x) = \frac{x}{x+1}$ is bijective with inverse given by $f^{-1}(y) = \frac{y}{1-y}$ because for all $x \in [0,\infty)$ and all $y \in [0,1)$ we have

$$y = \frac{x}{x+1} \iff xy + y = x \iff x(1-y) = y \iff x = \frac{y}{1-y}$$

The map $g: \mathbb{N} \times [0,1) \to [0,\infty)$ given by g(n,t) = n+t is bijective with inverse $g^{-1}(x) = (\lfloor x \rfloor, x - \lfloor x \rfloor)$ because for all $(n,t) \in \mathbb{N} \times [0,1)$ and all $x \in [0,\infty)$ we have

$$x = n + t \iff (n = \lfloor x \rfloor \text{ and } t = x - \lfloor x \rfloor) \iff (n, t) = (\lfloor x \rfloor, x - \lfloor x \rfloor)$$

We claim that the map $h: \mathbb{Z} \times [0,1) \to \mathbb{N} \times [0,1)$ given by

$$h(n,t) = \begin{cases} (2n,t) & \text{if } n \ge 0, \\ (-2n-1,t) & \text{if } n < 0 \end{cases}$$

is bijective with inverse $\ell : \mathbb{N} \times [0,1) \to \mathbb{Z} \times [0,1)$ given by $\ell(2j,t) = (j,t)$ and $\ell(2j+1,t) = (-j-1,t)$ for $j \in \mathbb{N}$. For $n \in \mathbb{Z}$ and $t \in [0,1)$, when $n \ge 0$ we have $\ell(h(n,t)) = \ell(2n,t) = (n,t)$ and when n is odd we have $\ell(h(t)) = \ell(-2n-1,t) = \ell(2(-n-1)+1,t) = (-(-n-1),t) = (n,t)$. Thus $\ell(h(n,t) = (n,t)$ for all $n \in \mathbb{Z}$ and all $t \in [0,1)$, and so ℓ is a left inverse for h. For $m \in \mathbb{N}$ and $t \in [0,1)$, we can write m = 2j or m = 2j + 1 with $j \in \mathbb{N}$, and then we have $h(\ell(2j,t)) = h(j,t) = (2j,t)$ and we have $h(\ell((2j+1,t)) = h(-j-1,t)) = (-2(-j-1)-1,t) = (2j+1,t)$. Thus $h(\ell(m,t)) = (m,t)$ for all $m \in \mathbb{N}$ and all $t \in [0,1)$ and so ℓ is a right inverse for h. Since ℓ is both a left inverse and a right inverse for h, it is the (two-sided) inverse of h, as claimed. Finally, the map $k : \mathbb{R} \to \mathbb{Z} \times [0,1)$ given by $k(x) = (\lfloor x \rfloor, x - \lfloor x \rfloor)$ is bijective with inverse given by $k^{-1}(n,t) = n+t$ by the same calculation which showed that g was bijective. The composite map $f \circ g \circ h \circ k$ is a bijective map from \mathbb{R} to [0,1) so we have $|\mathbb{R}| = |[0,1)|$, as required.

5: (a) Show that the cardinality of the set of all finite subsets of \mathbb{N} is equal to \aleph_0 .

Solution: Let A be the set of finite subsets of N. We define a bijective map $F : \mathbb{N} \to A$ as follows. Given $n \in \mathbb{N}$ we can write n (uniquely) in its binary representation as $n = a_m a_{m-1} \cdots a_1 a_0$, so we have $n = \sum_{i=0}^m a_i 2^i$ where each $a_i \in \{0, 1\}$ with $a_m = 1$ (unless n = 0 in which case $m = a_m = 0$). We then define

$$F(n) = F\left(\sum_{k=0}^{m} a_k 2^k\right) = \left\{k \in \mathbb{N} | a_k = 1\right\}$$

(for example, when n = 19, in binary notation n = 10011 and so $F(n) = \{0, 1, 4\}$). The inverse map $G: A \to \mathbb{N}$ is given by

$$G(S) = \sum_{k=0}^{\infty} a_k 2^k \text{ where } a_k = \begin{cases} 1 \text{ if } k \in S \\ 0 \text{ if } k \notin S \end{cases}$$

In the above equation, S is a finite subset of N, and the sum $\sum_{k=0}^{\infty} a_k 2^k$ finite because S is finite so that $a_k = 1$ for only finitely many values of $k \in \mathbb{N}$.

(b) Show that the cardinality of the set of all functions from \mathbb{N} to \mathbb{N} is equal to 2^{\aleph_0} .

Solution: Recall that $2^{\mathbb{N}}$ denotes the set of functions from \mathbb{N} to $\{0,1\}$, and $\mathbb{N}^{\mathbb{N}}$ denotes the set of functions from \mathbb{N} to \mathbb{N} . Note that $2^{\mathbb{N}} \subseteq \mathbb{N}^{\mathbb{N}}$ (since every function from \mathbb{N} to $\{0,1\}$ is also a function from \mathbb{N} to \mathbb{N}) and so we have $|2^{\mathbb{N}}| \leq |\mathbb{N}^{\mathbb{N}}|$. Recall that each element $n \in \mathbb{N}$ can be written uniquely in the form $n = 2^k(2l+1) - 1$ with $k, l \in \mathbb{N}$. Define $F : \mathbb{N}^{\mathbb{N}} \to 2^{\mathbb{N}}$ by

$$F(f)(2^{k}(2l+1)-1) = \begin{cases} 1 \text{ if } k = f(l), \\ 0 \text{ if } k \neq f(l). \end{cases}$$

(In the above equation, $f: \mathbb{N} \to \mathbb{N}$ and $F(f): \mathbb{N} \to \{0, 1\}$). We claim that F is injective. Let $f, g: \mathbb{N} \to \mathbb{N}$. Suppose that F(f) = F(g). Then F(f)(n) = F(g)(n) for all $n \in \mathbb{N}$. Given $k, l \in \mathbb{N}$, let $n = 2^k(2l-1) - 1$. Then we have $k = f(l) \iff F(f)(n) = 1 \iff F(g)(n) = 1 \iff k = g(l)$. Thus f(l) = g(l) for all $l \in \mathbb{N}$, and so f = g. Thus F is injective, as claimed, and so we have $|\mathbb{N}^{\mathbb{N}}| \leq |2^{\mathbb{N}}|$. By the Cantor-Schroeder-Bernstein Theorem, it follows that $|\mathbb{N}^{\mathbb{N}}| = |2^{\mathbb{N}}|$.