PMATH 333, Solutions to the Exercises for Appendix 2

1: Recall that a formula in first-order set theory only uses symbols from the following symbol set:

$$
\neg, \wedge, \vee, \rightarrow, \leftrightarrow,(,),=, \in, \exists, \forall
$$

along with variable symbols including x, y, z, u, v, w, \cdots.
(a) Express the statement $\{\emptyset,\{u\}\} \in w$ as a formula in first-order set theory.

Solution: In the class of sets we have

$$
\begin{aligned}
v=\{\emptyset,\{u\}\} & \Longleftrightarrow \forall x(x \in v \leftrightarrow(x=\emptyset \vee x=\{u\})) \\
& \Longleftrightarrow \forall x(x \in v \leftrightarrow(\forall y \neg y \in x \vee \forall y(y \in x \leftrightarrow y=u)))
\end{aligned}
$$

and so

$$
\begin{aligned}
\{\emptyset,\{u\}\} \in w & \Longleftrightarrow \forall v(v=\{\emptyset,\{u\}\} \rightarrow v \in w) \\
& \Longleftrightarrow \forall v(\forall x(x \in v \leftrightarrow(\forall y \neg y \in x \vee \forall y(y \in x \leftrightarrow y=u))) \rightarrow v \in w)
\end{aligned}
$$

Alternatively,

$$
\begin{aligned}
\{\emptyset,\{u\}\} \in w & \Longleftrightarrow \exists v(v=\{\emptyset,\{u\}\} \wedge v \in w) \\
& \Longleftrightarrow \exists v(\forall x(x \in v \leftrightarrow(\forall y \neg y \in x \vee \forall y(y \in x \leftrightarrow y=u))) \wedge v \in w) .
\end{aligned}
$$

(b) Recall that $(x, y)=\{\{x\},\{x, y\}\}$. Express the statement " w is a set of ordered pairs" as a formula in first-order set theory.
Solution: In the class of all sets we have

$$
\begin{aligned}
& w \text { is a set of ordered pairs } \Longleftrightarrow \forall u(u \in w \rightarrow \exists x \exists y u=(x, y)) \\
& \quad \Longleftrightarrow \forall u(u \in w \rightarrow \exists x \exists y u=\{\{x\},\{x, y\}\}) \\
& \quad \Longleftrightarrow \forall u(u \in w \rightarrow \exists x \exists y \forall v(v \in u \leftrightarrow(v=\{x\} \vee v=\{x, y\})) \\
& \quad \Longleftrightarrow \forall u(u \in w \rightarrow \exists x \exists y \forall v(v \in u \leftrightarrow(\forall z(z \in v \leftrightarrow z=x) \vee \forall z(z \in v \leftrightarrow(z=x \vee z=y)))))
\end{aligned}
$$

We remark that the statement " w is a set of ordered pairs" is equivalent to the statement " w is a relation".
(c) Express the statement "for every $u \in w$ there exists $x \in u$ such that $u \backslash\{x\} \in w$ " as a formula in first order set theory. Also, determine whether there exists such a set w which is not empty.
Solution: The given statement can be expressed as " $\forall u \in w \exists x \in u \forall y(y=u \backslash\{x\} \rightarrow y \in w)$ " which, in turn, can be expressed by the formula

$$
\forall u(u \in w \rightarrow \exists x(x \in u \wedge \forall y(\forall z(z \in y \leftrightarrow(z \in u \wedge \neg z=x)) \rightarrow y \in w)))
$$

There do exist such sets w, for example we could take w to be the set of all infinite subsets of \mathbb{N}, that is $w=\{u \in \mathcal{P}(\mathbb{N}) \mid \exists n \in \mathbb{N} u \subseteq n\}$ which is a set by a Separation Axiom (since $\mathcal{P}(\mathbb{N})$ is a set and the statement " $\exists n \in \mathbb{N} u \subseteq n$ " can be expressed as a formula in First Order Set Theory). As another example, we could take w to be the set $w=\{\{1,2,3, \cdots\},\{2,3,4, \cdots\},\{3,4,5, \cdots\}, \cdots\}=\{u \in \mathcal{P}(\mathbb{N}) \mid \exists n \in \mathbb{N} \forall x(x \in u \leftrightarrow n \in x\}$ which is a set by a Separation Axiom.

2: Recall that $\mathbb{N}=\{0,1,2, \cdots\}$ is a set where $0=\emptyset, 1=\{0\}, 2=\{0,1\}$ and in general $x+1=x \cup\{x\}$.
(a) Show that if u is a set then the collection $w=\{x \cup\{x\} \mid x \in u\}$ is a set.

Solution: We provide two solutions by explaining how w can be constructed from u using the ZFC axioms in two slightly different ways. In both solutions we use the fact that the statement " $y=x \cup\{x\}$ " is considered to be an allowable mathematical statement because it can be expressed as the first-order formula

$$
F(x, y) \equiv \forall z(z \in y \leftrightarrow(z \in x \vee z=x))
$$

For the first solution, we note that when u is a set, the given collection $w=\{x \cup\{x\} \mid x \in u\}$ is equal to

$$
w=\{y \mid \exists x \in u y=x \cup\{x\}\}=\{y \mid \exists x \in u F(x, y)\},
$$

which is a set by a Replacement Axiom, because the statement $F(x, y)$ has the property that for every set x there is a unique set y such that $F(x, y)$ is true (indeed, given a set x, to make $F(x, y)$ true we must take $y=x \cup\{x\}$, which is a set by the Pair and Union Axioms).

For the second solution, note that when x, y and u are sets with $x \in u$, if $y \in x$ then $y \in \bigcup u$ and if $y \in\{x\}$ then $y=x$ so $y \in u$, and so if $y \in x \cup\{x\}$ then $y \in u \cup \bigcup u$. Thus the given collection is

$$
w=\{x \cup\{x\} \mid x \in u\}=\{y \mid \exists x \in u F(x, y)\}=\{y \in u \cup \bigcup u \mid \exists x(x \in u \wedge F(x, y))\}
$$

which is a set by a Separation Axiom, since $u \cup \bigcup u$ is a set by the Pair and/or Union Axioms.
(b) Show that the collection $w=\{\{0,1\},\{1,2\},\{2,3\},\{3,4\}, \cdots\}$ is a set.

Solution: Again we provide two solutions. Note that when x and y are sets we have

$$
\begin{aligned}
y=\{x, x \cup\{x\}\} & \Longleftrightarrow \forall z(z \in y \leftrightarrow(z=x \vee z=x \cup\{x\})) \\
& \Longleftrightarrow \forall z(z \in y \leftrightarrow(z=x \vee \forall u(u \in z \leftrightarrow(u \in x \vee u=x))))
\end{aligned}
$$

so the statement " $y=\{x, x \cup\{x\}\}$ " can be expressed as the formula

$$
F(x, y) \equiv \forall z(z \in y \leftrightarrow(z=x \vee \forall u(u \in z \leftrightarrow(u \in x \vee u=x))))
$$

For the first solution we note that

$$
\begin{aligned}
w & =\{\{0,1\},\{1,2\},\{2,3\}, \cdots\}=\{\{x, x+1\} \mid x \in \mathbb{N}\}=\{\{x, x \cup\{x\}\} \mid x \in \mathbb{N}\} \\
& =\{y \mid \exists x \in \mathbb{N} F(x, y)\}
\end{aligned}
$$

which is a set by a Replacement Axiom, since \mathbb{N} is known to be a set by the Axiom of Infinity, and since the statement $F(x, y)$ has the property that for every set x there exists a unique set y such that the statement is true (indeed given x, to make the statement true we must choose $y=\{x, x \cup\{x\}\}$, which is a set by the Pair and Union Axioms).

For the second solution, note that when $x \in \mathbb{N}$ we have $\{x, x+1\} \in P(\mathbb{N})$ and so

$$
w=\{\{x, x+1\} \mid x \in \mathbb{N}\}=\{y \mid \exists x \in \mathbb{N} y=\{x, x+1\}\}=\{y \in P(\mathbb{N}) \mid \exists x(x \in \mathbb{N} \wedge F(x, y))\}
$$

which is a set by a Separation Axiom, since $P(\mathbb{N})$ is a set by the Axiom of Infinity and the Power Set Axiom, and since the statement " $x \in \mathbb{N} \wedge F(x, y)$ " is an allowable mathematical statement.

To be careful, we should verify that the statements " $u=\mathbb{N}$ " and " $x \in \mathbb{N}$ " can be expressed as formulas (in first-order set theory) so that they are allowable mathematical statements. It is not clear, from reading Chapter 1 in the Lecture Notes, exactly how this should be done. After reading the definition of the set \mathbb{N} given in Appendix 1, you will be able to work out that the statement " $u=\mathbb{N}$ " can be expressed as

$$
\emptyset \in u \wedge \forall x(x \in u \rightarrow x \cup\{x\} \in u) \wedge \forall w((\emptyset \in w \wedge \forall x(x \in w \rightarrow x \cup\{x\} \in w)) \rightarrow u \subseteq w))
$$

which can, in turn, be expressed as a formula. The statement " $x \in \mathbb{N}$ " can be expressed as $\forall u(u=\mathbb{N} \rightarrow x \in u)$.
(c) Show that the collection $w=\{\emptyset,\{\emptyset\},\{\{\emptyset\}\},\{\{\{\emptyset\}\}\}, \cdots\}$ is a set.

Solution: We shall only provide an incomplete solution. Define sets s_{n}, for $n \in \mathbb{N}$, recursively by $s_{0}=\emptyset$ and $s_{n+1}=\left\{s_{n}\right\}$. If we can express the statement " $u=s_{n}$ " as a formula $F(n, u)$ (with free variables n and u) then we have

$$
w=\left\{s_{n} \mid n \in \mathbb{N}\right\}=\left\{u \mid \exists n \in \mathbb{N} u=s_{n}\right\}=\{u \mid \exists n \in \mathbb{N} F(u, n)\}
$$

which is a set by a Replacement Axiom. For $n \in \mathbb{N}$, let

$$
w_{n}=\left\{(0, \emptyset),(1,\{\emptyset\}), \cdots,\left(n, s_{n}\right)\right\} .
$$

In order to show that the statement " $u=s_{n}$ " is expressible as a formula, we shall first show that the (apparently more complicated) statement " $v=w_{n}$ " is expressible as a formula. We recall that the statements " $u=\mathbb{N}$ " and " $x \in \mathbb{N}$ " are each expressible as formulas. When $n \in \mathbb{N}$ and v is a set we have

$$
\begin{aligned}
v=w_{n} \Longleftrightarrow & \forall z \in v \exists x \in\{0,1, \cdots, n\} \exists y z=(x, y) \\
& \text { and } \forall x \in\{0,1, \cdots, n\} \exists y(x, y) \in v \\
& \text { and } \forall x \forall y \forall z(((x, y) \in v \wedge(x, z) \in v) \rightarrow y=z)) \\
& \text { and }(0, \emptyset) \in v \\
& \text { and } \forall x \in\{0,1, \cdots, n-1\} \forall y((x, y) \in v \rightarrow(x+1,\{y\}) \in v)
\end{aligned}
$$

We leave it as a (long but not particularly difficult) exercise to verify that the rather long statement on the right can be expressed as a formula, say $H(n, v)$, with free variables n and v. When $n \in \mathbb{N}$ and u is a set we have

$$
u=s_{n} \Longleftrightarrow(n, u) \in w_{n} \Longleftrightarrow \forall v\left(v=w_{n} \rightarrow(n, u) \in v\right) \Longleftrightarrow \forall v(H(n, v) \rightarrow(n, u) \in v)
$$

which can be expressed as a formula, say $G(n, u)$. Finally, to be careful, the statement $F(n, u)$ which is used in the Replacement Axiom, must have the property that for every set n (not necessarily with $n \in \mathbb{Z}$) there is a unique set u for which $F(n, u)$ is true, and so we take $F(n, u)$ to be the statement $(n \in \mathbb{N} \rightarrow G(n, u)) \wedge(\neg n \in \mathbb{N} \rightarrow u=\emptyset)$.

For our solution to be complete, we would need to prove that our statement $F(u, n)$ has the property that for every set n there is a unique set u such that $F(n, u)$ is true. To do this, we would first prove that for every $n \in \mathbb{N}$ there is a unique set v such that $H(n, v)$ is true. This can be proven using Induction.

3: In some books on set theory, the list of ZFC axioms includes an additional axiom called the Axiom of Regularity, which states that every nonempty set u contains an element v such that $u \cap v=\emptyset$. Assuming the Axiom of Regularity (along with the other ZFC axioms), prove each of the following statements.
(a) There does not exist a set u such that $u \in u$.

Solution: Suppose, for a contradiction, that u is a set with $u \in u$. Since $u \in\{u\}$ and $u \in u$ we have $u \in\{u\} \cap u$ and so $\{u\} \cap u \neq \emptyset$. Let $w=\{u\}$. By the Axiom of Regularity (applied to the set w) we can choose an element $v \in w$ such that $w \cap v=\emptyset$. Since $v \in w=\{u\}$ we must have $v=u$, so we have $\{u\} \cap u=w \cap v=\emptyset$. We have shown that $\{u\} \cap u=\emptyset$ and that $\{u\} \cap u \neq \emptyset$, so we have obtained the desired contradiction, hence there is no set u with $u \in u$.
(b) There do not exist sets u and v such that $u \in v$ and $v \in u$.

Solution: Suppose, for a contradiction, that u and v are sets with $u \in v$ and $v \in u$. Let $w=\{u, v\}$. By the Axiom of Regularity (applied to the set w), either $w \cap u=\emptyset$ or $w \cap v=\emptyset$. But since $u \in v$ and $u \in w$ we have $u \in w \cap v$ so $w \cap v \neq \emptyset$ and, similarly, since $v \in u$ and $v \in w$ we have $v \in w \cap u$ so that $w \cap u \neq \emptyset$. We have shown that either $w \cap u=\emptyset$ or $w \cap v=\emptyset$, and we have also shown that $w \cap u \neq \emptyset$ and $w \cap v \neq \emptyset$, so we have obtained the desired contradiction.
(c) For all sets u and v, if $u \cup\{u\}=v \cup\{v\}$ then $u=v$.

Solution: Let u and v be sets. Suppose that $u \cup\{u\}=v \cup\{v\}$. Suppose, for a contradiction, that $u \neq v$. Since $u \in u \cup\{u\}$ and $u \cup\{u\}=v \cup\{v\}$ we have $u \in v \cup\{v\}$. Since $u \in v \cup\{v\}$ it follows that either $u \in v$ or $u=v$. Since $u \neq v$ it follows that $u \in v$. A similar argument shows that $v \in u$. But then we have $u \in v$ and $v \in u$, which contradicts the result of Part (b).
(d) For all sets u, v, x and y, if $\{u,\{u, v\}\}=\{x,\{x, y\}\}$ then $u=x$ and $v=y$.

Solution: Let u, v, x, y be sets. Suppose that $\{u,\{u, v\}\}=\{x,\{x, y\}\}$. Note that $u \neq\{u, v\}$ because if we had $u=\{u, v\}$ then we would have $u \in\{u, v\}=u$ which contradicts Part (a). Similarly $x \neq\{x, y\}$ so the sets $\{u,\{x, y\}\}$ and $\{u,\{u, v\}\}$ are 2-element sets. Since $\{u,\{u, v\}\}=\{x,\{x, y\}\}$, with the sets on each side having 2 distinct elements, either $(u=x$ and $\{u, v\}=\{x, y\})$ or $(u=\{x, y\}$ and $\{u, v\}=x)$.

Case 1: suppose that $u=x$ and $\{u, v\}=\{x, y\}$. We need to show that $v=y$. Since $v \in\{u, v\}$ and $\{u, v\}=\{x, y\}$ we have $v \in\{x, y\}$ hence either $v=x$ or $v=y$. If $v=y$ we are done, so suppose that $v=x$. Then we have $u=x=v$ hence $\{u, v\}=\{v\}$. Since $y \in\{x, y\}=\{u, v\}=\{v\}$ we have $y=v$, as required.

Case 2: suppose that $u=\{x, y\}$ and $\{u, v\}=x$. Since $u \in\{u, v\}$ and $\{u, v\}=x$ we have $u \in x$. Since $x \in\{x, y\}$ and $\{x, y\}=u$ we have $x \in u$. But then we have $u \in x$ and $x \in u$ which contradicts Part (b), and so Case 2 does not arise.

