
PMATH 333, Solutions to the Exercises for Chapter 1

1: Let R be a ring and let F be a field.

(a) Using only the rules R1-R9 which define a field, prove that for all a ∈ F if a ·a = a then (a = 0 or a = 1).

Solution: Let a ∈ F . Suppose that a · a = a. Suppose that a 6= 0. Using R9, since a 6= 0 we can choose
b ∈ F so that a · b = b · a = 1. Then we have

a = 1 · a , by R6

= (b · a) · a , since b · a = 1

= b · (a · a) , by R5

= b · a , since a · a = a

= 1 , since b · a = 1.

This proves that if a 6= 0 then a = 1 or, equivalently, that either a = 0 or a = 1.

(b) Using only the rules R1-R9, prove that for all a ∈ F if a · a = 1 then (a = 1 or a+ 1 = 0).

Solution: Let a ∈ F . Suppose that a · a = 1. Suppose that a + 1 6= 0. Using R9, choose b ∈ F so that
(a+ 1) · b = b · (a+ 1) = 1. Then

a = a · 1 , by R6

= a · ((a+ 1) · b) , since (a+ 1) · b = 1

= (a · (a+ 1)) · b , by R5

= (a · a+ a · 1) · b , by R7

= (1 + a · 1) · b , since a · a = a

= (1 + a) · b , by R6

= (a+ 1) · b , by R2

= 1 , since (a+ 1) · b = 1.

This proves that if a+ 1 6= 0 then a = 1 or, equivalently, that either a = 1 or a+ 1 = 0.

(c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all a ∈ R
we have (a · 0 = 0 and 0 · a = 0), prove that for all a, b, c, d ∈ R, if a+ c = 0 and b+ d = 0 then ab = cd.

Solution: Let a, b, c, d ∈ R. Suppose that a+ c = 0 and b+ d = 0. Then

ab = ab+ 0 , by R3

= ab+ c0 , by R0

= ab+ c(b+ d) , since b+ d = 0

= ab+ (cb+ cd) , by R7

= (ab+ cb) + cd , by R1

= (a+ c)b+ cd , by R7

= 0b+ cd , since a+ c = 0

= 0 + cd , by R0

= cd+ 0 , by R2

= cd , by R3.



2: Let S be an ordered set and let F be an ordered field.

(a) Using only the rules O1-O3, and the rule O0 which defines the strict order < by stating that for all
a, b ∈ S we have a < b ⇐⇒ (a ≤ b and a 6= b), prove that for all a, b, c ∈ S, if a ≤ b and b < c then a < c.

Solution: Let a, b, c ∈ S. Suppose that a ≤ b and b < c. Since b < c we have b ≤ c and b 6= c by O0. Since
a ≤ b and b ≤ c we have a ≤ c by O3. Suppose, for a contradiction, that a = c. Since a ≤ b and a = c we
have c ≤ b (by substitution). Since b ≤ c and c ≤ b we have b = c by O2. But b 6= c, so we have obtained
the desired contradiction, and so a 6= c. Since a ≤ c and a 6= c we have a < c by O0.

(b) Using only the rules R1-R9 and O1-O5, prove that for all a, b ∈ F if 0 ≤ a and a ≤ b then a · a ≤ b · b.
Solution: Let a, b ∈ F . Suppose that 0 ≤ a and a ≤ b. Since 0 ≤ a and a ≤ b we have 0 ≤ b by O3. Using
R4, choose c ∈ F so that a + c = 0. Since a ≤ b we have a + c ≤ b + c by O4, and hence 0 ≤ b + c since
a + c = 0. Since 0 ≤ a and 0 ≤ b + c we have 0 ≤ a(b + c) by O5. Also, since 0 ≤ b + c and 0 ≤ b we have
0 ≤ (b+ c)b. Thus

0 ≤ a(b+ c)

0 + aa ≤ a(b+ c) + aa , by O4

aa+ 0 ≤ a(b+ c) + aa , by R2

aa ≤ a(b+ c) + aa , by R3

aa ≤ (ab+ ac) + aa , by R7

aa ≤ ab+ (ac+ aa) , by R1

aa ≤ ab+ a(c+ a) , by R7

aa ≤ ab+ a(a+ c) , by R2

aa ≤ ab+ a0 , since a+ c = 0

aa ≤ a(b+ 0) , by R7

aa ≤ ab , by R3

and
0 ≤ (b+ c)b

0 + ab ≤ (b+ c)b+ ab , by O4

ab+ 0 ≤ (b+ c)b+ ab , by R2

ab ≤ (b+ c)b+ ab , by R3

ab ≤ (bb+ cb) + ab , by R7

ab ≤ bb+ (cb+ ab) , by R1

ab ≤ bb+ (c+ a)b , by R7

ab ≤ bb+ (a+ c)b , by R2

ab ≤ bb+ 0b , since a+ c = 0

ab ≤ (b+ 0)b , by R7

ab ≤ bb , by R3

Since aa ≤ ab and ab ≤ bb we have aa ≤ bb by O3.

(c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1(c), prove that 0 ≤ 1.

Solution: Choose u ∈ R so that 1 + u = 0 (we can do this by R4). Then

u · u = u · u+ 0 , by R3,

= u · u+ 0 · 1 , by R6,

= u · u+ (1 + u) · 1 , since 1 + u = 0,

= u · u+ (1 · 1 + u · 1) , by R7.

= (1 · 1 + u · 1) + u · u , by R2.

= 1 · 1 + (u · 1 + u · u) , by R1,

= 1 · 1 + u · (1 + u) , by R7,

= 1 · 1 + u · 0 , since 1 + u = 0,

= 1 · 1 + 0 , by R0,

= 1 · 1 , by R3,

= 1 , by R6.

By O1 we know that either 0 ≤ 1 or 1 ≤ 0. Suppose, for a contradiction, that 1 ≤ 0. Then

1 + u ≤ 0 + u , by O4,

0 ≤ 0 + u , since 1 + u = 0,

0 ≤ u+ 0 , by R2,

0 ≤ u , by R3,

0 ≤ u · u , by O5,

0 ≤ 1 , since u · u = 1, as shown above.

Since 0 ≤ 1 and 1 ≤ 0 we have 0 = 1 by O2. This gives the desired contradiction because 0 6= 1, from the
definition of a ring.



3: In this problem, you may use any of the algebraic properties and order properties of N, Z, Q and R described
in Chapter 1 of the Lecture Notes.

(a) Let A =
{

(−1)n + 1
n

∣∣n ∈ Z+
}

. Find (with proof) supA and inf A.

Solution: We claim that supA = 3
2 . Let x ∈ A, say x = (−1)n + 1

n where 1 ≤ n ∈ Z. If n is even then
(−1)n = 1 and n ≥ 2 so that 1

n ≤
1
2 , and so we have x = (−1)n + 1

n = 1 + 1
n ≤ 1 + 1

2 = 3
2 . If n is odd then

(−1)n = −1 and n ≥ 1 so that 1
n ≤ 1, and so we have x = (−1)n + 1

n = −1 + 1
n ≤ −1 + 1 = 0 ≤ 3

2 . In
either case, we have x ≤ 3

2 . Thus x ≤ 3
2 for all x ∈ A, and so 3

2 is an upper bound for A in R. If c ∈ R is
any upper bound for A then c ≤ x for all x ∈ A, and in particular c ≤ (−1)2 + 1

2 = 3
2 . Thus 3

2 = supA.
We claim that inf A = −1. Let x ∈ A, say x = (−1)n + 1

n with 1 ≤ n ∈ Z. Since (−1)n ≥ −1 and 1
n > 0

we have x = (−1)n + 1
n > −1 + 0 = −1. Since x > −1 for all x ∈ A we see that −1 is a lower bound for A

in R. Let c ∈ R be any lower bound for A. Suppose, for a contradiction, that c > −1. Then c+ 1 > 0 hence
1

c+1 > 0. Choose an odd integer n ∈ Z with n > 1
c+1 > 0 (we are using the Archimedean Property here) and

note that 1
n < c + 1. Let x = (−1)n + 1

n . Then x ∈ A with x = (−1)n + 1
n = −1 + 1

n < −1 + (c + 1) = c,
which contradicts the fact that c is a lower bound for A. Thus we must have c ≤ −1. Since −1 is a lower
bound for A and since every lower bound c for A satisfies c ≤ −1, it follows that −1 = inf A, as claimed.

(b) Prove that for every 0 ≤ y ∈ R there exists a unique 0 ≤ x ∈ R such that x2 = y (this number x is
called the square root of y and is denoted by x =

√
y = y1/2). In other words, prove that the function

f : [0,∞)→ [0,∞) given by f(x) = x2 is bijective.

Solution: First we prove uniqueness. Suppose that x1 ≥ 0 and x2 ≥ 0 and x1
2 = x2

2 = y. Since x1
2 = x2

2

we have (x1−x2)(x1 +x2) = x1
2−x22 = 0 and hence either x1−x2 = 0 or x1 +x2 = 0 (since a field has no

zero divisors). In the case that x1 + x2 = 0, since x1 ≥ 0 and x2 ≥ 0 we must have x1 = x2 = 0 (indeed if
we had x2 > 0 then we would have x1 = −x2 < 0, so we must have x2 = 0, and hence x1 = −x2 = −0 = 0).
In the case that x1 − x2 = 0 we have x1 = x2. In either case, we have x1 = x2. This proves uniqueness.

Next we prove existence. Let 0 ≤ y ∈ R. Let A =
{

0 ≤ t ∈ R
∣∣t2 ≤ y}. Note that A 6= ∅ since 0 ∈ A. We

claim that A is bounded above. If 0 ≤ y ≤ 1 then A is bounded above by 1 because t > 1 =⇒ t2 > 1 =⇒
t2 > y =⇒ t /∈ A. If y ≥ 1 then A is bounded above by y because t > y ≥ 1 =⇒ t2 > y2 > y =⇒ t /∈ A. In
either case, A is bounded above. Since A 6= ∅ and A is bounded above, we know that A has a supremum in
R by the Completeness Property of R. Let x = supA. We claim that x2 = y. Suppose, for a contradiction,
that x2 < y. Note that for 0 < ε ≤ 1 we have (x+ ε)2 = x2 + 2xε+ ε2 ≤ x2 + 2xε+ ε = x2 + (2x+ 1)ε and we

have x2 + (2x+ 1)ε ≤ y ⇐⇒ ε ≤ y−x2

2x+1 . Choose ε = min
{

1, y−x
2

2x+1

}
. Then (x+ ε)2 ≤ x2 + (2x+ 1)ε ≤ y so

that x+ ε ∈ A, which contradicts the fact that x = supA. Thus we must have x2 ≥ y. Now suppose, for a
contradiction, that x2 > y. Note that for 0 < ε ≤ x we have (x− ε)2 = x2− 2xε+ ε2 > x2− 2xε and we have

x2−2xε ≥ y ⇐⇒ ε ≤ x2−y
2x . Choose ε = min

{
x, x

2−y
2x

}
. Then (x− ε)2 > x2−2xε ≥ y. Since x = supA, by

the Approximation Property we should be able to choose t ∈ A with (x− ε) < t ≤ x, but when t > x− ε we
have t2 > (x− ε)2 > y so that t /∈ A, and so we have the desired contradiction. Thus we must have x2 ≤ y.
Since x2 ≥ y and x2 ≤ y we must have x = y.



4: In this problem, and in the following problem, you may use any known properties of N, Z, Q and R.

(a) Let X and Y be nonempty sets and let f : X → Y . Prove that f is injective if and only if we have
f(A ∩B) = f(A) ∩ f(B) for all subsets A,B ⊆ X.

Solution: Suppose that f is injective. Let A,B ⊆ X. Let y ∈ f(A ∩ B). Choose x ∈ A ∩ B with f(x) = y.
Since x ∈ A and y = f(x) we have y ∈ f(A). Since x ∈ B and y = f(x) we have y ∈ f(B). Thus
y ∈ f(A) ∩ f(B), showing that that f(A ∩B) ⊆ f(A) ∩ f(B) (we did not use the fact that f was injective).
Now let y ∈ f(A)∩f(B). Since y ∈ f(A) we can choose x1 ∈ A with f(x1) = y. Since y ∈ f(B) we can choose
x2 ∈ B with f(x2) = y. Since f(x1) = y = f(x2) and f is injective, we must have x1 = x2, say x1 = x2 = x.
Since x = x1 ∈ A and x = x2 ∈ B we have x ∈ A ∩ B. Since x ∈ A ∩ B and y = f(x1) = f(x2) = f(x) we
have y ∈ f(A ∩B), hence f(A) ∩ f(B) ⊆ f(A ∩B). Thus f(A ∩B) = f(A) ∩ f(B) for all A,B ⊆ X.

Suppose that f is not injective. Choose x1, x2 ∈ X with x1 6= x2 such that f(x1) = f(x2), and
let y = f(x1) = f(x2). Let A = {x1} and B = {x2}. Then f(A) ∩ f(B) = {y} ∩ {y} = {y} but
A∩B = {x1}∩{x2} = ∅ so f(A∩B) = f(∅) = ∅. For these sets A,B, we do not have f(A∩B) = f(A)∩f(B).

(b) Show that |R| =
∣∣[0, 1)

∣∣ without using the Cantor-Schröder-Bernstein Theorem.

Solution: The map f : [0,∞) → [0, 1) given by f(x) = x
x+1 is bijective with inverse given by f−1(y) = y

1−y
because for all x ∈ [0,∞) and all y ∈ [0, 1) we have

y = x
x+1 ⇐⇒ xy + y = x ⇐⇒ x(1− y) = y ⇐⇒ x = y

1−y .

The map g : N × [0, 1) → [0,∞) given by g(n, t) = n + t is bijective with inverse g−1(x) =
(
bxc , x − bxc

)
because for all (n, t) ∈ N× [0, 1) and all x ∈ [0,∞) we have

x = n+ t ⇐⇒
(
n = bxc and t = x− bxc

)
⇐⇒ (n, t) =

(
bxc , x− bxc

)
.

We claim that the map h : Z× [0, 1)→ N× [0, 1) given by

h(n, t) =

{
(2n, t) if n ≥ 0,

(−2n− 1, t) if n < 0

is bijective with inverse ` : N × [0, 1) → Z × [0, 1) given by `(2j, t) = (j, t) and `(2j + 1, t) = (−j − 1, t) for
j ∈ N. For n ∈ Z and t ∈ [0, 1), when n ≥ 0 we have `

(
h(n, t)

)
= `(2n, t) = (n, t) and when n is odd we

have `
(
h(t)

)
= `
(
− 2n − 1, t

)
= `
(
2(−n − 1) + 1 , t

)
=
(
− (−n − 1) , t

)
= (n, t). Thus `(h(n, t) = (n, t)

for all n ∈ Z and all t ∈ [0, 1), and so ` is a left inverse for h. For m ∈ N and t ∈ [0, 1), we can
write m = 2j or m = 2j + 1 with j ∈ N, and then we have h

(
`(2j, t)

)
= h(j, t) = (2j, t) and we have

h
(
`((2j + 1, t)

)
= h

(
− j − 1, t

)
=
(
− 2(−j − 1)− 1 , t

)
= (2j + 1, t). Thus h

(
`(m, t)

)
= (m, t) for all m ∈ N

and all t ∈ [0, 1) and so ` is a right inverse for h. Since ` is both a left inverse and a right inverse for h, it is
the (two-sided) inverse of h, as claimed. Finally, the map k : R→ Z× [0, 1) given by k(x) =

(
bxc , x−bxc

)
is

bijective with inverse given by k−1(n, t) = n+ t by the same calculation which showed that g was bijective.
The composite map f ◦ g ◦ h ◦ k is a bijective map from R to [0, 1) so we have |R| =

∣∣[0, 1)
∣∣, as required.



5: (a) Show that the cardinality of the set of all finite subsets of N is equal to ℵ0.

Solution: Let A be the set of finite subsets of N. We define a bijective map F : N → A as follows. Given

n ∈ N we can write n (uniquely) in its binary representation as n = amam−1 · · · a1a0, so we have n =
m∑
i=0

ai2
i

where each ai ∈ {0, 1} with am = 1 (unless n = 0 in which case m = am = 0). We then define

F (n) = F
( m∑
k=0

ak2k
)

=
{
k ∈ N

∣∣ak = 1
}
.

(for example, when n = 19, in binary notation n = 10011 and so F (n) = {0, 1, 4}). The inverse map
G : A→ N is given by

G(S) =
∞∑
k=0

ak2k where ak =

{
1 if k ∈ S,
0 if k /∈ S.

In the above equation, S is a finite subset of N, and the sum
∞∑
k=0

ak2k finite because S is finite so that ak = 1

for only finitely many values of k ∈ N.

(b) Show that the cardinality of the set of all functions from N to N is equal to 2ℵ0 .

Solution: Recall that 2N denotes the set of functions from N to {0, 1}, and NN denotes the set of functions
from N to N. Note that 2N ⊆ NN (since every function from N to {0, 1} is also a function from N to N) and so
we have |2N| ≤ |NN|. Recall that each element n ∈ N can be written uniquely in the form n = 2k(2l+ 1)− 1
with k, l ∈ N. Define F : NN → 2N by

F (f)
(
2k(2l + 1)− 1

)
=

{
1 if k = f(l),

0 if k 6= f(l).

(In the above equation, f : N→ N and F (f) : N→ {0, 1}). We claim that F is injective. Let f, g : N→ N.
Suppose that F (f) = F (g). Then F (f)(n) = F (g)(n) for all n ∈ N. Given k, l ∈ N, let n = 2k(2l − 1) − 1.
Then we have k = f(l) ⇐⇒ F (f)(n) = 1 ⇐⇒ F (g)(n) = 1 ⇐⇒ k = g(l). Thus f(l) = g(l) for all l ∈ N,
and so f = g. Thus F is injective, as claimed, and so we have |NN| ≤ |2N|. By the Cantor-Schroeder-Bernstein
Theorem, it follows that |NN| = |2N|.


