PMATH 333, Exercises for Chapter 1

1: Let R be a ring and let F be a field.
(a) Using only the rules R1-R9 which define a field, prove that for all $a \in F$ if $a \cdot a=a$ then $(a=0$ or $a=1)$.
(b) Using only the rules R1-R9, prove that for all $a \in F$ if $a \cdot a=1$ then ($a=1$ or $a+1=0$).
(c) Using only the rules R1-R7 which define a ring, together with the rule R0 which states that for all $a \in R$ we have $(a \cdot 0=0$ and $0 \cdot a=0)$, prove that for all $a, b, c, d \in R$, if $a+c=0$ and $b+d=0$ then $a b=c d$.

2: Let S be an ordered set and let F be an ordered field.
(a) Using only the rules O1-O3, and the rule O0 which defines the strict order $<$ by stating that for all $a, b \in S$ we have $a<b \Longleftrightarrow(a \leq b$ and $a \neq b)$, prove that for all $a, b, c \in S$, if $a \leq b$ and $b<c$ then $a<c$.
(b) Using only the rules R1-R9 and O1-O5, prove that for all $a, b \in F$ if $0 \leq a$ and $a \leq b$ then $a \cdot a \leq b \cdot b$.
(c) Using only rules R1-R9 and O1-O5, together with the rule R0 from Exercise 1 (c), prove that $0 \leq 1$.

3: In this problem, you may use any of the algebraic properties and order properties of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R} described in Chapter 1 of the Lecture Notes.
(a) Let $A=\left\{\left.(-1)^{n}+\frac{1}{n} \right\rvert\, n \in \mathbb{Z}^{+}\right\}$. Find (with proof) $\sup A$ and $\inf A$.
(b) Prove that for every $0 \leq y \in \mathbb{R}$ there exists a unique $0 \leq x \in \mathbb{R}$ such that $x^{2}=y$ (this number x is called the square root of y and is denoted by $x=\sqrt{y}=y^{1 / 2}$). In other words, prove that the function $f:[0, \infty) \rightarrow[0, \infty)$ given by $f(x)=x^{2}$ is bijective.

4: In this problem, and in the following problem, you may use any known properties of $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$ and \mathbb{R}.
(a) Let X and Y be nonempty sets and let $f: X \rightarrow Y$. Prove that f is injective if and only if we have $f(A \cap B)=f(A) \cap f(B)$ for all subsets $A, B \subseteq X$.
(b) Show that $|\mathbb{R}|=|[0,1)|$ without using the Cantor-Schröder-Bernstein Theorem.

5: (a) Show that the cardinality of the set of all finite subsets of \mathbb{N} is equal to \aleph_{0}.
(b) Show that the cardinality of the set of all functions from \mathbb{N} to \mathbb{N} is equal to $2^{\aleph_{0}}$.

